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I. Introduction to Vortices

I A vortex is a gauge theoretic soliton on a 2-d Riemann
surface M. It couples a complex Higgs field φ (with no
singularities) to a U(1) connection a. A zero of φ
represents a vortex centre.

I We assume that M has a (local) complex coordinate
z = x1 + ix2, and a conformally compatible metric

ds2
0 = Ω0(z, z̄) dzdz̄ .

The total area A0 of M plays an important role in the
theory, as does the Gaussian curvature K0. We specialise
later to surfaces with constant curvature.

I To have N vortices with positive multiplicity, the first Chern
number needs to be N. Physically, there is a magnetic flux
2πN.



II. Bogomolny Vortices
I The Bogomolny vortex equations are

Dz̄φ = 0 ,
∗f = −C0 + C|φ|2 ,

where C0 and C are real constants. By choice of scale, we
can fix C0 and C to have values −1,0 or +1.

I Here ∗f = 1
Ω0

f12 = 1
Ω0

(∂1a2 − ∂2a1) is the magnetic field.
I The first equation ∂z̄φ− iaz̄φ = 0 can be solved for a:

az̄ = −i∂z̄(logφ) , az = i∂z(logφ) .

I The second equation then reduces to the scalar, gauge
invariant equation

− 1
2Ω0
∇2 log |φ|2 = −C0 + C|φ|2 .



I It is convenient to set |φ|2 = φφ = e2u. Then

− 1
Ω0
∇2u = −C0 + Ce2u ,

with the Beltrami Laplacian of u on the left.
I u has logarithmic singularities (u → −∞) at the zeros of φ,

so there are N additional delta functions at the vortex
centres.

I A genuine vortex solution has u bounded above. The
maximum principle (or positivity of N) then only allows
those C0 and C for which −C0 + Ce2u is positive for some
u.



I The five surviving vortex types are
(i) Standard (Taubes) vortices (C0 = −1, C = −1);
(ii) “Bradlow” vortices (C0 = −1, C = 0);
(iii) Ambjørn–Olesen vortices (C0 = −1,C = 1);
(iv) Jackiw–Pi vortices (C0 = 0, C = 1);
(v) Popov vortices (C0 = 1, C = 1).

I For Standard vortices, N-vortex solutions exist on M
provided 2πN < A0 (Taubes, Bradlow, Garcia-Prada). The
moduli space isMN = MN

symm, as there is a unique vortex
given N unordered (possibly coincident) points on M.

I For Standard vortices the magnetic field is maximal at a
vortex centre (Meissner effect); for the vortex types with
C = 1 it is minimal (anti-Meissner effect). For Bradlow
vortices the magnetic field is 1 uniformly over M, so
2πN = A0.



Vortices and Self-Dual Yang–Mills

I The vortex equations are a dimensional reduction of the
self-dual Yang–Mills equation in 4-d. They arise by
imposing invariance under a three-dimensional symmetry
group S acting on a two-dimensional orbit (Mason and
Woodhouse). A Higgs field is naturally generated this way.

I Vortices are therefore “S-invariant instantons”.
I For Standard vortices S is SO(3) acting on a 2-sphere; for

Jackiw–Pi vortices S is E2 acting on a plane; for Popov
vortices S is SU(1,1) acting on a hyperbolic plane.

I The gauge group always reduces to U(1), but in 4-d it
needs to be SU(2), E2 or SU(1,1), depending on the value
of C (Contatto and Dunajski).



III. Vortices as Conical Singularities

I Vortices have a geometric interpretation. Define the
Baptista metric on M

ds2 = |φ|2ds2
0 = e2uds2

0 .

I This is conformal to the original metric, with conformal
factor Ω = e2uΩ0, but has conical singularities with cone
angle 4π – conical excess 2π – at the N vortex centres.
(The conical excess is 2πm if a vortex has multiplicity m.)

I The gauge invariant vortex equation can be expressed as

(K − C)Ω = (K0 − C0)Ω0 ,

where K ,K0 are the Gaussian curvatures of Ω,Ω0. (Recall
K = − 1

2Ω∇
2 log Ω.)



