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Outline
m Heat flow as gradient flow for the entropy
m Dirichlet heat flow
m Heat flow on time-dependent metric measure spaces

m (Super-) Ricci flows



Heat Flow on Metric Measure Spaces

(X, d) complete separable metric space, m locally finite measure

Heat equation on X
e ecither as gradient flow on L?(X, m) for the energy

E(u) = %/X|Vu|2 dm=liminf %/X(liva)2 dm(x)

v—uin L2(X,m)
veLip(X,d)

with |Vu| = minimal weak upper gradient

e or as gradient flow on P2(X, d) for the relative entropy

Ent(um):/ulogudm.
X
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Heat equation on X
e ecither as gradient flow on L?(X, m) for the energy

E(u) = %/X|Vu|2 dm=liminf %/X(liva)2 dm(x)
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with |Vu| = minimal weak upper gradient

e or as gradient flow on P2(X, d) for the relative entropy

Ent(um):/ulogudm.
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Theorem (Ambrosio/Gigli/Savare).

For arbitrary metric measure spaces (X, d, m) satisfying CD(K,o0) both ap-
proaches coincide.

Note: Heat flow P:;u not necessarily linear.



Synthetic Ricci Bounds for Metric Measure Spaces

(X, d) complete separable metric space, m locally finite measure

Definition. The Curvature-Dimension Condition CD(K, co)
<= VYuo,u1 € P(X): 3 geodesic () s.t. Vt € [0,1]:

S(1ae) < (1 £) S(p0) + £ S(m) — % ¢(1— £) W20, )

with Boltzmann entropy

_ . fxplogpdm Jifu=p-m
(0 = But(ulm) = { Jx2 e

and Kantorovich-Wasserstein metric

W) =inf{ [ &n)daten): (m)a=pm (r).q= ul}l/z



Synthetic Ricci Bounds for Metric Measure Spaces

(X, d) complete separable metric space, m locally finite measure

Definition. The Curvature-Dimension Condition CD(K, c0)
< VYo, € P(X): 3 geodesic (ut): s.t. Vt € [0,1]:

K
S(ne) < (1= 1) S(po) + £ S(pa) — 7 (1 — £) W (o, 1)
or equivalently

0:S(ne)|,_y — 0eS(e)|,_y = K - W2(pao, p12)

with Boltzmann entropy

. _ [ Jxplogpdm ,ifp=p-m
(0 = Ent(um) = { Ix2 e

and Kantorovich-Wasserstein metric

W (po, pa) = inf {/Xxx d’(x,y)dq(x,y):  (m)eq = po, (m2).q = m}m

q



The Relevance of Lower Ricci Bounds

Nonnegative Ricci curvature implies that — in many respects — optimal
transports, heat flows, and Brownian motions behave as nicely as on Euclidean
spaces. For instance

m Heat kernel comparison

pt(X,y) > (471‘t)7n/2 exp <_%t’y)>

Li-Yau estimates

Gradient estimates

|V Peu| < P(|Vul)

m Transport estimates
W(Ptlu’7 Pf’/) < W(/LJ/)

m Vx,y : 3 coupled Brownian motions (X, Y:):>o0 starting at (x, y) s.t.
P-a.s. forallt >0
d(Xfa Yf) < d(va)

Indeed, Ric > 0 is necessary and sufficient for each of the latter properties.



The Relevance of Lower Ricci Bounds
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transports, heat flows, and Brownian motions behave as nicely as on Euclidean
spaces. For instance

m Heat kernel comparison

pe(x,y) > (4mt) "2 exp (,M)
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Li-Yau estimates

Gradient estimates

|V Peu| < P:(|Vul)
m Transport estimates
W(Pt/‘l’7 Pf’/) S W(/LJ/)

m Vx,y : 3 coupled Brownian motions (X, Y:):>o0 starting at (x, y) s.t.
P-a.s. forallt >0
d(Xe, Ye) < d(x,y)

Indeed, Ric > 0 is necessary and sufficient for each of the latter properties.

Among the applications:
‘Market Fragility, Systemic Risk, and Ricci Curvature’ (Sandhu et al. 2015)
‘Ricci curvature and robustness of cancer networks’ (Tannenbaum et al. 2015)




The Gradient Flow Perspective

Powerful consequences of the gradient flow perspective (Otto, Villani)

Hess S > K
3
IVS|?>2K-S
U

S> K/2 - Wa(-, v )?



