Likelihood challenges for big trees and networks

Claudia Solís-Lemus
 University of Wisconsin-Madison

Joint work with Cécile Ané, Bret Larget
Mathematical Approaches to Evolutionary Trees and Networks
Banff International Research Station
February 13, 2017

Bayesian inference of phylogenetic trees

Tree inference

Maximum likelihood \begin{tabular}{c:c}
Bayesian inference

Heuristic search \& MCMC

RAxML
(Stamatakis, 2014)
PhyML
(Guindon et al, 2010)
:---:

\hline (Huelsenbeck, Ronquist, 2001)
\end{tabular}

\# Species	\# Unrooted trees	\# Rooted trees
1	1	1
2	1	1
3	1	3
4	3	15
5	15	105
6	105	945
7	945	10395
8	10,395	135,135
9	135,135	$2,027,025$
10	$2,027,025$	$34,459,425$
11	$34,459,425$	$654,729,075$
12	$654,729,075$	$13,749,310,575$
13	$13,749,310,575$	$316,234,143,225$
\vdots	\vdots	\vdots
52	$>$ \# atoms in universe	

12 taxa Carnivora

MCMC efficiency ~0.025\%

(250 from 1 million post-burnin generations)

What if we could sample from the posterior more efficiently?

Importance sampling

Importance sampling

Importance sampling in phylogenetics

Target:

Posterior distribution

(T, t, Q)

Importance sampling in phylogenetics

Target:

Posterior distribution

Work in progress with B. Larget

Importance sampling in phylogenetics

Target:

Posterior distribution

Work in progress with B. Larget

Importance sampling in phylogenetics

Target:

Posterior distribution

Importance sampling in phylogenetics

Target:

Posterior distribution

Work in progress with B. Larget

Proposal density for topology

Conditional clade distribution: Sister clades are approximately conditionally independent

(Larget, 2013)

Proposal density for topology

Conditional clade distribution: Sister clades are approximately conditionally independent

(Larget, 2013)

Proposal density for topology

Conditional clade distribution: Sister clades are approximately conditionally independent

$$
1,2,3,4
$$

Proposal density for topology

Conditional clade distribution: Sister clades are approximately conditionally independent

$$
\begin{aligned}
& 1,2,3,4 \\
& 1 \quad 2,3,4
\end{aligned}
$$

(Larget, 2013)

Proposal density for topology

Conditional clade distribution: Sister clades are approximately conditionally independent

$$
\begin{gathered}
1,2,3,4 \\
1 \quad 2,3,4 \\
2,3
\end{gathered}
$$

(Larget, 2013)

Proposal density for topology

Conditional clade distribution: Sister clades are approximately conditionally independent

$$
\begin{gathered}
\text { 1,2,3,4 } \\
1 \begin{array}{cc}
2,3,4 \\
2,3 & 4
\end{array} \\
2
\end{gathered}
$$

Proposal density for topology

Conditional clade distribution: Sister clades are approximately conditionally independent

(Larget, 2013)
Work in progress with B. Larget

Proposal density for topology

Bootstrap sample of Neighbor-Joining trees

AAGTCTAG
AAGTCTAG
AACTCTAG
AATTCTAG

Proposal density for topology

Bootstrap sample of Neighbor-Joining
 trees

AAGTCTAG
AAGTCTAG
AACTCTAG
AATTCTAG

Proposal density for topology

Bootstrap sample of Neighbor-Joining
 trees

TAGAGCTA
TAGAGCTA
TAGACCTA
TAGATCTA

Proposal density for topology

Bootstrap sample of Neighbor-Joining trees

TAGAGCTA

TAGAGCTA
TAGACCTA
TAGATCTA

Proposal density for topology

Bootstrap sample of Neighbor-Joining trees

TAGAGCTA TAGAGCTA TAGACCTA TAGATCTA

Work in progress with B. Larget

Proposal density for

 branch lengths Correlation of sister edges

$$
\begin{array}{r}
\left(t_{1}, t_{2}\right) \sim \text { Gamma } \\
\mu=M L E \\
\Sigma=I^{-1}
\end{array}
$$

Importance sampling in phylogenetics: Bistro

- Fixed Q
- Sample a topology from clade distribution
- Sample branch lengths from Gamma
- Compute the likelihood of topology with branch lengths, and weight
- Repeat
- Do inference on weighted sample

Results

Challenges

Curse of dimensionality

Extra variance 10\%

Work in progress with B. Larget

We see efficiency gains, but

- Topology: bootstrap sample does not work for big trees
- Ideas: Consensus or (Fréchet) mean tree, density with exponential decay
- Branch lengths: Dimension and correlation
- Q: Dirichlet proposal densities for base frequencies and rates, mean/var estimate?

Pseudolikelihood estimation of phylogenetic networks
Gene tree 1
Gene tree 2 Gene tree 3 Species tree

How to estimate the

 species tree with gene tree discordance?

Multispecies coalescent model on a network

(Meng, Kubatko, 2009)
(Yu, Degnan, Nakhleh, 2012)

Multispecies coalescent model on a network

Maximum likelihood

Model

Data

$$
L(\text { network }, t, \gamma)=\prod_{g} P(g \mid \text { networ } k, t, \gamma)
$$

PhyloNet
(Yu, Dong, Liu, Nakhleh, 2014)

Maximum likelihood

(Yu, Dong, Liu, Nakhleh, 2014)

Maximum pseudolikelihood

Quartet-based inference

$$
\tilde{L}(\text { network }, t, \gamma)=\prod_{q \in Q(\text { network })} \operatorname{Likelihood}(q, t, \gamma)
$$

(S-L, Ané, 2016, PLoS Genetics)

www.github.com/CRSL4/PhyloNetworks

Model identifiability

Can we detect the presence of hybridization?

