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Introduction

Make the discreate differential operators mimic the important

properties of the continuum operators.

Must work for anisotropic material properties.

Identities for second order differential operators play a critical role.

Adjoint operators play a critical role.

Showing that energy is conserved requires the use of adjoint

operators.

K.S. Yee, 1966 and A.A. Samarski, 1977
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Non Mimetic Finite Differences

Let f = f(x) be a smooth function, ∆x > 0 and then define fi = f(xi).

The second-order accurate cental finite difference approximation of the

first derivative is

C fi =
fi+1 − fi−1

2∆x
.

– p. 3/36



Non Mimetic Finite Differences

Let f = f(x) be a smooth function, ∆x > 0 and then define fi = f(xi).

The second-order accurate cental finite difference approximation of the

first derivative is

C fi =
fi+1 − fi−1

2∆x
.

Now if fi = c then C f = 0.

– p. 3/36



Non Mimetic Finite Differences

Let f = f(x) be a smooth function, ∆x > 0 and then define fi = f(xi).

The second-order accurate cental finite difference approximation of the

first derivative is

C fi =
fi+1 − fi−1

2∆x
.

Now if fi = c then C f = 0.

However if C f = 0 then fi = a+ b (−1)i!

– p. 3/36



Non Mimetic Finite Differences

Let f = f(x) be a smooth function, ∆x > 0 and then define fi = f(xi).

The second-order accurate cental finite difference approximation of the

first derivative is

C fi =
fi+1 − fi−1

2∆x
.

Now if fi = c then C f = 0.

However if C f = 0 then fi = a+ b (−1)i!

This is NOT mimetic. Multidimensional analogs cause problems like far

field oscillations for finite differences and hourglass modes for finite

elements.
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Mimetic

Identities: ~∇·~∇× ≡ 0 ; ~∇×~∇ ≡ 0 ;
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Mimetic

Identities: ~∇·~∇× ≡ 0 ; ~∇×~∇ ≡ 0 ;

Existence of Local Potentials

~∇f = 0 =⇒ f = constant

~∇×~v = 0 =⇒ v = ~∇f

~∇·~v = 0 =⇒ v = ~∇×~u

~∇ , ~∇× , ~∇· is and exact sequence of operators.
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Adjoint Operators

f = f(x) , g = g(x) , f(±∞) = 0 , g(±∞) = 0
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Adjoint Operators

f = f(x) , g = g(x) , f(±∞) = 0 , g(±∞) = 0

Product Rule:

0 =

∫ ∞

−∞

d

dx
(f g) dx =

∫ ∞

−∞

df

dx
g dx+

∫ ∞

−∞

f
dg

dx
dx

0 = 〈
df

dx
, g〉+ 〈f,

dg

dx
〉 =⇒

d

dx

∗

= −
d

dx

Very important: ~∇∗ = −~∇· ; ~∇×
∗
= ~∇×

O∗∗ = O . Does this require that the dual of a dual grid be the grid?
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Fix The First Derivative

Define the left and right differences:

Lfi =
fi − fi−1

∆x
, R fi =

fi+1 − fi
∆x

.
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Fix The First Derivative

Define the left and right differences:

Lfi =
fi − fi−1

∆x
, R fi =

fi+1 − fi
∆x

.

Now Lf = 0 and Rf = 0 imply f is constant.

Both L and R are second order accurate at x = (i+ 1/2)∆x.

LRfi = RLfi =
fi+1 − 2 fi + fi−1

∆x

The adjoint L∗ = −R so −LR and −RL are positive operators.
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Material Properties

cpρ
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cpρ
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= ~∇·K~∇T , Set ~W = K~∇T
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T
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cp
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ρ

d−3
~∇·

d−1
K

d−1
~∇

d−1
dV

d3
~W

d−1

〈T1, T2〉 =

∫

cp ρ T1 T2 dV , 〈 ~W1 , ~W2〉 =

∫

K ~W1
~W2 dV

〈
∂T

∂t
, T 〉 =

∫

cpρ
∂T

∂t
T dV =

∫

(

~∇·K~∇T
)

T dV

=−

∫

K~∇T ~∇T dV = −〈~∇T , ~∇T 〉
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Important

Identities: ~∇·~∇× ≡ 0 ; ~∇×~∇ ≡ 0 ; ~∇f = 0 =⇒ f = constant .

Adjoints: d
dx

∗
= − d

dx ; ~∇∗ = −~∇· ; ~∇×
∗
= ~∇×.

Conservation of energy. Quadratic functions of the solution.

Conservation of mass. Linear functions of the solution. Mass ≥ 0.

Explict time discretization and high order in space and time.

Accuracy? Groundwater modeling?
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Harmonic Oscillator

Harmonic oscillator:

u′′ + ω2u = 0 .