The Gradient Flow Perspective

Powerful consequences of the gradient flow perspective (Otto, Villani)

Hess S > K " Bakry-Emery inequality”
0

IVS|?>2K-S "log. Sobolev inequality”
U

S> K/2 - Wa(-, v )? " Talagrand inequality”
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(X, d) complete separable metric space, Y C X open with 0 # Y # X.



Dirichlet Heat Flow

(X, d) complete separable metric space, Y C X open with 0 # Y # X.
Charged probability measures on X

o= (O’+,O'_) . (Ti S PSUb(X), O’+|X\y = G_‘X\y,0+(X) —|—O'_(X) = 1;

Effective measure ¢° = o+ — o~ total measurec = o + 0.



Dirichlet Heat Flow

(X, d) complete separable metric space, Y C X open with 0 # Y # X.
Charged probability measures on X

o= (c"07): ot e Ps”b(X), O’+|X\y = a_\x\y,a+(X) +o (X)=1;

Effective measure ¢° = o+ — o~ total measurec = o + 0.

Kantorovich-Wasserstein distance between two charged probability measures

oc=(c",07)and 7= (77,77)

in(o, ) = inf { [ [ dbeyrda e+ [ [dtarrds )
+//d*(x,y)2dq_+(x,y)+//d(X7Y)2dq__(X7Y)f
o =o't -|-0‘i7,7‘j = —|—7‘7j,q"j S Cpl(a'j,T"j), i,j € {-l-,—}}

where
d(x.y):=_inf [d(x.2) + d(z.y)].



Dirichlet Heat Flow

Thm. (Profeta, St. ‘17) Assume X Riem. mfd. with Ric > K, Y convex
subset. Then Dirichlet heat semigroup (P?):~0 on Y is given by the effective
measure of the gradient flow for the Boltzmann entropy Ent(o|m)-+Ent(c ™ |m)
within the space of charged prob. measures w.r.t. the distance Wh.
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Thm. (Profeta, St. ‘17) Assume X Riem. mfd. with Ric > K, Y convex
subset. Then Dirichlet heat semigroup (P?):~0 on Y is given by the effective
measure of the gradient flow for the Boltzmann entropy Ent(o|m)-+Ent(c ™ |m)
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4

Cor.1  V subprobab. p,v on Y

Wa (Pu, Pv) < e ™ Ws (u,v)

y

with Kantorovich-Wasserstein distance between subprobabilities p, v € P*2(Y)
W (,v) = inf{Wz((U+,0_)7(T+7T_)) ot —o T =p T -1 = 1/}
= inf{WQ((M+p,p),(V+77777)) : pym € PMP(X),

(1 +20)(X) = 1, (v +2n)(X) = 1}
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Thm. (Profeta, St. ‘17) Assume X Riem. mfd. with Ric > K, Y convex
subset. Then Dirichlet heat semigroup (P?):~0 on Y is given by the effective
measure of the gradient flow for the Boltzmann entropy Ent(o|m)-+Ent(c ™ |m)
within the space of charged prob. measures w.r.t. the distance Wh.

4

Cor.1  V subprobab. p,v on Y

Wa (Pu, Pv) < e ™ Ws (u,v)

y

with Kantorovich-Wasserstein distance between subprobabilities p, v € P*2(Y)
W (,v) = inf{Wz((U+,0_)7(T+7T_)) ot —o T =p T -1 = 1/}
= inf{WQ((M+p,p),(V+77777)) : pym € PMP(X),

(1 +20)(X) = 1, (v +2n)(X) = 1}

Cor.2 |VPlu| <e ™. PlVuy| J




Heat Flow on Time-dependent MM-Spaces

Aim. Study heat flow on | x X where | = (0, T) C R and (X, d¢, m:) is metric
measure space (Vt € /)

Many challenges.
m Define/study solutions for heat equation O:u = Au

m Define/study gradient flows for energy and for entropy

m Find correct time-dependent versions of Bakry-Emery (=Bochner) and of
Lott-St.-Villani conditions

m Establish equivalence between Eulerian and Lagrangian approach



The EVI Formulation of Gradient Flows

).Q =-V V(Xf)
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).Q = —VV(X(»)
i
<Xt —Z, ).(t> < (V V(Xf)a Z = Xf) (VZ)



The EVI Formulation of Gradient Flows

xt = =V V(x)
(3
(xe — 2, 5%) < (VV(x)z —x)  (V2)
IV convex
odx—2f S V() - V(x)  (2)

Evolution variational inequality (in Hilbert spaces) for ‘static’ V



The EVI Formulation of Gradient Flows

xt = =V V(x)
(3
(xe — 2, 5%) < (VV(x)z —x)  (V2)
IV convex
odx—2f S V() - V(x)  (2)

Evolution variational inequality (in Hilbert spaces) for ‘static’ V

Powerful extension to ‘static’ metric spaces (Ambrosio, Gigli, Savaré)
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Question: How to define gradient flow for time-dependent potential
VIl x X — (—00,0] on time-dependent metric space (X, d:)eer?
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Gradient Flows on Time-dependent MM-Spaces

Question: How to define gradient flow for time-dependent potential
V] x X = (—o00,0] on time-dependent metric space (X, d;)tes?

