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Introduction

Noise in data prevalent in various applications
Noise present in diverse forms
Effective handling of noise depends on how they are generated
and what the target uses of data are

This talk:

Focus on noise in metric of input data
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In Topological Data Analysis

Many geometric / topological data analysis algorithms often
assume that the input is a finite metric space.

One of the most popular setting: input is point clouds data
embedding in an ambient (Euclidean) space

Limited types of noise that can be handled:
Mostly (Gromov)-Hausdorff type noise
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In Topological Data Analysis

Many geometric / topological data analysis algorithms often
assume that the input is a finite metric space.

One of the most popular setting: input is point clouds data
embedding in an ambient (Euclidean) space

Limited types of noise that can be handled:
Mostly (Gromov)-Hausdorff type noise

Theorem (An exapmle)
Given two sets of points P,Q ⊆ Rd , let dgm P and dgm Q denote
the persistence diagrams induced by the Čech filtration on P and
Q, respectively. Then

dB(dgm P, dgm Q) ≤ dH(P,Q).
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Some work handle more general noise, e.g, work on distance to
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In Topological Data Analysis

Many geometric / topological data analysis algorithms often
assume that the input is a finite metric space.

One of the most popular setting: input is point clouds data
embedding in an ambient (Euclidean) space

Limited types of noise that can be handled:
Mostly (Gromov)-Hausdorff type noise
Some work handle more general noise, e.g, work on distance to
measures [Chazal, Cohen-Steiner, Mérigot, 2011]

Averaging in the space of persistence diagrams may not be
effective.
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A graph exampe

Suppose our input are observed graphs
Say, graphs G1, G2, . . . , are noisy observation of the same
true graph G∗

We may try to build intrinsic Čech filtration based on induced
graph metric and then “average” their persistence diagrams
dgm1, dgm2, . . .

G∗
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Our goal

To facilitate TDA tasks, our goal is to
denoise input metric so that it is close to the “true” metric
under Hausdorff-type distance
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Overview

Three different settings to explore:

What are natural ways to model noise in input metric, and how to
process such noise effeciently with theoretical guarantees.

Setting 1: towards parameter-free denoising for embedded
point cloud data (PCD)
Setting 2: metric embedding with outliers
Setting 3: recovering shortest path metrics from perturbed
graphs
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Setting 1

Input: A set of points P already embedded in a metric space,
which is a “noisy” sample of a hidden ground truth K
Output: A “denoised” set of points Q ⊂ P Hausdorff-close to K

[Buchet, Dey, J. Wang, W. SoCG 2017]
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Some Existing Denoising Approaches

Thresholding
choice of a density estimator, which involves parameter(s)
choice of a threshold

Mean-shift type
needs additional parameters: such as step size, stopping
criteria.

Parametric methods
assuming knowing the noise distribution or generative model
often asymptotic guarantees

Require parameters and / or knowledge of noise models.
Non-uniform distribution challenging.
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Parameter/assumptions Necessary

k = 2

k = 10
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Goal of Setting-1

Minimize the use of parameter in denoising embedded PCD data,
yet still provide theoretical guarantees / understanding

Decluttering algorithm (works for any input, use one
parameter)

Parameter-free? Require stronger assumptions on noise model
Declutter+Resample algorithm
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Theoretical guarantees for decluttering

Theorem
Given a point set P which is an εk noisy sample of a compact K,
Algorithm Declutter returns a set Q such that

dH(K ,Q) ≤ 7εk .

Can be extended to an adaptive-noise setting
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Illustration II

Input k = 4 k = 47
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ParaFreeDecluster guarantees

Theorem
Given a point set P and i0 such that for all i > i0, P is a weak

uniform (ε2i , 2) noisy sample of K and is also an (ε2i0 , 2) noisy
sample of K, Algorithm ParfreeDeclutter returns a point set P0
such that dH(P0,K ) ≤ (87 + 16

√
2)ε2i0 .