Here u = u(t) is a smooth function of time t and u′ = du/dt,

u′′ = d2u/dt2 and ω > 0 is a real constant.
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Harmonic Oscillator

Harmonic oscillator:

u′′ + ω2u = 0 .

Here u = u(t) is a smooth function of time t and u′ = du/dt,

u′′ = d2u/dt2 and ω > 0 is a real constant.

The total energy or Hamiltonian is the sum of the kinetic and potential

energies:

E =
(u′)2 + (ω u)2

2
.

This is conserved quantity because

E′ = u′′ u′ + ω2uu′ =
(

u′′ + ω2u
)

u′ = 0 .
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First Order System

Write as a first order system:

u′ = ω v , v′ = −ω u .
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Write as a first order system:

u′ = ω v , v′ = −ω u .

Conserved quantity:

C =
1

2

(

u2 + v2
)

.

Because

C ′ = uu′ + v v′ = uω v − v ω u = 0 .
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First Order System

Write as a first order system:

u′ = ω v , v′ = −ω u .

Conserved quantity:

C =
1

2

(

u2 + v2
)

.

Because

C ′ = uu′ + v v′ = uω v − v ω u = 0 .

Note that C is a constant multiple of the energy E.
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Discretize

un+1 − 2un + un−1

∆t2
+ ω2 un = 0

∆t > 0, tn = n∆t, −∞ < n <∞,

Given u(0) and u′(0) set u0 = u(0) and u1 = u(0) + ∆t u′(0) and then

un+1 = (2− (ω∆t)2)un − un−1, n ≥ 1 .
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Conserved Quantity

Proposed discrete conserved quantity:

Cn = (un)2 +

(

un+1 − un−1

2ω∆t

)2

.
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Conserved Quantity

Proposed discrete conserved quantity:

Cn = (un)2 +

(

un+1 − un−1

2ω∆t

)2

.

Nope, but this is conserved:

Cn =

(

1−

(

ω∆t

2

)2
)

(un)2 +

(

un+1 − un−1

2ω∆t

)2

.
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Conserved Quantity

Proposed discrete conserved quantity:

Cn = (un)2 +

(

un+1 − un−1

2ω∆t

)2

.

Nope, but this is conserved:

Cn =

(

1−

(

ω∆t

2

)2
)

(un)2 +

(

un+1 − un−1

2ω∆t

)2

.

Stability for ∆t < 2/ω!! Accuracy for ∆t < 2π
5 /ω ??
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Figure 1: ω = 1 and ∆t = 1.9, 3/2, 1, 1/2, 1/10
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Staggered Time

Primary grid: tn = n∆t . Dual grid: tn+1/2 = (n+ 1/2)∆t.
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Staggered Time

Primary grid: tn = n∆t . Dual grid: tn+1/2 = (n+ 1/2)∆t.

The leap-frog discretization:

un+1 − un

∆t
= ω vn+1/2 ,

vn+1/2 − vn−1/2

∆t
= −ω un ,

u0 = u(0) , v1/2 = u′(0)/ω .

Given u0 and v1/2 update using

un+1 = un +∆t ω vn+1/2 , vn+3/2 = vn+1/2 −∆t ω un+1 .

Same as the discretization of the second order equation.
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Conserved Quantities

Cn =
1

2

(

(

1− α2
)

(un)2 +

(

vn+1/2 + vn−1/2)

2

)2
)

;
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Conserved Quantities

Cn =
1

2

(

(

1− α2
)

(un)2 +

(

vn+1/2 + vn−1/2)

2

)2
)

;

Cn+1/2 =
1

2

(

(

un+1 + un

2

)2

+
(

1− α2
)

(vn+1/2)2

)

.
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Conserved Quantities

Cn =
1

2

(

(

1− α2
)

(un)2 +

(

vn+1/2 + vn−1/2)

2

)2
)

;

Cn+1/2 =
1

2

(

(

un+1 + un

2

)2

+
(

1− α2
)

(vn+1/2)2

)

.

• stable for α = ω∆t/2 < 1

• explicit

• second order accurate
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Systems of ODEs

Consider the system of ODEs

f ′ = Ag , g′ = −A∗ f ,

where f = f(t) ∈ X and g = g(t) ∈ Y .
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Systems of ODEs

Consider the system of ODEs

f ′ = Ag , g′ = −A∗ f ,

where f = f(t) ∈ X and g = g(t) ∈ Y .

Here X and Y are linear spaces with inner product 〈f, g〉 and norm

||f ||2 = 〈f, f〉. Also A is a linear map from X to Y and A∗ is the adjoint

of A: X
A
→ Y ; Y

A∗

→ X .

If f ∈ X and g ∈ Y then 〈Af, g〉 = 〈f, A∗ g〉 .

