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From space to nerve and Hi-classes

@ X a path connected,
paracompact space

o U ={U,}aea, a path Xu
connected cover, X;: blowup ¢ -
space / \
o dut X — [N@)| is a map X " [N )|

where ¢y = mo (
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@ X a path connected,
paracompact space

o U = {Ua}aeAr a path XZ/{

connected cover, X;: blowup ¢ .
space / \
du

o ¢y : X — [N(U)| is a map X
where ¢y = mo (

Theorem (Space-Nerve)
Gus » Hi(X) — HL(|N(U)|) is a surjection. J
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o Consider covers U = {U,}aea and V = {V3}ep and a map of
sets { : A — B satisfying U, C V¢, foralla € A
@ ¢ induces a simplicial map N(&) : N(U) — N(V)

o if U 3V B W, then N(& 0 &) = N(E) o N(&,)
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Topological analysis of Hj-classes
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Nerve to nerve and H;-classes

Proposition

U and V be two covers of X with a cover map U ﬁ> V. Then,
¢y =T o ¢y where 7 : N(U) — N(V) is induced by 6.

Corollary

The maps ¢ - Hi(X) = Hi(IN(U)]), ¢y - Hi(X) = Hi(IN(V)]),
and 7, : H(IN(U)|) = Hk(IN(V)|) commute, that is,

¢V* - 71:* o (blz{*-

Theorem (Nerve-Nerve)

Let 7: N(U) — N(V) be induced by a cover mapU — V. Then,
Hy(N(U)) — Hi(N(V)) is a surjection.

v

(Dey,Memoli,Wang 2017) Topological Analysis of Nerves BIRS, TDA
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Persistent H;-classes

@ Equip X with a pseudometric d
e For X' C X, size s(X’) = diamy X’
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Quantification of persistent H;-classes

Lebesgue number of a cover

Lebesgue number of a cover:

AMU) = sup{d | VX' C X with s(X') < §,3U, € U where U, 2 X'}
U
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Quantification of persistent H;-classes

Persistent H;-classes

Theorem (Persistent H;-classes)

Let z;, 2, ..., z, be a minimal generator basis of Hy(X) ordered with
increasing sizes.

I. Let ¢ € [1,g] be the smallest integer so that s(z;) > ANU). If
{ #1, the class Gulzj] =0 for j=1,...,¢ — 1. Moreover, the
classes { v [zj]}j=¢...q generate Hi(N(U)).

ii. The classes {Gu.[zj]}j=e.. ¢ are linearly independent where
s(zp) > 4spmax(U).

(Dey,Memoli,Wang 2017) Topological Analysis of Nerves BIRS, TDA 10 / 24



Maps and pseudometric

e f: X — Z where (Z,d7) a metric space

o dr(x,x') == infyer(xx) diam z(f o 7).

(Dey,Memoli,Wang 2017) Topological Analysis of Nerves BIRS, TDA 11 /24



Maps and pseudometric

e f: X — Z where (Z,d7) a metric space

o dr(x,x') == infyer(xx) diam z(f o 7).
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Reeb graph/space

e Hy(X)=HY @ H!
@ c € Hf iff c = [z] where z € f~1(a)
@ Reeb graphs capture only vertical homology classes [D.-Wang 14]

X
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Applications:Reeb space

Surviving Hi-classes in Reeb space

Theorem (Persistent H;-classes)
Let z;, 2, ..., z, be a minimal generator basis of Hy(X) ordered with
increasing sizes (defined by dr); q : X — R¢ quotient map.
o Let ! € [1,g] be the smallest s.t. s(z;) # 0. If no { exists,
Hi(Ry) is trivial, otherwise {[q(z)]}i=¢..¢ is a basis of Hi(Ry).

Implication: Just like in Reeb graphs, only vertical homology classes
survive in Reeb spaces (extension of a result of [D.-Wang 14])

(Dey,Memoli,Wang 2017) Topological Analysis of Nerves BIRS, TDA 13 /24



Surviving Hi-classes in intrinsic Cech complex

o C(Y): Cech complex of (Y, dy)
® zj,...,Z;: a minimal generator basis for H;(Y')
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Maps and covers

V)

X

@ Let f : X — Z continuous, well-behaved and U a finite cover of
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Applications: mapper and multiscale mapper

Uy U U3 Uy i Is I

Mapper

P Xz X3 X;.

Xy
d i i D
= H
d :

e @

[Singh-Carlsson-Mémoli] Let f : X — Z be continuous and
U = {U,}aea be a finite open covering of Z. The Mapper is

Definition (Mapper)

MU, f) = N(F(U))

v
(Dey,Memoli,Wang 2017) Topological Analysis of Nerves BIRS, TDA 16 / 24
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@ Tower of Covers, ToC
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Applications: mapper and multiscale mapper

Tower of covers and complexes

@ Tower of Covers, ToC
o U= {L[E}E>r, r = resolution(4l), U; finite
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Multiscale Mapper

o f : X — Z continuous, well-behaved, 1= ToC of Z
@ Then, f*(4l) is ToC of X and N(f*(l))is ToS
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Multiscale Mapper

o f : X — Z continuous, well-behaved, 1= ToC of Z
@ Then, f*(4l) is ToC of X and N(f*(l))is ToS

by
L fﬁj L
A~

S oru O U
$ Fuee) §oue
Drul ou

. .
Sruo O U
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Multiscale Mapper

o f : X — Z continuous, well-behaved, 1= ToC of Z
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Multiscale Mapper

o f: X — Z continuous, well-behaved, 4= ToC of Z
@ Then, f*(4l) is ToC of X and N(f*(Ll))is ToS

b

) Nerve ] fﬁj ]

L - PV e Y
N(f*Us) Sorue O U
\(f"(’l(.u))* * [ (ucee) ’ Ue,e!
N(fU,) . . fu. . U,
N(fU) & Sru,o O U

ToS  ToC(X) ToC(Z)

Multiscale Mapper:
MM(LL, ) == N(f* (L))
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Persistence diagram of MM

e D MM(4, f)= persistence diagram of:

Hy (N(f*(Us,))) = He(N(F*(U,))) = -+ = He(N(F*(Us,)))

' ) )
Nerve ' f71
-— L
(N({*u )))* f f ) U
N(f*(tee FfH(ueer) Ue,e!
N(FU) > U
N(fU,) [} [ U, ' U

Tos  ToC(X) ToC(Z)
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Implication for multiscale mapper

Theorem
Consider the following multiscale mapper:

N(f*Uy) — N(F*Uy) — - — N(FU,)

@ surjection from Hy(X) to Hi(N(f*U;)) for each i € [0, n].
@ For Hy-persistence module:

Hy (N(FU)) — By (N(FU)) = - — T (N(FU,))

all connecting maps are surjections.
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Persistent H;-classes in MM

Theorem

Consider a Hy-persistence module of a multiscale mapper
induced by a tower of path connected covers:

Hy (N(F*U,)) 28 Hy(N(FU:)) 25 - 28 Hy (N(FU,))

Let 5. = Sjx © S(i—1)« -0 gbus Then, §;, renders the small
classes of Hy(X) tr/wa/ in H1(N (f*U.,)) as detailed in previous
theorem.
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Conclusions

Open Question

R_— f ——a R N(f'u)

N

Conjecture: If t-wise intersections in U for all t > 0 have /:ISk,t =0,
then ¢y, is surjective for Hy
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Conclusions

Thank You

U

N(U)

(Dey,Memoli,Wang 2017
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