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EUSTACE

EU Surface Temperatures for All Corners of Earth

EUSTACE will give publicly available daily estimates of surface air temperature since
1850 across the globe for the first time by combining surface and satellite data using
novel statistical techniques.
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Spatial fields, observations, and stochastic
models

> Partially observed spatial functions (temperature) or objects related to latent
spatial functions

> Wanted: estimates of the true values at observed and unobserved locations

» Wanted: quantified uncertainty about those values

» Complex measurement errors can be modeled using hierarchical random effects

Spatio-temporal hierarchical model framework

> Observationsy = {y;,i =1,...,n,}
> Latent random field (s, t),s € Q,t € R
> Model parameters @ = {0;,j = 1,...,ng}
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Gaussian random field

A Gaussian random field = : D — R is defined via
E(z(s)) = m(s),
Cov(z(s),z(s")) = K(s,s),
[#(s;),i=1,...,n] ~N(m = [m(s;),i=1,...,n],
3 = [K(si,s5),i,5=1,...,n])

for all finite location sets {s1, ..., s, }, and K (-, -) symmetric positive definite.
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Generalised Gaussian random field

A generalised Gaussian random field x : D — R is defined via a random measure,
(f,z)p =2*(f) : Hr(D) = R,

E(f,x)p)=(frm)p = /Df(s)m(s) ds,

Con({f,a)p {9:2)p) = (£ Re)p = [ /D R8s d s
<fa‘r>D NN<<f7m>D ’ <f7Rf>D)

forall f,g € He(D) = {f : D = R; (£, Rf), < c}. EUSTA?EL




Covariance functions and SPDEs

The Matérn covariance family on

21—1/
Cov(z(0),z(s)) = UQF(V) (s[ls[))” K (] s])
Scale £ > 0, smoothness v > 0, variance 2 > 0

Whittle (1954, 1963): Matérn as SPDE solution

Matérn fields are the stationary solutions to the SPDE

(v = V- 9)" () = W(s), a=v+d/2
W
W(-) white noise, V - V = Zl 1592’02:W

White noise has K (s,s’) = d(s — s). Do not confuse with independent noise,
N ,K(s s’) = I(s = s’), which has non-integrable realisations. ¥
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GMRFs: Gaussian Markov random fields

Continuous domain GMRFs

If 2:(s) is a (stationary) Gaussian random field on {2 with covariance
kernel K (s, s'), it fulfills the global Markov property

{z(A) L 2(B)|z(S), forall AB-separating sets S C Q}

if the power spectrum can be written as 1/.5,.(w) = polynomial
in w, for some polynomial order p. (Rozanov, 1977)

Generally: Markov iff the precision operator Q = R~ islocal.

Discrete domain GMRFs

x = (1,...,2,) ~N(m, Q") is Markov with respect to a neighbourhood
structure {N;,7 =1,...,n}if Q;; = 0 whenever j # N; U .

» Continuous domain basis representation with Markov weights:
n
2(8) = X p—y k()T
» Many stochastic PDE solutions are Markov in continuous space, and can be
approximated by Markov weights on local basis functions. f—
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GMRFs based on SPDES (indgren etal, 2011

GMRF representations of SPDEs can be constructed for oscillating, anisotropic,
non-stationary, non-separable spatio-temporal, and multivariate fields on manifolds.

(k2 — A)(T2(s)) = W(s), secR?
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GMRFs based on SPDES (indgren etal, 2011

GMRF representations of SPDEs can be constructed for oscillating, anisotropic,
non-stationary, non-separable spatio-temporal, and multivariate fields on manifolds.

(k2 — A)(T2(s)) = W(s), s€Q
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GMRFs based on SPDES (indgren etal, 2011

GMRF representations of SPDEs can be constructed for oscillating, anisotropic,
non-stationary, non-separable spatio-temporal, and multivariate fields on manifolds.

(% + Hg’t +V-mg; — V- Ms,tV) (tex(s,t)) = E(s,t), (s,t) e A xR
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Stochastic Green'’s first identity

On any sufficiently smooth manifold domain D,

(£,=V-Va)p =V, Vg p = {f,0n9)0p

holds, even if either V f or —V - Vg are as generalised as white noise.

