Cherries, trees, and cherries without trees

Giacomo Plazzotta

Banff International Research Station

14th February 2017

Imperial College London

Caroline Colijn

What is a shape?

Not rigorously, the shape ${\mathcal S}$ of a tree or subtree is the tree or subtree without the associated branch lengths

G. Plazzotta (IC)

Cherries, trees and cherries without trees

What is a shape frequency?

The frequency of a shape S in a tree is the ratio between the number of occurrences of S in the tree and the number of tips of the tree.

General setting (Jagers, 1975)

Counting shapes

Convergence of the shape frequency

Henceforth supercritical branching processes i.e. $E[\xi(\infty)] > 1$. Nerman (1981) proves a fundamental convergence:

(Nerman, 1981)

Given two characteristics ϕ^1 , ϕ^2 (with some properties..) then:

$$\frac{Z^{\phi^1}(t)}{Z^{\phi^2}(t)} \xrightarrow{t \to \infty} \frac{E[Z^{\phi^1}(t)]}{E[Z^{\phi^2}(t)]} \xrightarrow{t \to \infty} \frac{\int_0^\infty e^{-Mt} E[\phi^1(t)] dt}{\int_0^\infty e^{-Mt} E[\phi^2(t)] dt}$$

where *M* is the Malthusian parameter, i.e.: $\int_0^\infty e^{-Mt} \mu(dt) = 1$.

In our case:

$$\lim_{t\to\infty}\frac{\operatorname{Occurrences of }\mathcal{S}}{\operatorname{Tips}}=M\int_0^\infty \mathrm{e}^{-Mt}E[\phi^{\mathcal{S}}(t)]dt.$$

 $E[\phi^{S}(t)]$ is the probability that at t the ancestor has fathered a shape and is very hard to derive

Jumping Chronological Contour Process

"This process can be seen as the path of a ball that follows an outline of the oriented tree, decreasing at unit speed along its edges and jumping instantaneously to the tip of the daughter edge when reaching a node." (Lambert, Alexander, Stadler, 2014)

Evaluation of $E[\phi^{S}(t)]$ in homogeneous trees

Results: cherries to tips ratio in homogeneous models

A homogeneous tree has constant birth rate (β) and death rate (δ).

The cherries to tips ratio

$$\lim_{t \to \infty} \frac{\text{Cherries}}{\text{Tips}} = \frac{\beta}{3\beta + \delta} = \frac{R_0}{3R_0 + 1}$$

With $R_0 = \beta / \delta$.

As $R_0 \to \infty$ (Yule tree): $CTR \to \frac{1}{3}$ as in (McKenzie&Steel 2000).

Remarks

Convergence is almost sure, tree is supercritical. For large trees:

$$R_0 pprox rac{\mathsf{CTR}}{1-\mathsf{3CTR}}$$
 when Tips $\gg 1$

Implies a dynamic interpretation of R_0 .

CTR/(1-3CTR) is close to R_0 in large trees

More results

Configuration	Model	As. frequency	Plot and limit
cherry	Homogeneous birth rate: β death rate: δ R ₀ = β/δ	$\frac{R_0}{3R_0+1}$	Automotion Automotio Automotion Automotion Automotion Automotion Automotion
cherry	Non homogeneous constant birth rate β life span distribution: Gamma (rate= δ , shape=2) $R_0 = 2\beta/\delta$	$\begin{split} &(51)(201k_{+}^{2}+201k_{+}^{2011}(\overline{L}_{0}^{2}+1)+5001k_{+}^{2}+\\ &+4131k_{+}^{2011}(\overline{L}_{0}^{2}+1)+6031k_{+}^{2}+22211k_{+}^{2011}(\overline{L}_{0}^{2}+1)+\\ &+4201k_{+}^{2}+6001k_{+}^{2}+6001k_{+}^{2}+1211k_{+}^{2$	Supple 200 - 1/3 25 5 75 10 R0
-fork	Homogeneous birth rate: β death rate: δ R ₀ = β/δ	$\frac{3R_0^2(R_0+1)}{(3R_0+1)^2(2R_0+1)}$	Sumper la
double cherry	Homogeneous birth rate: β death rate: $\overline{\delta}$ $R_0 = \beta/\overline{\delta}$	$\begin{array}{l} 1/4(2592R_{y}^{3}+11556R_{y}^{3}+18279R_{y}^{3}+\\ +13899R_{y}^{3}+4799R_{y}^{3}-65R_{y}^{3}-\\ -546R_{y}^{3}-18R_{y}^{3})\\ (19440R_{y}^{3}+91044R_{y}^{3})\\ (19440R_{y}^{3}+91044R_{y}^{3}+\\ +185180R_{y}^{3}+222741R_{y}^{6}+\\ +165180R_{y}^{3}+322741R_{y}^{6}+\\ +2716R_{y}^{3}+5705R_{y}^{3}+\\ +664R_{y}^{3}+36_{y}^{-1}\right)^{1}\end{array}$	Source 1/30 225 5 75 th R0