Require uniformity of input samples around the hidden
compact set.
Algorithm still very simple. It has O(log n) iterations of
previous Declutter algorithm and another resampling
procedure.
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ParaFreeDeclutter results

Input k = 1024 k = 256 k = 1
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ParaFreeDeclutter results
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Setting 2

Input: A discrete n-point metric space (X = {x1, . . . , xn}, ρ)
(X , ρ) approximately comes from a “nice” target metric space
some input points could have corrupted / erroneous distance
to other points, they are “outliers”

Output: A “near-optimal” set of outliers K ⊂ X together with a
“low-distortion” embedding of (X \ K , ρ) into some target metric
space

the target space could be a tree metric, ultrametric, or
constant-dimensional Euclidean space.

[Sidiropoulos, D. Wang, W. SoDA 2017]
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Notations

Definition (Embedding)
Given two metric spaces X = (X , ρX ) and Y = (Y , ρY ), an
embedding of X into Y is simply a map φ : X → Y .

φ is an isometric embedding if for any x , x ′ ∈ X ,
ρX (x , x ′) = φY (φ(x), φ(x ′)).
φ is an ε-distorted embedding if for any x , x ′ ∈ X ,
|ρX (x , x ′)− ρY (φ(x), φ(x ′)| ≤ ε. Alternatively, we say that X
admits an embedding into Y with (additive) distortion ε.
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Optimization Problem

Minimum outlier-embedding problem: Given a discrete n-point
metric space (X = {x1, . . . , xn}, ρ), compute the smallest set
K ∗ ⊂ X such that (X \ K ∗, ρ) embeds into a target metric space
either isometrically, or with distortion at most ε.

Choices of target metric spaces: ultrametric, tree metric,
constant-dimensional Euclidean space Rd

The set K ∗ is refered to as the optimal set of outliers
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Optimization Problem

Minimum outlier-embedding problem: Given a discrete n-point
metric space (X = {x1, . . . , xn}, ρ), compute the smallest set
K ∗ ⊂ X such that (X \ K ∗, ρ) embeds into a target metric space
either isometrically, or with distortion at most ε.

Choices of target metric spaces: ultrametric, tree metric,
constant-dimensional Euclidean space Rd

The set K ∗ is refered to as the optimal set of outliers


x1 x2 x3 x4

x1 0 1.1 0.89 1.05
x2 1.1 0 2.12 1.95
x3 0.89 2.12 0 2
x4 1.05 1.95 2 0


Input metric X ′

1

1

x2

x3

x1

Outlier embedding to R1 with
distortion 0.13
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Hardness of the Outlier Embedding

Theorem
The problem of minimum outlier embedding into a tree metric, an
ultrametric, or Rd , is NP-hard.

Furthermore, assuming the Unique Games Conjecture, it is
NP-hard to approximate the isometric version with a factor of
2− ν for any ν > 0.

Our next goal

Efficient approximation algorithms for the outlier-embedding
problems.

We developed various approximation algorithms
Present results for special case: (near-)isometric
outlier-embedding into Rd
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Isometric outlier-embedding case

Theorem (First 2-approximation)
Given an n-point metric space (X , ρ), there is an algorithm that
can compute at most 2|K ∗| number of points K ⊂ X, such that
(X \ K , ρ) admits an isometric embeddign into Rd . The algorithm
runs in O(nd+1) time.

Theorem (Improved Approximation)
Given an n-point metric space (X , ρ), there is a O(n2) time
randomized algorithm that can compute 3|K ∗| number of points
K ⊂ X, such that with constant probability, (X \ K , ρ) admits an
isometric embeddign into Rd .

The big O notation hides constants depending exponentially
on the dimension d .
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Low-distortion Case

Theorem (Bicriteria-Approximation)
Given an n-point metric space (X , ρ), suppose it admits an X \ K ∗
admits a δ∗-distortion embedding into Rd . Then there is a O(n2)
time randomized algorithm that can compute O(|K ∗|d) number of
points K ⊂ X, such that with constant probability, (X \ K , ρ)
admits an embeddign into Rd with distortion O(

√
δ∗)-distortion.

