Chromosome Painting.

Emmanuel Scherzer (LPMA Paris 6 - SMILE Collège de France). Joint on-going work with A. Lambert and V. Miro Pina.

February 16, 2017

Chromosome painting: Experimental populations of Caenorhabditis elegans (Teotonio et al ('12))

- Start with 16 individuals.
- Build a population of size $\sim 10^{4}$ by random intercross
- Let it evolve during during 140 generations at controlled population size.
- Genotype 180 sequences.

(1)

Chromosome painting: Experimental populations of Caenorhabditis elegans (Teotonio et al ('12))

- Start with 16 individuals.
- Build a population of size $\sim 10^{4}$ by random intercross
- Let it evolve during during 140 generations at controlled population size.
- Genotype 180 sequences.

(1)

Chromosome 3

- Segment $=$ maximal connected set of of points sharing the same color.
- Cluster = maximal set of points sharing the same color.

Chromosome painting

- Segment $=$ maximal connected set of of points sharing the same color.
- Cluster = maximal set of points sharing the same color.
- What is the size of a typical segment ?
- What is the length, diameter of a typical cluster ?
- How many segments, clusters on a given interval ?
- etc.

An Haploïd Wright Fisher Model with Recombination

- Population of constant size N.
- Haploïd population: Each individual carries one chromosome of size R.
- Discrete time dynamics:
time 0 Each chromosome is uniformly colored with a distinct color. time 1 Each individual chooses 2 parents from the previous generation:
proba $1-\rho$ copies one parent chromosome.
proba ρ (Recombination event): a cross-over occurs.

An Haploïd Wright Fisher Model with Recombination

- At time 1, the population consist of N individuals, whose unique chromosome is either uniformly colored, or is partioned into two segments of distinct colors.

- After k steps, each chromosome is a mosaïc of colors, each colors corresponding to the genetic material of an ancestral individual.
- No mutation
- By genetic drift, the system a.s. reaches fixation after a finite (random) time, i.e., every individual in the system carries the same genetic material, and the system stops evolving.

Figure: 6 segments. 4 clusters

- (N, R)-Partitioning process Π_{N}^{R} : partition of colors of the system at equilibrium (for a population of size N with chromosomes of size R.)

Large Population, Long Chromosome

- Let Π_{N}^{R} be the random (finite) partition of $[0, R]$ corresponding to fixation.
- Let $N \rightarrow \infty$ and let the probability of recombination $\rho_{N, R}$ depends on N and R in such a way that

$$
\lim _{N \rightarrow \infty} N \rho_{N, R}=R
$$

(the longer the chromosome, the higher the probability of recombination).

Proposition

For every $R>0$, there exists a random finite partition Π^{R} of $[0, R]$ such that

$$
\Pi_{N}^{R} \rightarrow \Pi^{R} \text { in law. }
$$

Question: What can we say about Π^{R} on an interval of large size ? (For humans $R \approx 5 \times 10^{4}$)

Cluster covering the origin

Define

$$
\mathcal{L}_{R}=\int_{0}^{1} 1_{0 \sim x} d x
$$

the length of the cluster covering the origin.
Theorem (Lambert, Miro Pina, S.)

$$
\lim _{R \rightarrow \infty} \frac{1}{\log (R)} \mathcal{L}_{R}=\mathcal{E}(1) \text { in law. }
$$

Cluster covering the origin

For every $a<b$ in $[0,1]$, let

$$
\nu^{R}([a, b])=\frac{1}{\log (R)} \int_{R^{a}}^{R^{b}} 1_{0 \sim x} d x
$$

Corollary of the previous result

$$
\lim _{R \rightarrow \infty} \nu^{R}([0, x])=x \mathcal{E}(1) \text { in law. }
$$

Conjecture

Consider m^{∞} the PPP on $[0,1] \times \mathbb{R}^{+}$with intensity measure $\frac{1}{x} \exp (-y / x) d x d y$ then

$$
\nu^{R} \Longrightarrow \nu^{\infty}=\int_{0}^{\infty} m^{\infty}(d x d y) d y
$$