Examples:
m gradient flow for Boltzmann entropy S; on (P, W:)ies

m gradient flow for Dirichlet energy & on L*(X, m¢)tes

Definition

An absolutely continuous curve (x:):ecs will be called dynamic backward EVI~ -
gradient flow for V if for all t € J and all z € Dom(V;)

> Vi(xe) — Vi(2)

s=t—

205 E(x,2)

where
1 1/2
dsaf(Xv)/) = inf {/ |;ya‘§+a(tfs)da}
0

with infimum over all absolutely continuous curves (7?),¢[o,y in X from x to y.



Heat Flow on Time-dependent MMS

For the sequel, a 1-parameter family of metric measure spaces (X, d¢, m;),
t € | C R will be given s.t. Vs, t €/
m the mm-space (X, d;, m;) satisfies CD*(K, N) and has linear heat flow

m log 73:&8 < Cls—t

m m;(dx) = e~ my(dx) for some f € Lip(l x X)

Thus Vt € I
3 Dirichlet form &, Laplacian A, squared gradient I';(u) = |V u|*.



Heat Flow on Time-dependent MMS

For the sequel, a 1-parameter family of metric measure spaces (X, d¢, m;),
t € | C R will be given s.t. Vs, t €/

m the mm-space (X, d;, m;) satisfies CD*(K, N) and has linear heat flow
m log 73:&8 < Cls—t|

m m;(dx) = e~ my(dx) for some f € Lip(l x X)

Thus Vt € I
3 Dirichlet form &, Laplacian A, squared gradient I';(u) = |V u|*.

Theorem (‘Heat equation’)

3 heat kernel p on {(t,s,x,y) € [> x X* : t > s}, Holder contin-
uous in all variables and satisfying the propagator property p:,(x,z) =

J pe,s(x,y)ps,-(v, z) dms(y), such that
m (t,x) — pes(x,y) solves the heat equation drur = Acur on (s, T) X X

m (s,y) = pts(x,y) solves the adjoint heat equation
Osvs = —Asvs + (0sf5) - vs on (0,1) x X




Heat Flow on Time-dependent MMS

(i) Vs € 1,Yh € L*(X, m;) : 3! solution to heat equation du; = A¢u; on
(s, T) x X with us = h given by

() = Pesh(x) == [ prs(x.y)h(y) dmi(y)

(i) Vt € I1,Vg € L*(X, m;) : 3! solution to the adjoint heat equation
Osvs = —Asvs + (0sf:) - vs on (0, t) x X with v¢ = g given by

vs(y) = Pi.g(y) :== / Pe,s(x, y)g(x) dme(x)



Heat Flow on Time-dependent MMS

(i) Vs € 1,Yh € L*(X, m;) : 3! solution to heat equation du; = A¢u; on
(s, T) x X with us = h given by

() = Pesh(x) == [ prs(x.y)h(y) dmi(y)

(i) Vt € I1,Vg € L*(X, m;) : 3! solution to the adjoint heat equation
Osvs = —Asvs + (0sf:) - vs on (0, t) x X with v¢ = g given by

vs(y) = Pi.g(y) :== / Pe,s(x, y)g(x) dme(x)

(iii) Define dual heat flow Prs : P(X) — P(X) by
(Peon) = | [ pestxoy) )| )

In particular, Ist,s (g . mt) = (stg) - ms and

/ hd (Posp) = / (Pesh)dln



Heat Flow and its Dual as Gradient Flows

L(t—s)

Theorem. Assume m; < e

ms.

Yu € Dom(&), Vs the heat flow t — u; = P:su is the unique dynamical forward

EVI,-gradient flow for the energy 1€, that is, Vv € Dom(), Vt

L 1 1
I ZHUt — V[ > ZE(ue) — §5t(V)-

s=t— -

1,
205 llas = VI




Heat Flow and its Dual as Gradient Flows

L(t—s)

Theorem. Assume m; < e

ms.

