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possible. While Lévy Processes have been used to model slips due @ _ -l . . . subsidence observations to base predictions off of. The positive
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the point of having all moments infinite, which 1s unrealistic. Here g : - - uniformly less bias, variance, and MSE than the Gaussian model,
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Research aim: to better understand and predict variations Depth (d/d") Latitude ~ (or ,Ug) . scaling factor optimized to produce a better fit. This also implies that the fit of
in the spatial coseismic slip distributions of major 1 — exp { . ( d / d*)z )\2} g the model is highly dependent on distributional assumptions when
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Figure: Possible subsidence evidence along the Duwamish river. fault, since the taper primarily affects the medium depth portions
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