The big O notation hides constants depending exponentially
on the dimension d .

Algorithm still reasonably simple, but analysis is much more
involved.

We have implemented it!
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Talk Outline

In this talk, we consider three different settings to explore:

What are natural ways to model noise in input metric, and how to
process such noise effeciently with theoretical guarantees.

Setting 1: towards parameter-free denoising for embedded
point cloud data (PCD)
Setting 2: metric embedding with outliers
Setting 3: recovering shortest path metric from perturbed
graphs
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Problem Setup

Input: An observed unweighted graph G = (V ,E )

G is a “noisy” observation of a true graph G∗

the metric of interest is the shortest path metric dG∗

Output: Recover (approximately) the “true” shortest path metric
dG∗ from G

[Parthasarathy, Sivakoff, Tian, W. 2017]
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The model

The true graph G∗ = (V ,E ∗): given n,
V = Vn sampled i.i.d from a L-doubling measure µ : M → R+

on a compact geodesic metric space (M, dM)

E ∗ = E ∗r ,n = {(u, v) | dM(u, v) ≤ r , u, v ∈ V } is the
r -neighborhood graph for some parameter r > 0

The observed graph G = (V ,E ): A (p, q)-perturbation of G∗
where

(p-deletion): For each edge e = (u, v) ∈ E ∗, we have e ∈ E
with probability 1− p
(q-insertion): For any pair of nodes u, v ∈ V s.t. (u, v) /∈ E ∗,
we have (u, v) ∈ E with probability q
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Illustration

Hidden domain M

The goal

Recover the shortest path metric dG∗ from G with
approximation guarantee.
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Graph Nodes V
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Illustration

Random perturbation G

The goal

Recover the shortest path metric dG∗ from G with
approximation guarantee.
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Illustration

Random perturbation G
The goal

Recover the shortest path metric dG∗ from G with
approximation guarantee.
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Remarks

In many graphs, e.g social networks, nodes sampled from a
hidden feature space, and edges encode proximity between
graph nodes in certain feature space.

Sampling from a measure allows varing degree distribution
Random Erdös-Rényi type perturbation allows exceptions /
noise
Shortest path metric natural choice in many situations
(especially for sparse graphs), reflects the metric of the
feature space

Other graph-induced metrics, e.g, diffusion distance?

However, shortest path metric sensitive to random
perturbations (especially “short-cuts”)
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Random Erdös-Rényi type perturbation allows exceptions /
noise
Shortest path metric natural choice in many situations
(especially for sparse graphs), reflects the metric of the
feature space

Other graph-induced metrics, e.g, diffusion distance?
However, shortest path metric sensitive to random
perturbations (especially “short-cuts”)

Yusu Wang Noise in data TDA-BIRS 2017 26 / 40



Further remarks

The model related to superposing a “structured subgraph”
and a “random subgraph”

e.g, [Bollobás and Chung, 1988], [Watts and Strogatz, 1998],
[Kleinberg 2000] (the small-world phenomenon), . . .

However, the metric recovery problem is somewhat orthogonal
to goals in typical network analysis
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Assumptions

Definition (Doubling measure)
A measure µ : X → R+ on a metric space (X , d) is said to be
L-doubling if all metric balls have finite and positive measure and
that there is a constant L such that for all x ∈ X and R > 0,

µ(B(x , 2R)) ≤ L · µ(B(x ,R)).
We call L the doubling constant.

Assumption-R: The parameter r (neighborhood size) is large
enough such that µ(B(x , r

2)) ≥ s ≥ 12 ln n
n for any x ∈ M.
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Assumptions

Definition (Doubling measure)
A measure µ : X → R+ on a metric space (X , d) is said to be
L-doubling if all metric balls have finite and positive measure and
that there is a constant L such that for all x ∈ X and R > 0,

µ(B(x , 2R)) ≤ L · µ(B(x ,R)).
We call L the doubling constant.