For & = 2 in the Matérn SPDE,

[<¢ia (k* =V V)3, %‘%‘>D} = [ {F? (Wi ) p + (Vbi, Vioy) p } 5]
= (HQC +G)x

The covariance for the RHS of the SPDE is

[Cov({¥s, Whp . (5, W) p] = [(¥i,¢5) p] = C

by the definition of WV .
Matching the LHS and RHS distributions leads to the finite element approximation

x~N(0,Q =r'C +2:°G+ GC'G)
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Matérn driven heat equation on the sphere

The iterated heat equation is a simple non-separable space-time SPDE family:

B
(k2 — A)V/2 qs% + (K2 = A2 a(s,t) = W(s, t)/T

Fourier spectra are based on eigenfunctions e, (s) of —A.
onR?, —Ae,(s) = ||w||*ew(s), and e, are harmonic functions.
onS?, —Aey(s) = Apex(s) = k(k + 1)ex(s), and ey, are spherical harmonics.
The isotropic spectrum on S? x Ris
~ 2k +1

R(k,w) o 5
T2(12 4 M) [02w? + (K2 + A\,)]

The finite element approximation has precision matrix structure

a+B+y
Q= > MIeMm?

=0

Ya’i Eeven, e.g., if K is spatially varying. f—
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Partial hierarchical representation

Observations of mean, max, min. Model mean and range.

Data sources

Conditional specifications, e.g.

(TITL, Q) ~ N (Th, @0 )

Qs,
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Basic latent multiscale structure
Let UF (s,t), UF(s,t), k = 0,1,2, S be random fields operating on (multi)daily,

m
multimonthly, multidecadal, and cyclic seasonal timescales, respectively, represented

by finite element approximations of stochastic heat equations.

Daily mean temperatures
The daily means 7, (s, t) are defined through

Ton(s,t) = Up,(s,1) + Up, (5, ) + Up(s,1) + Up (s,) + ZX 5,1)B8%

2

0
TTH.

The [3,, coefficients are weights for covariates Xi(s, t) (e.g. elevation, topographical
gradients, and land use indicator functions).
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Basic latent multiscale structure
Daily temperature range (diurnal range)
The diurnal ranges 7' (s, t) are defined through

Nx

g e (s,1)] = Ul(s, t) + U3(s, t) + U (s, t) + Z X;(s, )89,
i=1
T2
5
Ty(s,t) = pr(s,t) GTH@ [UL(s,1)] = g(T}) G™1¢ [U;(s,1)],
TU

T

where the slowly varying median process ., (s, t) is a transformed multiscale model,
and G lisa spatially and seasonally varying quantile model. The [3,- coefficients are

weights for covariates )Q-(s7 t) (e.g. elevation, topographical gradients, and land use
indicator functions).
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Observation models

Common satellite derived data error model framework

The observational&calibration errors are modelled as three error components:
independent (¢€(), spatially correlated (¢1), and systematic (¢2), with distributions
determined by the uncertainty information from WP1

Eg. Yi = Tim(si,ti) + €o(si, i) + e1(si, i) + ea(si, t:)

| A

Station homogenisation

For station k at day t;

ki __ § k k.,j ki
Yn = m Ska + H ]+€ma

where HJ’?3 (t) are temporal step functions, e,’ﬁl’j are latent bias variables, and ef;f are

independent measurement and discretisation errors.

\
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Observed data

Observed daily 7 mean and Tiange for station FRW00034051

FRWO00034051
g
g
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Diurnal range distributions; quantile model

After seasonal compensation:
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For these stations only POQ comes close to representing the distributions.
o, Note: Some of the mixture-like distribution shapes may be an effect of unmodeled
/';station inhomogeneities as well as temporal shift effects. f—
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Multiscale model component samples

Time
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Combined model samples for 7}, and 7.
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Combined covariance function
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Median & scale for daily means and ranges

February climatology
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Estimates of median & scale for /;,, and 7,
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Linearised inference

All Spatio-temporal latent random processes combined into * = (u7 3, b), with joint
expectation ft, and precision Q_:
(x| 0) ~N(p,,Q,")  (Prior)
-1 .
(y|z,0) ~N(h(z),Q,,) (Observations)

p(x|y,0) xplx|8)ply|x,0) (Posterior)

Linear Gaussian observations

For a linear h(x) = Awx,

(x| y,0) ~N(n,Q )  (Posterior)
Q=Q,+A7Q,,A
fi=p,+Q ATQ,(y— Ap,)

>
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Linearised inference

All Spatio-temporal latent random processes combined into * = (u7 3, b), with joint
expectation ft, and precision Q_:

(x]0) ~N(u,,Q,")  (Prior)
p(x|y,0) < p(z | ) p(y | x,0)  (Posterior)

Non-linear and/or non-Gaussian observations

For a non-linear /() with Jacobian J at 1, iterate:

v\w) (Observations)

(x| y,0) "X N(, @71) (Approximate posterior)
Q=Q,+J'Q,.J
B =hi+aQ {I7Q,ly—h(@) - Q.- m)}

for some a > 0 chosen by line-search.
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Quarter degree output grid
365 daily estimates each year
165 years
Two fields

360 - 180 - 42 - 365 - 165 - 2 = 124, 882,560, 000

Storing ~ 10! latent variables as double takes ~ 1 TB
(And that just covers the finest scale)

To store the data (> 10 TB), model information, and estimated uncertainties we need
a computing cluster with lots of RAM and fast temporary parallell disk access.

