Likelihood challenges for big trees and networks

Claudia Solís-Lemus University of Wisconsin-Madison

Joint work with Cécile Ané, Bret Larget

Mathematical Approaches to Evolutionary Trees and Networks Banff International Research Station February 13, 2017

Tree inference

# Species	# Unrooted trees	# Rooted trees
1	1	1
2	1	1
3	1	3
4	3	15
5	15	105
6	105	945
7	945	10395
8	10,395	135,135
9	135,135	2,027,025
10	2,027,025	34,459,425
11	34,459,425	654,729,075
12	654,729,075	13,749,310,575
13	13,749,310,575	316,234,143,225
:	:	:
52	> # atoms in universe	

12 taxa *Carnivora* MCMC efficiency ~0.025% (250 from 1 million post-burnin generations)

What if we could sample from the posterior more efficiently?

(T, t, Q)

Conditional clade distribution: Sister clades are approximately conditionally independent

(Larget, 2013)

Conditional clade distribution: Sister clades are approximately conditionally independent

(Larget, 2013)

Conditional clade distribution: Sister clades are approximately conditionally independent

1,2,3,4

(Larget, 2013)

Conditional clade distribution: Sister clades are approximately conditionally independent

1,2,3,4

2,3,4

(Larget, 2013)

Conditional clade distribution: Sister clades are approximately conditionally independent

1,2,3,4

2,3,4

2,3 4

(Larget, 2013)

Conditional clade distribution: Sister clades are approximately conditionally independent

(Larget, 2013)

Conditional clade distribution: Sister clades are approximately conditionally independent

(Larget, 2013)

Bootstrap sample of Neighbor-Joining trees

> AAGTCTAG AAGTCTAG AACTCTAG AATTCTAG

Bootstrap sample of Neighbor-Joining trees

> AAGTCTAG AAGTCTAG AACTCTAG AATTCTAG

Bootstrap sample of Neighbor-Joining trees

> TAGAGCTA TAGAGCTA TAGACCTA TAGATCTA

Bootstrap sample of Neighbor-Joining trees

TAGAGCTA TAGAGCTA TAGACCTA TAGATCTA

Bootstrap sample of Neighbor-Joining trees

> TAGAGCTA TAGAGCTA TAGACCTA TAGATCTA

Importance sampling in phylogenetics: Bistro

- Fixed Q
- Sample a topology from clade distribution
- Sample branch lengths from Gamma
- Compute the likelihood of topology with branch lengths, and weight
- Repeat
- Do inference on weighted sample

Results

Challenges

Curse of dimensionality

We see efficiency gains, but

- **Topology:** bootstrap sample does not work for big trees
 - Ideas: Consensus or (Fréchet) mean tree, density with exponential decay
- Branch lengths: Dimension and correlation
- Q: Dirichlet proposal densities for base frequencies and rates, mean/var estimate?

Pseudolikelihood estimation of phylogenetic networks

Gene tree 1 Gene tree 2 Gene tree 3 Species tree

Tree

Network

Multispecies coalescent model on a network

(Meng, Kubatko, 2009) (Yu, Degnan, Nakhleh, 2012)

Multispecies coalescent model on a network

(Meng, Kubatko, 2009) (Yu, Degnan, Nakhleh, 2012)

$$L(network, t, \gamma) = \prod_{g} P(g|network, t, \gamma)$$

$$\frac{PhyloNet}{(Yu, Dong, Liu, Nakhleh, 2014)}$$

Maximum likelihood

ABCD

gene n

Complex problem <10 species <3 hybridizations

L

С

B

Model

PhyloNet (Yu, Dong, Liu, Nakhleh, 2014)

Maximum pseudolikelihood

Quartet-based inference

$$\tilde{L}(network,t,\gamma) = \prod_{q \in Q(network)} Likelihood(q,t,\gamma)$$

Sngg

(S-L, Ané, 2016, PLoS Genetics)

www.github.com/CRSL4/PhyloNetworks

Model identifiability

Can we detect the presence of hybridization?