IV. Integrable Vortices

I The vortex equations are integrable if K0 = C0, i.e. if the
background metric on M has the appropriate constant
curvature.

I Finding vortex solutions then reduces to finding a
(Baptista) metric on M with unchanged topology and
conformal structure, constant curvature K = C, and N
conical singularities of cone angle 4π. This requires
solving Liouville’s equation.

I The Gauss–Bonnet theorem places constraints on N in
terms of C0 and C and the genus g of M.

I All this generalizes Witten’s observation that
SO(3)-invariant SU(2) instantons on R4 are equivalent to
U(1) vortices on H2. Vortex solutions are found by solving
Liouville’s equation using Blaschke functions – rational
maps from H2 to H2.



I Jackiw–Pi vortices are constructed using rational functions
on the plane (Horvathy and Zhang), or quasi-elliptic
functions on the torus (Olesen; Akerblom et al.).

I Popov vortices on a sphere are constructed using rational
functions (NSM, Q. Chen et al.).

I The solution is

|φ|2 = e2u =
(1 + C0|z|2)2

(1 + C|f (z)|2)2

∣∣∣∣ df
dz

∣∣∣∣2 ,
and one may locally fix the gauge by choosing

φ =
1 + C0|z|2

1 + C|f (z)|2
df
dz

.



I Vortex centres are the ramification points, where df
dz = 0.

I Globally, f is a holomorphic map from M, with curvature
C0, to a smooth surface with curvature C. |φ|2 is the ratio
between the target metric pulled back to M and the
background metric of M, at corresponding points.

I The pulled-back metric is the Baptista metric and has
conical singularities at the ramification points of f .



Vortices on the (compact) Bolza Surface

I The Gauss–Bonnet/Bradlow constraint for a Standard
N-vortex on a hyperbolic, genus g surface (K0 = −1) is
N < 2g− 2.

I The Bolza surface is the most symmetric genus 2 surface.
Here, N = 1 is the only possibility. An explicit Standard
vortex is known (Maldonado and NSM), with its centre at a
symmetry point. The Baptista metric is hyperbolic, with one
4π cone angle.

I Bradlow vortices with N = 2 exist on the Bolza surface.
Here, the Baptista metric is flat. (The Bolza surface with
Baptista metric is a translation surface). The simplest
solution has a single vortex of multiplicity 2, and the
Baptista metric has one 6π cone angle.



Contours of |φ|2 = e2u for Standard N = 1 vortex on Bolza
surface.



Contours of |φ|2 = e2u for vortex relocated to vertex.



Bolza octagon (outer) superimposed on the Poincaré disc;
Baptista octagon (middle) of the N = 1 Standard vortex; flat
Baptista octagon (inner) of the N = 2 Bradlow vortex. In all

cases, opposite edges are identified.



I The N = 1 Standard vortex with centre in general position
is not known. Can the Baptista geometry be sketched?

I N = 2 Bradlow vortices with separated vortex centres
should arise from generic holomorphic 1-forms ω on the
Bolza surface, and the Baptista metric is |ω|2.

I One can find an N = 6 Ambjørn–Olesen vortex on the
Bolza surface. The vortices are at the branch points of the
double covering of the sphere, and the Baptista metric is
the pulled-back round metric on the double covered
sphere.

I There are many more vortex solutions related to branched
covering maps.



Bolza surface double covers the Riemann sphere.



Popov Vortices on a 2-sphere

I Popov vortices on the 2-sphere of unit radius (the
integrable case) arise from rational maps f : S2 → S2. The
Baptista metric is the pulled-back (round) metric.

I For f of degree n, the vortex number is the ramification
number N = 2n − 2, and is always even.

I Rational maps have 4n + 2 real moduli, but the vortices are
invariant under SO(3) rotations (isometries) of the target
S2, so Popov N-vortices have 4n− 1 = 2N + 3 real moduli.

I The moduli space of Popov vortices in non-integrable
cases is not known (I think).



V. Energy and Dynamics of Vortices

I The static energy function for all the vortex types we have
considered is

E =

∫
M

{ 1
Ω2

0
f 2
12 −

2C
Ω0

(
D1φD1φ+ D2φD2φ

)
+
(
−C0 + C|φ|2

)2
}

Ω0 d2x .