Assumption-R: The parameter r (neighborhood size) is large
enough such that µ(B(x , r

2)) ≥ s ≥ 12 ln n
n for any x ∈ M.

Yusu Wang Noise in data TDA-BIRS 2017 28 / 40



Effect of Deletion

Theorem (Deletion only)
Let G∗ be the true graph generated as described, and G a graph
obtained by deleting each edge in G∗ with probability p. Assuming
Assumption-R, then for p < 1

2 e− 2 ln n
sn with probability at least 1− 1

nΩ(1) ,
the shortest path metric dG in the observed graph is a 2-approximation of
the shortest path metric dG∗ in the true graph; that is,

1
2 dG(u, v) ≤ dG∗(u, v) ≤ 2dG(u, v).

Since s ≥ 12 ln n/n by Assumption-R, p < 1
2e3/4 . As s increases, the

upper bound on p gets closer to 1/2.

Suppose an edge (u, v) ∈ E∗ is
deleted in the observed graph G .

Yusu Wang Noise in data TDA-BIRS 2017 29 / 40



Effect of Deletion

Theorem (Deletion only)
Let G∗ be the true graph generated as described, and G a graph
obtained by deleting each edge in G∗ with probability p. Assuming
Assumption-R, then for p < 1

2 e− 2 ln n
sn with probability at least 1− 1

nΩ(1) ,
the shortest path metric dG in the observed graph is a 2-approximation of
the shortest path metric dG∗ in the true graph; that is,

1
2 dG(u, v) ≤ dG∗(u, v) ≤ 2dG(u, v).

Suppose an edge (u, v) ∈ E∗ is deleted in the observed graph G .

Yusu Wang Noise in data TDA-BIRS 2017 29 / 40



Effect of Deletion

Theorem (Deletion only)
Let G∗ be the true graph generated as described, and G a graph
obtained by deleting each edge in G∗ with probability p. Assuming
Assumption-R, then for p < 1

2 e− 2 ln n
sn with probability at least 1− 1

nΩ(1) ,
the shortest path metric dG in the observed graph is a 2-approximation of
the shortest path metric dG∗ in the true graph; that is,

1
2 dG(u, v) ≤ dG∗(u, v) ≤ 2dG(u, v).

Suppose an edge (u, v) ∈ E∗ is deleted in the observed graph G .

u v

Yusu Wang Noise in data TDA-BIRS 2017 29 / 40



Effect of Deletion

Theorem (Deletion only)
Let G∗ be the true graph generated as described, and G a graph
obtained by deleting each edge in G∗ with probability p. Assuming
Assumption-R, then for p < 1

2 e− 2 ln n
sn with probability at least 1− 1

nΩ(1) ,
the shortest path metric dG in the observed graph is a 2-approximation of
the shortest path metric dG∗ in the true graph; that is,

1
2 dG(u, v) ≤ dG∗(u, v) ≤ 2dG(u, v).

Suppose an edge (u, v) ∈ E∗ is deleted in the observed graph G .

u v

Yusu Wang Noise in data TDA-BIRS 2017 29 / 40



Effect of Deletion

Theorem (Deletion only)
Let G∗ be the true graph generated as described, and G a graph
obtained by deleting each edge in G∗ with probability p. Assuming
Assumption-R, then for p < 1

2 e− 2 ln n
sn with probability at least 1− 1

nΩ(1) ,
the shortest path metric dG in the observed graph is a 2-approximation of
the shortest path metric dG∗ in the true graph; that is,

1
2 dG(u, v) ≤ dG∗(u, v) ≤ 2dG(u, v).