Generic Identifiability $t_i \in (0, \infty), \gamma \in (0, 1)$

(S-L, Ané, 2016, PLoS Genetics)

SNaQ performance

Good diamond

(S-L, Ané, 2016, PLoS Genetics)

Xiphophorus fish data

1183 genes, 24 swordtails and platyfish

(Cui et al., 2013)

Xiphophorus fish data

(S-L, Ané, 2016, PLoS Genetics)

Inconsistency with gene flow

(S-L, Yang, Ané, 2016, Syst Bio)

PhyloNetworks: analysis for phylogenetic networks in Julia

Maximum pseudolikelihood estimation of species network: SNaQ

SIGU SNaQ implements the statistical inference method in Solis-Lemus and Ané (2016, PLoS Genetics). The procedure involves a numerical optimization of branch lengths and inheritance probabilities and a heuristic search in the space of phylogenetic networks.

http://crsl4.github.io/

Level-1 networks

What we have:

 scalable method for level-1 networks from multilocus data

What we want:

- level-k networks: identifiability
- better optimization tools in space of networks
- model selection tools

Acknowledgements

Cécile Ané **Bret Larget Douglas Bates** David Baum Mengyao Yang John Malloy John Spaw Noah Stenz Nan Ji Jordan Vonderwell Josh McGrath

http://crsl4.github.io/ claudia@stat.wisc.edu

concordance factors (CF): % of genes having the quartet in their tree

(Solís-Lemus, Ané, 2016, PLoS Genetics)

Implicit no distinction: ILS, HGT

Reasons for gene tree discordance

- Gene tree reconstruction error
- Horizontal gene transfer (HGT)
- Incomplete lineage sorting (ILS)

4 taxon set	CF_1	CF_2	CF_3
ABCD	.80	.10	.10
ABC E	.40	.40	.20
AB DE	.40	.40	.20
A CDE	.84	.08	.08
BCDE	.82	.10	.08

Observed CF

$$\tilde{L} = \sum_{q \in Q(N)} CF_{obs,1} \log(CF_{exp,1}) + CF_{obs,2} \log(CF_{exp,2}) + CF_{obs,3} \log(CF_{exp,3})$$

(Solís-Lemus, Ané, 2016, PLoS Genetics)

In practice: flat pseudolikelihood

(Solís-Lemus, Ané, 2016, PLoS Genetics)

Anomaly zone with gene flow

(Solís-Lemus, Yang, Ané, 2016, Syst Bio)

SNaQ performance

(Solís-Lemus, Ané, 2016, PLoS Genetics)

Model identifiability

(Solís-Lemus, Ané, 2016, PLoS Genetics)

Anomalous unrooted gene trees with gene flow

t_4 t_5	Frequency among gene trees				
t_3	Quartet	$\gamma = 0.0$	$\gamma = 0.1$	$\gamma = 0.3$	
	AB CD	0.347	0.298	0.260	
	CA BD	0.327	0.351	0.370	
	CB AD	0.327	0.351	0.370	
C A B D	t ₁ =	$= t_2 = 0.01, t$	$_{3} = t_{4} = t_{5} =$	= 1	

ILS: no AUGT on 4 taxa (Degnan, 2013)
ILS+HGT: AUGT on 4 taxa (Solís-Lemus, Yang, Ané, 2016, Syst Bio)

Why networks?

Idea of proof of identifiability: hybridization

Idea of proof of identifiability: hybridization

Solution to $CF_{network} = CF_{tree}$ if

Idea of proof of identifiability: parameters

Unique solution: hard

Finitely many solutions: # alg. indep. eqs ~ # parameters

System of equation $\{CF_{network}\}$

Coalescent model

- Haploid population: constant size N
- 1 individual = 1 chromosome
- No selection: uniform probability
- Probability of no coalescence in *g* generations:

 $\left(1-\frac{1}{N}\right)^{g}$

• Coalescence time $t = \frac{g}{N}$

$$\left(1 - \frac{t}{Nt}\right)^{Nt} \xrightarrow[N \to \infty]{} e^{-t}$$

• Exponential distribution with mean 1

 $CF_{AB|CD} = (1 - \gamma)(1 - 2/3e^{-t_1}) + \gamma(1 - 2/3e^{-t_1-t_2})$ $CF_{AC|BD} = CF_{AD|BC} = (1 - \gamma)(1/3e^{-t_1}) + \gamma(1/3e^{-t_1-t_2})$