E is not positive definite for C > 0, so not all vortex types
are stable.

I Manipulation of E (completing the square) shows that
Bogomolny vortices are always stationary points of E , but
not always minima. Standard vortices are energy minima.



I The static energy can be extended to a Lagrangian for
fields on R×M, with metric dt2 − Ω0 dzdz̄,

L =

∫
M

{
− 1

2
fµν fµν − 2CDµφDµφ

−
(
−C0 + C|φ|2

)2
}

Ω0 d2x .

I The kinetic energy (µ = 0 terms) is

T =

∫
M

{ 1
Ω0

f0i f0i − 2CD0φD0φ
}

Ω0 d2x .

The electric field f0i contributes positively, but D0φ
contributes negatively if C = 1.

I L is a dimensionally reduced pure Yang–Mills Lagrangian
in 4 + 1 dimensions (F. Contatto and M. Dunajski). For
C = 1 and C = 0 the gauge group in 4-d is non-compact
(SU(1,1) and E2, resp.), leading to an exotic kinetic energy.



Dynamics on Moduli Space

I For dynamics tangent to the moduli space, we can set
a0 = 0 provided Gauss’s law is satisfied (field dynamics
orthogonal to gauge orbits). We then write ∂0φ = φη. The
quantity η determines the time derivatives of all fields, and
obeys the linearized (scalar) vortex equation

− 1
Ω0
∇2η = 2Ce2uη .

I The kinetic energy simplifies to

T =

∫
M

{ 1
Ω0
∂iη∂iη − 2Ce2uηη

}
Ω0 d2x .

I Integrating by parts, and using the equation for η, this
reduces to line integrals around the vortex centres –
Strachan–Samols localization.



Dynamics of Standard Vortices

I Standard vortices have positive kinetic energy. The moduli
are the vortex centres, and the kinetic energy on
MN = MN

symm is a quadratic form in vortex velocities. This
defines a metric onMN . Slowly moving vortices follow
geodesics inMN .

I The metric onMN is Kähler. This is shown using the local
formula of Strachan–Samols, or by a more general Kähler
quotient argument.

I The cohomology class of the Kähler form onMN is
explicitly known. From this one can calculate the volume of
moduli space (NSM and Nasir, Perutz), and deduce the
(classical) statistical mechanics of vortices for large N.

I Quantization of vortex motion also depends on the
topology of the moduli space and its Kähler structure.



Dynamics of Exotic Vortices

I For integrable Popov vortices there are 2N + 3 moduli, and
the kinetic energy seems to vanish identically (Contatto
and Dunajski, NSM). Positive and negative contributions
cancel. We do not understand this phenomenon well.

I E.g., An N = 2 Popov vortex with centres at Z = 0 and
Z =∞ is described by the rational function f (z; t) = c(t)z2.
The fields, and vortex sizes, vary as c varies, but the
kinetic energy is zero. This follows from the localization
formula, and has been checked by direct integration.

I A Jackiw–Pi vortex moving linearly on a torus also has
zero kinetic energy.

I NSM and E. Walton are investigating non-integrable cases
of the exotic vortices, and are trying to understand the
dimension of the moduli space, and whether it has a
non-trivial Kähler metric.



VI. Summary
I The Standard Bogomolny/Taubes U(1) vortex equation can

be extended to five distinct vortex equations, with
parameters C0 and C. All vortex types give a Baptista
metric |φ|2ds2

0 with conical singularities with cone angle 4π.
I Each vortex equation is integrable on a surface of constant

curvature K0 = C0, and reduces to Liouville’s equation.
Vortex solutions can be found using holomorphic maps
f (z), or branched coverings. The Baptista metric then has
constant curvature K = C away from the conical
singularities.

I A gauge theoretic metric on the moduli space of vortices is
derived using the vortex kinetic energy. This metric is quite
well understood using the Strachan/Samols localization
formula, but vanishes for certain vortex types.

I For integrable vortices, is there a relation to the
Weil–Petersson metric on the moduli space of constant
curvature surfaces with conical singularities?
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