Suppose an edge (u, v) ∈ E∗ is deleted in the observed graph G .

u v

Yusu Wang Noise in data TDA-BIRS 2017 29 / 40



Effect of Deletion

Theorem (Deletion only)
Let G∗ be the true graph generated as described, and G a graph
obtained by deleting each edge in G∗ with probability p. Assuming
Assumption-R, then for p < 1

2 e− 2 ln n
sn with probability at least 1− 1

nΩ(1) ,
the shortest path metric dG in the observed graph is a 2-approximation of
the shortest path metric dG∗ in the true graph; that is,

1
2 dG(u, v) ≤ dG∗(u, v) ≤ 2dG(u, v).

Suppose an edge (u, v) ∈ E∗ is deleted in the observed graph G .

u v

Yusu Wang Noise in data TDA-BIRS 2017 29 / 40



Effect of Deletion

Theorem (Deletion only)
Let G∗ be the true graph generated as described, and G a graph
obtained by deleting each edge in G∗ with probability p. Assuming
Assumption-R, then for p < 1

2 e− 2 ln n
sn with probability at least 1− 1

nΩ(1) ,
the shortest path metric dG in the observed graph is a 2-approximation of
the shortest path metric dG∗ in the true graph; that is,

1
2 dG(u, v) ≤ dG∗(u, v) ≤ 2dG(u, v).

Suppose an edge (u, v) ∈ E∗ is deleted in the observed graph G .

u v

Yusu Wang Noise in data TDA-BIRS 2017 29 / 40



Effect of Insertion

Consider a very-bad inserted edge (u, v) ∈ E , meaning that
dG∗(u, v) > 2.

τ -Jaccard-Cleanup: Given graph G , for each edge (u, v) ∈ G , we
keep the edge in a filtered graph Ĝ iff

ρu,v (G) =
|NG

u ∩ NG
v |

|NG
u ∪ NG

v |
≥ τ.
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ρu,v (G) =
|NG

u ∩ NG
v |

|NG
u ∪ NG

v |
≥ τ.

Yusu Wang Noise in data TDA-BIRS 2017 30 / 40



Effect of Insertion

Consider a very-bad inserted edge (u, v) ∈ E , meaning that
dG∗(u, v) > 2.

u v

τ -Jaccard-Cleanup: Given graph G , for each edge (u, v) ∈ G , we
keep the edge in a filtered graph Ĝ iff
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Insertion only – Good edges

Good edges have “large” Jaccard index.

Lemma
Let V be n points sampled i.i.d. from L-doubling measure
µ : M → R. Let G∗ be the r -neighborhood graph for V and Ĝ
obtained by inserting each edge not in G∗ independently with
probability q. Suppose Assumption-R holds and the insertion
probabiliy satisfies q ≤ cs. Then w.h.p., for any τ ≤ 1

(6+12c)L2 ,
ρu,v (Ĝ) ≥ τ for all pairs of nodes u, v ∈ V with (u, v) ∈ E (G∗).

For example, if c = 1
2 (i.e, q ≤ s

2), then ρu,v (Ĝ) ≥ 1
13L2 w.h.p.

c can be super-constant, and tradeoff the requirement on q
and Jaccard index on good edges.

As c increases, q is larger, but the upper bound on τ decreases.
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Requirement of q ≤ cs

Recall the Jaccard index for an edge (u, v) is ρu,v (G) = |NG
u ∩NG

v |
|NG

u ∪NG
v |
.

u v

For an good edge (u, v) ∈ E (G∗),
When q = 0, ρu,v (G) is a constant depending on L
As q increases, randomly inserted edges dominates, and
ρu,v (G) tends to q

|NG
u ∩ NG

v | → nq2 while |NG
u ∪ NG

v | → nq
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Insertion only – Bad edges

Very-bad edges have “small” Jaccard index.