Yu € Dom(&), Vs the heat flow t — u; = P:su is the unique dynamical forward
EVI,-gradient flow for the energy 1€, that is, Vv € Dom(), Vt

s=t—

1, L
585 [lus — V||§,t| + ZHUt vl > 25t(Ut) 5t(V)-

Theorem. Assume that (X, d¢, m:):e; is a super-Ricci flow.

Vi € Dom(S),VT the dual heat flow s — s = Prou is the unique dy-
namical backward EVI-gradient flow for the Boltzmann entropy S, that is,
Vo € Dom(S),Vt

1,
505 Weilps, o), = Se(ae) = Se(0)-

Here W2, (1o, p1) mffo |@? \Ha(t syda with infimum over all AC?-curves
(4%)acpo,1) in P(X) connecting u° and p'.



Super Ricci Flows

A family of Riemannian manifolds (M, g¢),t € (0, T), is called super-Ricci flow
iff
RiCt + %6tgt 2 0.

Two main examples
m Static manifolds with Ric > 0  (‘elliptic case’)

= Ricci flows Ric: = —10:g:  (‘minimal super-Ricci flows')

Hamilton’81, Perelman’02, ..., McCann/Topping'10, Lott'09,
Arnaudon/Coulibaly/Thalmaier'08, Kuwada/Philipowski'11l, X.-D.Li'14,
Kleiner/Lott'14, Haslhofer/Naber'15



Super Ricci Flows

A family of Riemannian manifolds (M, g¢),t € (0, T), is called super-Ricci flow
iff
RiCt + %&gt 2 0.

Given a 1l-parameter family of metric measure spaces (X, d;, m¢), t € | C R.
Consider the function

S: I xP(X)—= (—o0,00], (t,p)— Se(p) = Ent(p|my)

where P(X) is equipped with the 1-parameter family of metrics W; (=
[>-Wasserstein metrics w.r.t. d;).

Definition.

(X, di, mt)ter is super-Ricci flow iff for a.e. t and every Wi-geodesic (1417).co,1)

2 2 1,
0:5:(1%) o = DaSelk),y < 505 WE (1,12,




Characterization of Super-Ricci Flows

Theorem. The following are equivalent

m 0aSe(17)|,_p — BaSe(p?)|,_, < 30:WE(H°, 1t)
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Theorem. The following are equivalent

m 0aSe(17)|,_p — BaSe(p?)|,_, < 30:WE(H°, 1t)

] Ws(fst,s,uz, ISt,sI/) < Wt(,d, y)

m Vx,y,Vt: 3 coupled backward Brownian motions (Xs, Ys)s<; starting at
tin (x,y) s.t. ds(Xs, Ys) < di(x,y) as. forall s <t

B |Vi(Pesu)® < Peo(|Vsul?)




Characterization of Super-Ricci Flows

Theorem. The following are equivalent

m 0aSe(17)|,_p — BaSe(p?)|,_, < 30:WE(H°, 1t)

Ws(ijt,s,uq ISt,sV) < Wt(/»'L7 I/)

Vx,y,Vt : 3 coupled backward Brownian motions (X, Ys)s<: starting at
tin (x,y) s.t. ds(Xs, Ys) < di(x,y) as. forall s <t

|Ve(Pesu)|> < Prs(|Vsul?)

| | r27t 2 atrt where rzyf(u) = %A[lvtu|2 — <Vtu, vtAfU>

NI

y




Functional Inequalities for Super-Ricci Flows

Theorem. For every super-Ricci flow (X, d¢, m:)ecs

m Local Poincare inequalities

2(t — $)e(Prsu) < Prs(u?) — (Prsu)® < 2(t — s)Prs(Fsu)
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Functional Inequalities for Super-Ricci Flows

Theorem. For every super-Ricci flow (X, d¢, m:)ecs

m Local Poincare inequalities

2(t — $)e(Prsu) < Prs(u?) — (Prsu)® < 2(t — s)Prs(Fsu)

m Local logarithmic Sobolev inequalities

rt(Pt’SU)
(t s)ipmu

< Py.(u log u) — (Pr.su) log(P.u) < (£ — s)Pt,s(rz")

m Dimension-free Harnack inequality: Va > 1

P01 < ) (22




Characterization of Ricci Flows

(X, dt, me)tes is a Ricci flow iff super-Ricci flow and Vx, t

lim 9 log Wi (Pesds, Pr.6,) ‘ -0




Characterization of Ricci Flows

(X, dt, me)tes is a Ricci flow iff super-Ricci flow and Vx, t

lim 9 log Wi (Pesds, Pr.6,) th, -0
Cor.
If (X, d:, mt)tes is Ricci flow then Vt, Vd;-geodesics (77)acp,y) the length of the
curve

pl = Pisbe, ac0,1]
in (P(X), W;) asymptotically for s  t does not change

OsLength (,u's) =0

s=t—




Characterization of Ricci Flows

(X, dt, me)tes is a Ricci flow iff super-Ricci flow and Vx, t

lim 85 log Wi (P05, Pr,s0y) =0

y—x s=t—
Cor.
If (X, d:, mt)tes is Ricci flow then Vt, Vd;-geodesics (77)acp,y) the length of the
curve