Number of segments and clusters

Theorem (Lambert, Miro Pina, S.)
Let S_{R} be the number of segments in the interval $[0, R]$. Then

$$
\lim _{R \rightarrow \infty} \frac{1}{R} S_{R}=1 \text { in probability. }
$$

Typical size of a cluster on $[0, R]$ is of the order $\log (R)$. Thus, the number of clusters M_{R} should be of the order $R / \log (R)$.
Theorem (Lambert, Miro Pina, S.)
Let $\epsilon>0$ and let $M_{R, \epsilon}$ be the number of clusters in the interval $[0, R]$ whose length is greater than $\epsilon \log (R)$. Then

$$
\lim _{\epsilon \rightarrow 0} \lim _{R \rightarrow \infty} \frac{\ln (R)}{R} M_{R, \epsilon}=1 \text { in probability. }
$$

Number of Clusters Continued

Conjecture (Wiuf and Hein 97)
There exists a constant c such that $\frac{\ln (R)}{R} M_{R} \rightarrow c$ (in law, a.s. ?), with $c \approx 1.38>1$

For humans chromosome 1: $R \approx 5 \times 10^{4}$, and thus, the number of ancestors for chromosome 1 is approximatively $M_{R} \approx 6400$.

Idea of the proofs.

The Ancestral Recombination Graph (ARG): two sites

- Consider two sites x and y at distance I and follow their ascendances as time goes backward.
- At each generation, the common line of ascent $\{x, y\}$ splits with probability I / N.
- At each generation, the singleton lines $\{x\}$ and $\{y\}$ coalesce with probability $1 / N$.
- x, y carry the same color iff their lines coincide at $-\infty$

The Ancestral Recombination Graph (ARG): three sites

- Consider three sites $\{x, y, z\}$ with $x<y<z$ and

$$
d(x, y)=I_{1} \text { and } d(y, z)=I_{2}
$$

- At each generation, the three lines of ascent split
- into $\{x, y\}$ and $\{z\}$ with probability I_{2} / N.
- into $\{x\}$ and $\{y, z\}$ with probability I_{1} / N.
- At each generation, each pair of lines coalesce with probability $1 / N$.
- x, y, z carry the same color iff their lines coincide at $-\infty$

Ancestral Recombination Graph (Griffiths, Hudson)

- Let $z_{0}<\cdots<z_{n}$ in \mathbb{R}.
- The ancestral recombination graph is the continuous time Markov process on \mathcal{P}_{n} - the set of partitions of $\{0, \cdots, n\}$ - with following rates:
coalescence groups of lineages coalesce at rate 1.
fragmentation group of lineages
$\{\sigma(0)<\cdots<\sigma(j)<\sigma(j+1)<\cdots<\sigma(K)\}$ splits into two parts :

$$
\{\sigma(0)<\cdots<\sigma(j)\} \text { and }\{\sigma(j+1)<\cdots<\sigma(K)\} \text { at rate } z_{\sigma(j+1)}-
$$

Duality

$$
\mathbb{P}\left(z_{0} \sim \cdots \sim z_{n}\right)=\mu^{z}(\{0, \cdots, n\})
$$

where $\mu^{\mathbf{z}}$ is the invariant distribution of the ancestral recombination graph corresponding to $\mathbf{z}=\left(z_{0}, z_{1}, \cdots, z_{n}\right)$.

Proof for the Cluster Size at the Origin

- We aim at proving that

$$
\lim _{R \rightarrow \infty} \frac{1}{\log (R)} \mathcal{L}_{R}=\mathcal{E}(1) \text { in law. }
$$

where \mathcal{L}_{R} is the length of the cluster at 0 on $[0, R]$.

- Main Idea: Method of moments.
- Using Carleman's condition, it is enough to show that

$$
\lim _{R \rightarrow \infty} \frac{1}{\log (R)^{n}} \mathbb{E}\left(\mathcal{L}_{R}^{n}\right)=n!
$$

Proof for the Cluster Size at the Origin

$$
\begin{aligned}
\frac{1}{\log (R)^{n}} \mathbb{E}\left(\mathcal{L}_{R}^{n}\right)= & \frac{1}{\log (R)^{n}} \mathbb{E}\left(\left(\int_{0}^{R} \mathbb{1}_{0 \sim z} d z\right)^{n}\right) \\
= & \frac{1}{\log (R)^{n}} \mathbb{E}\left(\int_{[0, R]^{n}} \mathbb{1}_{0 \sim z_{1} \cdots \sim z_{n}} d V\right) \\
= & \frac{1}{\log (R)^{n}} \int_{[0, R]^{n}} \mathbb{P}\left(0 \sim z_{1} \cdots \sim z_{n}\right) d V \\
= & \frac{R^{n}}{\log (R)^{n}} \times \\
& \frac{1}{R^{n}} \int_{[0, R]^{n}} \mu^{z}(\{0, \cdots, n\}) d V
\end{aligned}
$$

where $\mu^{\mathbf{z}}$ is the invariant distribution in the ancestral recombination graph corresponding to $\mathbf{z}=\left(z_{0}=0, z_{1}, \cdots, z_{n}\right)$.