Matrix-free iterative solvers will be our saviours!
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Triangulations for all corners of Earth
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Triangulations for all corners of Earth
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Domain decomposition and multigrid

Overlapping domain decomposition

Let B; be a restriction matrix to subdomain €2, and let W, be a diagonal weight
matrix. Then an additive Schwartz preconditioner is
K

M iz = Z W Bix(B, QBy) ' B, Wz
=1

Multigrid

| A

Let BZ be a projection matrix to a coarse approximative model. Then a basic
multigrid step for Qx = bis

1. Apply high frequency preconditioner to get Zo, let 7o = b — QX
. Project the problem to the coarser model: Q. = BZQBC, r.= Bz—ro

. Apply multigrid to Q .z, = 7.

2

3

4. Update the solution: £; = o + B.Z,.

5. Apply high frequency preconditioner to get T

o~
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Full multigrid

Full multigrid sequence

Approximation level

Step
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The different timescales can be handled with repeated multiscale preconditioning:

Multiscale Schur complement approximation

Solving Q| = b can be formulated using two solves with the upper block
Q,2Q,+ ATQeA, and one solve with the Schur complement

Q.+B'QBeQ.-B'Q2Q,(Q9Q.+47Q.4) Q.BaQ,

By mapping the fine scale model onto the coarse basis used for the coarse model, we
get an approximate (and sparse) Schur solve via
ignored| [0
z | |b

where B = B® I, @B = B'Q,B ® Q,, and the block matrix can be
interpreted as the precision of a bivariate field on a common, coarse spatio-temporal
scale.

Qs+B ATQAB  -Q,
_QB Qz + QB
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Variance calculations

Sparse partial inverse

Takahashi recursions compute S such that S;; = (Qfl)ij forall Q;; # 0.
Postprocessing of the (sparse) Cholesky factor.

Basic Rao-Blackwellisation of sample estimators

Let ) be samples from a Gaussian posterior and let a ' x be a linear combination
of interest. Then, for any subdomain {2, C 2,

J
1 .
E(a"z) =E[E(a’z | ro: )| ~ = E E(a'x | a:gz))

EUSTACE



Method overview

Hierarchical timescale combination of space-time random fields
Preprocessing to estimate model parameters and non-Gaussianity
lterated linearisation in approximate Newton optimisation
Distributed Preconditioned Conjugate Gradient solves

vV v v.Vv Yy

Information is passed between the scales with the aid of approximate Schur
complements

» Within each scale, approximate multigrid solves

» OQverlapping space-time domain decomposition within each multigrid level

» Direct Monte Carlo sampling: add suitable randomness to the RHS of the Q
solves for f1.

zly

» Rao-Blackwellised variance estimation

Parameter estimation:

In the project, several ad hoc methods are used.

In general, several approaches to get log det Q and/or
% logdet @ = tr (S%), but much more work is needed to handle complex
models.
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Gratuitous commercial:
inlabru, the friendlier INLA interface

R-INLA
A.data <- inla.spde.make.A(...)
A.pred <- inla.spde.make.A(...)
stack.data <- inla.stack(data=..., A=list(A.data, ...), effects=...)
stack.pred <- inla.stack(data=..., A=list(A.pred, ...), effects=...)
stack <- inla.stack(stack.data, stack.pred)
formula <- y ~ ... + f(field, model=spde)

result <- inla(...)
## Linear prediction:
prediction <- result$summary.fitted.values[some.indices, "mean"]

http://inlabru.org

components <- . + field(map=coordinates, model=spde)

formula <- y 7 ... + field

result <- bru(...)

## Non-linear prediction (via direct posterior sampling)

prediction <- predict(..., cos(field))

## Extra: non-linear formulas and marked LGCP capabilities

formula <- y ~ fieldl * exp(field2)

formula <- coordinates + size ~ fieldl + dnorm(size, field2, sd=exp(theta),
log=TRUE)