Open questions

1 Do shape frequencies depend only on R_0 ? 2 Compute efficiently $E\left[\phi^{\mathcal{S}}(t)\right]$ in fully general

processes?

R_0 inference from cherries - overview

CHERRIES

0.24 0.25 0.26 0.27

G. Plazzotta (IC)

SEQUENCES

AATACGGCGGATAAATA TATACGCATACGGTATA AATAAGTCGGATAAATA

CTR

R_0 estimate and confidence interval

- Lindeberg's CLT \Rightarrow CTR \approx Normal for large trees
- the variance of the CTR is bounded by $\frac{1}{4n}$

This provides a theoretical 70% confidence (at least) but from simulations we found it is 95%.

How to derive the number of cherries?

- Count the cherries in a tree
- Reconstruct a tree from sequences and count the cherries
- We developed a tree-free cherry estimation CWT

CWT overlook

- Consider tree unrooted (rooted and unrooted differ by 1 cherry)
- For each tip *c*, the algorithm looks among all other tips as candidates to form a cherry with *c*
- Current candidate *m* is tested against new candidate *t* in a quartet (*c*, *f*, *m*, *t*) where *f* for sure cannot form a cherry with *c*
- The quartet selection finds where is the split in (c, f, m, t) and at least one between m and t must be excluded

Quartet selection

c to check, m current candidate

f surely not in a cherry, t is the test in this iteration

	characteristic	quartet	CWT update)
#1	$\left \overline{cf} + \overline{mt} - \overline{ct} - \overline{mf}\right = 0$	m t	$t ext{ excluded}$ $m \leftarrow m, f \leftarrow f$ m.OK = m.OK
#2	$\left \overline{cf} + \overline{mt} - \overline{cm} - \overline{ft}\right = 0$	c f m	t is the new candidate $m \leftarrow t, f \leftarrow m$ m.OK = 1
#3	$\left \overline{ct}+\overline{fm}-\overline{cm}-\overline{ft}\right =0$	c t	t excluded $m \leftarrow m, f \leftarrow f$ m.OK = 0

R_0 inference with CWT: simulation and real data

R0 inference from CWT cherry estimate

H1N1 2009 outbreak:

Method	# sequences	CTR estimate	R ₀ estimate (CI)
CWT	2975	0.27042	1.43 (1.21 - 1.73)
FastTree	2975	0.28303	1.88 (1.53 - 2.36)

Benefits

- Can use any genetic distance
- No need of sequence alignment
- Tree-free
- Each step for a different *c* is independent, so CWT highly parallelisable
- Minimal memory required O(I), time complexity from $O(In^2)$ up to linear O(In) if fully parallelised
- Aimed at big data

Issues

- Requires a lot of sequences
- Long branch attraction:

• Sampling not considered (yet). Possibly not hard if sample rate is known

3 Use CWT to reconstruct the tree?

Thank you.

- 1 Plazzotta Colijn *Asymptotic frequency of shapes in supercritical branching trees*, J App Prob 2016
- 2 Plazzotta Colijn *Phylodynamics without trees: estimating R0 directly from pathogen sequences*, BioRxiv 2017

CWT accuracy