Generic Identifiability $\quad t_{i} \in(0, \infty), \gamma \in(0,1)$
(S-L, Ané, 2016, PLoS Genetics)

SNaQ performance

Good diamond

Bad diamond

(S-L, Ané, 2016, PLoS Genetics)

Xiphophorus fish data

1183 genes, 24 swordtails and platyfish

(Cui et al., 2013)

Xiphophorus fish data

Snfo
(S-L, Ané, 2016, PLoS Genetics)

Why networks?

Inconsistency with gene flow

(S-L, Yang, Ané, 2016, Syst Bio)

PhyloNetworks: analysis for phylogenetic networks in Julia

Maximum pseudolikelihood estimation of species network: SNaQ

```
build passing docs stable docs latest
```

SNaQ implements the statistical inference method in Solís-Lemus and Ané (2016, PLoS Genetics). The procedure involves a numerical optimization of branch lengths
 and inheritance probabilities and a heuristic search in the space of phylogenetic networks.

http://crsl4.github.io/

Level-1 networks

What we have:

- scalable method for level-I networks from multilocus data

What we want:

- level-k networks: identifiability
- better optimization tools in space of networks
- model selection tools

Acknowledgements

Cécile Ané

Bret Larget
Douglas Bates
David Baum
Mengyao Yang
John Malloy
John Spaw
Noah Stenz Nan Ji
Jordan Vonderwell
Josh McGrath
http://crs14.github.io/
claudia@stat.wisc.edu

Genes \longrightarrow Gene trees \longrightarrow Quartet CF

concordance factors (CF):
$\%$ of genes having the quartet in their tree

Explicit

Implicit
no distinction: ILS, HGT

Reasons for gene tree discordance

- Gene tree reconstruction error
- Horizontal gene transfer (HGT)
- Incomplete lineage sorting (ILSS)

Observed CF

Expected CF

4 taxon set		$C F_{1}$	$C F_{2}$
$C F_{3}$			
A B C D	.80	.10	.10
A B C E	.40	.40	.20
A B D E	.40	.40	.20
A C D E	.84	.08	.08
B C D E		.82	.10

$\tilde{L}=\sum_{\mathrm{q} \in \mathrm{Q}(\mathrm{N})} \mathrm{CF}_{\text {obs }, 1} \log \left(\mathrm{CF}_{\text {exp }, 1}\right)+\mathrm{CF}_{\text {obs }, 2} \log \left(\mathrm{CF}_{\text {exp }, 2}\right)+\mathrm{CF}_{\text {obs }, 3} \log \left(\mathrm{CF}_{\text {exp }, 3}\right)$
(Solís-Lemus, Ané, 2016, PLoS Genetics)

In practice: flat pseudolikelihood

(Solís-Lemus, Ané, 2016, PLoS Genetics)

Anomaly zone with gene flow

(Solís-Lemus, Yang, Ané, 2016, Syst Bio)

SNaQ performance

(Solís-Lemus, Ané, 2016, PLoS Genetics)

Model identifiability

Can we estimate numerical parameters?

Good triangle

$$
\left(t_{12}=0\right)
$$

Good diamond
($n_{0}, n_{2} \geq 2$)

Anomalous unrooted

gene trees with gene flow

Frequency among gene trees

Quartet	$\gamma=0.0$	$\gamma=0.1$	$\gamma=0.3$
$A B \mid C D$	$\mathbf{0 . 3 4 7}$	$\mathbf{0 . 2 9 8}$	$\mathbf{0 . 2 6 0}$
$C A \mid B D$	0.327	0.351	0.370
$C B \mid A D$	0.327	0.351	0.370

$$
t_{1}=t_{2}=0.01, t_{3}=t_{4}=t_{5}=1
$$

- ILS: no AUGT on 4 taxa (Degnan, 2013)
- ILS+HGT: AUGT on 4 taxa (Solís-Lemus, Yang, Ané, 2016, Syst Bio)

Why networks?

Idea of proof of identifiability: hybridization

System of equations \{ $\mathrm{CF}_{\text {network }}$ \}

System of equations $\left\{\mathrm{CF}_{\text {tree }}\right\}$

Idea of proof of identifiability: hybridization

Solution to $\mathrm{CF}_{\text {network }}=\mathrm{CF}_{\text {tree }}$ if

$$
\begin{array}{ll}
\gamma=0 & \\
& \gamma=1 \\
t_{0}=0 & t_{12}=\infty \\
& t_{1}=0
\end{array}
$$

Idea of proof of identifiability: parameters

Unique solution: hard

Finitely many solutions: \# alg. indep. eqs ~ \# parameters

System of equations
\{ $\mathrm{CF}_{\text {network }}$ \}

Coalescent model

- Haploid population: constant size N
- 1 individual = 1 chromosome
- No selection: uniform probability
- Probability of no coalescence in g generations:

$$
\left(1-\frac{1}{N}\right)^{g}
$$

- Coalescence time $t=\frac{g}{N}$

$$
\left(1-\frac{t}{N t}\right)^{N t} \underset{N \rightarrow \infty}{\longrightarrow} e^{-t}
$$

- Exponential distribution with mean 1

Computing expected CF

$C F_{A B \mid C D}=(1-\gamma)\left(1-2 / 3 e^{-t_{1}}\right)+\gamma\left(1-2 / 3 e^{-t_{1}-t_{2}}\right)$
$C F_{A C \mid B D}=C F_{A D \mid B C}=(1-\gamma)\left(1 / 3 e^{-t_{1}}\right)+\gamma\left(1 / 3 e^{-t_{1}-t_{2}}\right)$