N‘? = ,Sf,sts’Yaa ac [07 1]
in (P(X), W;) asymptotically for s / t does not change

OsLength (5) =0

S=t—

Assume that X is N-cone of some mm-space Y. Then X is Ricci bounded if and
only if N € N and X = RV*L,




Thank You For Your Attention!



Synthetic Upper Bounds for Ricci Curvature

For weighted Riem with Rico, > —Kp, for all non-conjugate x, y

Key < —0; log W(Pebe, Pesy )| _y, < Kuy + 0y tan? (y/ayd(x, y)/z)

with K,, = average Ricci curvature along min. geodesic from x to y
and o, = maximal modulus of sect. curv. along this geodesic.
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m Doubling of B1(0) CR" inn>?2
m Cone over S%(1/+/3) x §%(1//3)

m Cone over circle of length a < 27



Synthetic Upper Bounds for Ricci Curvature

For weighted Riem with Rico, > —Kp, for all non-conjugate x, y

Key < —0r log W (Pide, Pedy)| g, < Koy + 0xy tan” (s d(x,¥)/2)

with K,, = average Ricci curvature along min. geodesic from x to y
and o, = maximal modulus of sect. curv. along this geodesic.

Singular examples
m Doubling of B1(0) CR" inn>?2
m Cone over S%(1/+/3) x §%(1//3)

m Cone over circle of length a < 27

Proposition

For the cone over circle of length a@ < 27

_f d(x,y)—V7t-2sing + O(t), ifxory is the vertex
W (Pybx, P:dy) = { d(x,y) +o(t), else.




Gradient Flows on Time-dependent MM-Spaces

Definition

An absolutely continuous curve (x):cs will be called dynamic backward EVI~ -
gradient flow for V if for all t € J and all z € Dom(V;)

S0 e 2)| 2 i) - Vi2)

where
"1 1/2
ds,t(X7Y) = inf {/ |’-Ya‘§+a(t—5)da}
0

with infimum over all absolutely continuous curves (v?).cp,1) in X from x to y.



Gradient Flows on Time-dependent MM-Spaces

Definition

An absolutely continuous curve (x):cs will be called dynamic backward EVI~ -
gradient flow for V if for all t € J and all z € Dom(V;)

S0 e 2)| 2 i) - Vi2)

where

"1 1/2
ds,t(X7Y) = inf {/ |’-Ya‘§+a(t—5)da}
0

with infimum over all absolutely continuous curves (v?).cp,1) in X from x to y.

Definition

(xt)te is called dynamic backward EVI(K, N)-gradient flow if Vz,Vt

1,_ K
505 deil,2)| = 5 - i (xi,2) 2Vi(x) = Ve(2)

+ % /01 (83Vt(fya))2(1 — a)da




The Curvature-Dimension Condition CD*(K, N)

Def. A metric measure space (X, d, m) satisfies CD*(K, N)
<= S:= Ent(.) is (K,N)-convex on (P(X), W)

= 0S(ue)|,_, — 0eS(pe)|,_o = K W2(po, i) + % (S(po) — S(un))°

: 1/1
sec >0 <= dist concave ric > 0 <= vol'/* concave




The Curvature-Dimension Condition CD*(K, N)

Def. A metric measure space (X, d, m) satisfies CD*(K, N)
<= S:= Ent(.) is (K,N)-convex on (P(X), W)

= 0S(ue)|,_, — 0eS(pe)|,_o = K W2(po, i) + % (S(po) — S(un))°

. 5 1/n
sec >0 <= dist concave ric >0 <= vol""concave

Proposition. CD*(0, N) <= Vo, p1 € P(X) : 3 geodesic ()¢ s.t.
Sn(pelm) < (1 —t)Sn(po|lm) + t Sn(pa|m))

where Sy(v|m) = —f Pt N dm forv=p-m+ vs.

Example:  Sy(v|m) = —m(A)Y"N if v = unif. distrib. on A C X



