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Chromosome painting: Experimental populations of
Caenorhabditis elegans (Teotonio et al (’12))

I Start with 16 individuals.

I Build a population of size ∼ 104

by random intercross

I Let it evolve during during 140
generations at controlled
population size.

I Genotype 180 sequences.
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Chromosome 3

I Segment = maximal connected set of of points sharing the
same color.

I Cluster = maximal set of points sharing the same color.



Chromosome painting

I Segment = maximal connected set of of points sharing the
same color.

I Cluster = maximal set of points sharing the same color.

I What is the size of a typical segment ?

I What is the length, diameter of a typical cluster ?

I How many segments, clusters on a given interval ?

I etc.



An Haplöıd Wright Fisher Model with Recombination

I Population of constant size N.

I Haplöıd population: Each individual carries one chromosome
of size R.

I Discrete time dynamics:
time 0 Each chromosome is uniformly colored with a distinct color.
time 1 Each individual chooses 2 parents from the previous

generation:
proba 1− ρ copies one parent chromosome.

proba ρ (Recombination event): a cross-over occurs.



An Haplöıd Wright Fisher Model with Recombination

I At time 1, the population consist of N individuals, whose
unique chromosome is either uniformly colored, or is partioned
into two segments of distinct colors.

I After k steps, each chromosome is a mosäıc of colors, each
colors corresponding to the genetic material of an ancestral
individual.



I No mutation

I By genetic drift, the system a.s. reaches fixation after a finite
(random) time, i.e., every individual in the system carries the
same genetic material, and the system stops evolving.

Figure: 6 segments. 4 clusters

I (N,R)-Partitioning process ΠR
N : partition of colors of the

system at equilibrium (for a population of size N with
chromosomes of size R.)



Large Population, Long Chromosome

I Let ΠR
N be the random (finite) partition of [0,R]

corresponding to fixation.

I Let N →∞ and let the probability of recombination ρN,R
depends on N and R in such a way that

lim
N→∞

N ρN,R = R.

(the longer the chromosome, the higher the probability of
recombination).

Proposition

For every R > 0, there exists a random finite partition ΠR of [0,R]
such that

ΠR
N → ΠR in law.

Question: What can we say about ΠR on an interval of large
size ? (For humans R ≈ 5× 104 )



Cluster covering the origin

Define

LR =

∫ 1

0
10∼xdx

the length of the cluster covering the origin.

Theorem (Lambert, Miro Pina, S.)

lim
R→∞

1

log(R)
LR = E(1) in law.



Cluster covering the origin

For every a < b in [0, 1], let

νR([a, b]) =
1

log(R)

∫ Rb

Ra

10∼xdx

Corollary of the previous result

lim
R→∞

νR([0, x ]) = xE(1) in law.

Conjecture

Consider m∞ the PPP on [0, 1]× R+ with intensity measure
1
x exp(−y/x)dxdy then

νR =⇒ ν∞ =

∫ ∞
0

m∞(dxdy)dy



Number of segments and clusters

Theorem (Lambert, Miro Pina, S.)

Let SR be the number of segments in the interval [0,R]. Then

lim
R→∞

1

R
SR = 1 in probability.

Typical size of a cluster on [0,R] is of the order log(R). Thus, the
number of clusters MR should be of the order R/ log(R).

Theorem (Lambert, Miro Pina, S.)

Let ε > 0 and let MR,ε be the number of clusters in the interval
[0,R] whose length is greater than ε log(R). Then

lim
ε→0

lim
R→∞

ln(R)

R
MR,ε = 1 in probability.



Number of Clusters Continued

Conjecture (Wiuf and Hein 97)

There exists a constant c such that ln(R)
R MR → c (in law, a.s. ?),

with c ≈ 1.38 > 1

For humans chromosome 1: R ≈ 5× 104, and thus, the number of
ancestors for chromosome 1 is approximatively MR ≈ 6400.



Idea of the proofs.



The Ancestral Recombination Graph (ARG): two sites

I Consider two sites x and y at
distance l and follow their
ascendances as time goes
backward.

I At each generation, the
common line of ascent {x , y}
splits with probability l/N.

I At each generation, the
singleton lines {x} and {y}
coalesce with probability 1/N.

I x , y carry the same color iff
their lines coincide at −∞



The Ancestral Recombination Graph (ARG): three sites

I Consider three sites {x , y , z}
with x < y < z and

d(x , y) = l1 and d(y , z) = l2

I At each generation, the three
lines of ascent split

I into {x , y} and {z} with
probability l2/N.