Lemma
Let V be n points sampled i.i.d. from L-doubling measure µ. Let
G∗ be the r -neighborhood graph for V and Ĝ obtained by inserting
each edge not in G∗ independently with probability q. Suppose
Assumption-R holds and the insertion probabiliy satisfies q ≤ cs.
Then for any τ ≥ (c + 2)q + 2(c + 2)

√
ln n
sn , w.h.p., ρu,v (Ĝ) < τ

for all pairs of nodes u, v ∈ V such that (u, v) is very-bad.

For example, if c = 1 an sn = ω(ln n), then w.h.p.
ρu,v (Ĝ) ≤ 3q + o(1) for all very-bad edges (u, v).
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Main Result

Theorem
Given an observed graph G as a perturbed version of G∗ as
decribed before. Suppose Assumption-R holds, sn = ω(ln n), the
deletion probabily p < min{1−

√
3

2 ,
1
2e− 9 ln n

sn }, and that the
insertion probability q ≤ cs. Let Ĝτ denote the graph after
τ -Jaccard-cleanup of G with τ ∈ ( c

1−p q + o(1), 2(1−p)2

15L2(1+2c)
). Then

the shortest path distance metric dĜτ
from Ĝτ is a 2-approximation

of the shortest path metric dG∗ of the true graph G∗ with high
probability.

L-doubling measure can be extended to a local version
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Preliminary Results – Proof of principle examples

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
−3

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

q insertion probability

R
2a

pp
ro

x

tau_0.065_shortest_sparse_r_nbhd_hyperboloid_PCD_N_2581_p_0

 

 

After perturbing
After filtering

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
−3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

q insertion probability
N

or
m

al
iz

ed
−

L2
−

av
er

ag
e

tau_0.065_shortest_sparse_r_nbhd_hyperboloid_PCD_N_2581_p_0

 

 
After perturbing
After filtering

2-approximation rate normalized L2 error

Yusu Wang Noise in data TDA-BIRS 2017 35 / 40



Preliminary Results – Real networks w/o ground truth

Given observed graph G , let Gq dentoe G with random
(p = 0, q)-perturbation
Let Gτ and Gτ

q be the graphs after τ -Jaccard filtering of G
and Gq, respectively.

”O vs P”: comparison between dG and dGq as q increases
”DP vs FAP”: comparison between dGτ and dGτq

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
−4

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

q insertion probability

R
2a

pp
ro

x

tau_0.01_shortest_ppi_homo_sapiens_p_0

 

 

O vs. P
DF vs. FAP

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
−4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

q insertion probability

N
or

m
al

iz
ed

−
L2

−
av

er
ag

e

tau_0.01_shortest_ppi_homo_sapiens_p_0

 

 
O vs. P
DF vs. FAP

2-approximation rate normalized L2 error

Yusu Wang Noise in data TDA-BIRS 2017 36 / 40



Discussions

In this talk:
Setting 1: towards parameter-free denoising for embedded
point cloud data (PCD)
Setting 2: metric embedding with outliers
Setting 3: shortest path metric recovery from perturbed
graphs

Other natural noise models?

E.g., for graph metrics, better tolerance in insertion probability,
or better model to include more general graphs
for weighted graphs?

What are other ways to handle noise in metric?

Do we have to perform explicit denoising?
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Bootstrapping?

Given a “noisy” sample P of a hidden space already embedded

Take multiple subsamples of P
Compute persistence diagram for appropriated distance
function (e.g, combined with distance to measure?)
Average the set of resulting persistence diagrams

Goal: depending on input noise model, develop theoretical
guarantee for the output.
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Bootstrapping?

This kind of bootstrapping idea appears more challenging for the
(sparse) graph models like the one we introduced earlier.

The geometry of the underlying space where graph nodes are
sampled from may help.
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Multiple Sets of Samples

What can we obtain if we are given multiple sets of samples of
input data

e.g, point sets P1,P2, . . . ,Pk of a hidden domain

graph case?

Averaging resulting persistence diagrams may not “cancel”
noise.
Maybe “decorated” persistence diagrams?
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