Proof for the Cluster Size at the Origin

- Take $z_{0}<z_{1}<\cdots<z_{n}$ with $z_{i+1}-z i=R \times u_{i}, u_{i}>0$.
- In the ancestral recombination graph, the most likely configuration is $\{0\} \cdots\{n\}$.

Definition

Let $\pi \in \mathcal{P}_{n}$. We say that π is of order k if it can be obtained from $\{0\} \cdots\{n\}$ by k successive coalescence events.

- $\{i, j\}+$ singletons is of order 1
- $\{i, j, k\}+$ singletons is of order 2. Three scenarios:

$$
\begin{aligned}
& \{i\}\{j\}\{k\} \cdots \rightarrow\{i, j\}\{k\} \cdots \rightarrow\{i, j, k\} \cdots \\
& \{i\}\{j\}\{k\} \cdots \rightarrow\{i, k\}\{j\} \cdots \rightarrow\{i, j, k\} \cdots \\
& \{i\}\{j\}\{k\} \cdots \rightarrow\{k, j\}\{i\} \cdots \rightarrow\{i, j, k\} \cdots
\end{aligned}
$$

- $\{i, j\},\{k, l\}+$ singletons is of order 2.
- $\{0,1,2, \cdots, n\}$ is of order n.

Energy of a coalescence scenario

$\{i, j, k\}+$ singletons is of order 2. Three scenarios:

$$
\begin{aligned}
s 1: & \{i\}\{j\}\{k\} \cdots \rightarrow\{i, j\}\{k\} \cdots \rightarrow\{i, j, k\} \cdots \\
s 2: & \{i\}\{j\}\{k\} \cdots \rightarrow\{i, k\}\{j\} \cdots \rightarrow\{i, j, k\} \cdots \\
s 3: & \{i\}\{j\}\{k\} \cdots \rightarrow\{k, j\}\{i\} \cdots \rightarrow\{i, j, k\} \cdots
\end{aligned}
$$

We define the energy of a coalescence scenario as the inverse of the product of the successive cover lengths at each step of the scenario.

$$
\begin{aligned}
E(s 1, \mathbf{z}) & =\frac{1}{z_{j}-z_{i}} \times \frac{1}{z_{k}-z_{i}} \\
E(s 2, \mathbf{z}) & =\frac{1}{z_{k}-z_{i}} \times \frac{1}{z_{k}-z_{i}}
\end{aligned}
$$

Lemma

For every $\pi, \pi^{\prime} \in \mathcal{P}_{n}$ of order k and I with $I>k$

$$
\mu^{\mathrm{z}}(\pi) / \mu^{\mathrm{z}}\left(\pi^{\prime}\right) \rightarrow 0
$$

Corollary

Let $\pi \in \mathcal{P}_{n}$ of order k, then

$$
\lim _{R \rightarrow \infty} R^{k} \mu^{\mathbf{z}}(\pi)=\lim _{R \rightarrow \infty} R^{k} \sum_{\mathbf{S}} E(\mathbf{S}, \mathbf{z})
$$

where the sum is taken over every possible coalescence scenarii to go from $\{1\} \cdots\{n\}$ to π.

Proof.
Solve ${ }^{t} \pi M^{\mathbf{z}}=0$ using the previous approximation, where $M^{\mathbf{z}}$ is the transition matrix for the ARG process.

$$
\begin{aligned}
\frac{1}{\log (R)^{n}} \mathbb{E}\left(\mathcal{L}_{R}^{n}\right) & =\frac{R^{n}}{\log (R)^{n}} \times \\
& \frac{1}{R^{n}} \int_{[0, R]^{n}} \mu^{2}(\{0, \cdots, n\}) d V \\
& \approx \frac{R^{n}}{\log (R)^{n}} \times \\
& \frac{1}{R^{n}} \int_{[0, R]^{n}} \sum_{\mathbf{S}} E(\mathbf{S}, \mathbf{z}) d V \\
& \approx n!
\end{aligned}
$$

Open Questions

- Law of large number for the number of clusters.
- Central Limit Theorems for number of clusters and segments to build confidence intervals for our null model.
- Detecting selection, epistasis etc.

Thank you!