I into {x} and {y , z} with
probability l1/N.

I At each generation, each pair of
lines coalesce with probability
1/N.

I x , y , z carry the same color iff
their lines coincide at −∞



Ancestral Recombination Graph (Griffiths, Hudson)

I Let z0 < · · · < zn in R.
I The ancestral recombination graph is the continuous time

Markov process on Pn — the set of partitions of {0, · · · , n}
— with following rates:

coalescence groups of lineages coalesce at rate 1.
fragmentation group of lineages

{σ(0) < · · · < σ(j) < σ(j + 1) < · · · < σ(K )} splits into two
parts :

{σ(0) < · · · < σ(j)} and {σ(j+1) < · · · < σ(K )} at rate zσ(j+1) − zσ(j).

Duality
P(z0 ∼ · · · ∼ zn) = µz({0, · · · , n})

where µz is the invariant distribution of the ancestral
recombination graph corresponding to z = (z0, z1, · · · , zn).



Proof for the Cluster Size at the Origin

I We aim at proving that

lim
R→∞

1

log(R)
LR = E(1) in law.

where LR is the length of the cluster at 0 on [0,R].

I Main Idea: Method of moments.

I Using Carleman’s condition, it is enough to show that

lim
R→∞

1

log(R)n
E (LnR) = n!



Proof for the Cluster Size at the Origin

1

log(R)n
E (LnR) =

1

log(R)n
E

(
(

∫ R

0
10∼zdz)n

)
=

1

log(R)n
E

( ∫
[0,R]n

10 ∼ z1 ··· ∼zndV

)

=
1

log(R)n

∫
[0,R]n

P(0 ∼ z1 · · · ∼ zn)dV

=
Rn

log(R)n
×

1

Rn

∫
[0,R]n

µz({0, · · · , n})dV

where µz is the invariant distribution in the ancestral
recombination graph corresponding to z = (z0 = 0, z1, · · · , zn).



Proof for the Cluster Size at the Origin
I Take z0 < z1 < · · · < zn with zi+1 − zi = R × ui , ui > 0.
I In the ancestral recombination graph, the most likely

configuration is {0} · · · {n}.

Definition
Let π ∈ Pn. We say that π is of order k if it can be obtained from
{0} · · · {n} by k successive coalescence events.

I {i , j}+ singletons is of order 1
I {i , j , k}+ singletons is of order 2. Three scenarios:

{i}{j}{k} · · · → {i , j}{k} · · · → {i , j , k} · · ·
{i}{j}{k} · · · → {i , k}{j} · · · → {i , j , k} · · ·
{i}{j}{k} · · · → {k , j}{i} · · · → {i , j , k} · · ·

I {i , j}, {k , l}+ singletons is of order 2.
I · · ·
I {0, 1, 2, · · · , n} is of order n.



Energy of a coalescence scenario
{i , j , k}+ singletons is of order 2. Three scenarios:

s1 : {i}{j}{k} · · · → {i , j}{k} · · · → {i , j , k} · · ·
s2 : {i}{j}{k} · · · → {i , k}{j} · · · → {i , j , k} · · ·
s3 : {i}{j}{k} · · · → {k, j}{i} · · · → {i , j , k} · · ·

We define the energy of a coalescence scenario as the inverse of the
product of the successive cover lengths at each step of the scenario.

E (s1, z) =
1

zj − zi
× 1

zk − zi

E (s2, z) =
1

zk − zi
× 1

zk − zi



Lemma
For every π, π′ ∈ Pn of order k and l with l > k

µz(π)/µz(π′)→ 0

Corollary

Let π ∈ Pn of order k , then

lim
R→∞

Rkµz(π) = lim
R→∞

Rk
∑
S

E (S, z)

where the sum is taken over every possible coalescence scenarii to
go from {1} · · · {n} to π.

Proof.
Solve tπ Mz = 0 using the previous approximation, where Mz is
the transition matrix for the ARG process.



1

log(R)n
E (LnR) =

Rn

log(R)n
×

1

Rn

∫
[0,R]n

µz({0, · · · , n})dV

≈ Rn

log(R)n
×

1

Rn

∫
[0,R]n

∑
S

E (S, z) dV

≈ n!



Open Questions

I Law of large number for the number of clusters.

I Central Limit Theorems for number of clusters and segments
to build confidence intervals for our null model.

I Detecting selection, epistasis etc.



Thank you !