Conserved quanitity:

C(t) =
1

2

(

||f(t)||2 + ||g(t)||2
)
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Discretization

Leapfrog discretization:

fn+1 − fn

∆t
= Agn+1/2 ,

gn+1/2 − gn−1/2

∆t
= −A∗ fn
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Discretization

Leapfrog discretization:

fn+1 − fn

∆t
= Agn+1/2 ,

gn+1/2 − gn−1/2

∆t
= −A∗ fn

Conserved quantity:

Cn = ||fn||2 −
∆t2

4
||A∗ fn||2 +

∣

∣

∣

∣

∣

∣

∣

∣

gn+1/2 + gn−1/2

2

∣

∣

∣

∣

∣

∣

∣

∣

2
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= −A∗ fn

Conserved quantity:

Cn = ||fn||2 −
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∣

∣

∣
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∣

∣

∣

∣

∣

∣

∣
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Stability:

||Cn|| ≥

(

1−
∆t2

4
||A∗||2

)
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∣
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∣

∣
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∣
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1D-Wave

The 1D wave equation is

utt = c2 uxx ,

Where c > 0 and u = u(t, x) is a smooth real valued function of the real

variables x and t such that u(t,±∞) = 0. Also ut = ∂u/∂t,

ux = ∂u/∂x, utt = ∂2u/∂t2, and uxx = ∂2u/∂x2.

The initial conditions for this equation are u(0, x) and ut(0, x).
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1D-Wave

The 1D wave equation is

utt = c2 uxx ,

Where c > 0 and u = u(t, x) is a smooth real valued function of the real

variables x and t such that u(t,±∞) = 0. Also ut = ∂u/∂t,

ux = ∂u/∂x, utt = ∂2u/∂t2, and uxx = ∂2u/∂x2.

The initial conditions for this equation are u(0, x) and ut(0, x).

First order system:

ut = c vx , vt = c ux .
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Energy 1D-Wave

The inner product and norm are

〈f, g〉 =

∫ ∞

−∞

f(x) g(x) dx , ||f ||
2
= 〈f, f〉 .

If f(±∞) = 0 and g(±∞) = 0 then integration by parts gives

〈f ′, g〉 = 〈f,−g′〉, so

∂

∂x

∗

= −
∂

∂x
.

So the wave equation has the same form as the equations in the

previous sections.
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Energy 1D-Wave

The inner product and norm are

〈f, g〉 =

∫ ∞

−∞

f(x) g(x) dx , ||f ||
2
= 〈f, f〉 .

If f(±∞) = 0 and g(±∞) = 0 then integration by parts gives

〈f ′, g〉 = 〈f,−g′〉, so

∂

∂x

∗

= −
∂

∂x
.

So the wave equation has the same form as the equations in the

previous sections.

Energy and conserved quantity:

E =
1

2

(

〈ut , ut〉+ c2 〈ux , ux〉
)

, C =
1

2
(〈u, u〉+ 〈v, v〉)
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Space-Time Staggered Grid
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✈
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✈
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✈
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Discrete Wave Equation

Primary and dual grid points:

(tn, xi) = (n△t, i△x) ,
(

tn+1/2, xi+1/2

)

=((n+ 1/2)△t, (i+ 1/2)△x) ,
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Discrete Wave Equation

Primary and dual grid points:

(tn, xi) = (n△t, i△x) ,
(

tn+1/2, xi+1/2

)

=((n+ 1/2)△t, (i+ 1/2)△x) ,

The discretized first order system

un+1
i − un

i

△t
= c

v
n+1/2
i+1/2 − v

n+1/2
i−1/2

△x

v
n+1/2
i+1/2 − v

n−1/2
i+1/2

△t
= c

un
i+1 − un

i

△x
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Conserved Quantity

A conserved quantity is:

C(n) = ||un||2 −

(

c△t

2△x

)2

||δun||2 +

∣

∣

∣

∣

∣

∣

∣

∣

vn+1/2 + vn−1/2

2

∣

∣

∣

∣

∣

∣

∣

∣

2

.
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Conserved Quantity

A conserved quantity is:

C(n) = ||un||2 −

(

c△t

2△x

)2

||δun||2 +

∣

∣

∣

∣

∣

∣

∣

∣

vn+1/2 + vn−1/2

2

∣

∣

∣

∣

∣

∣

∣

∣

2

.

The difference operators:

δ(u)i+1/2 = ui+1 − ui , δ(v)i = vi+1/2 − vi−1/2 .
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Conserved Quantity

A conserved quantity is:

C(n) = ||un||2 −

(

c△t

2△x

)2

||δun||2 +

∣

∣

∣

∣

∣

∣

∣

∣

vn+1/2 + vn−1/2

2

∣

∣

∣

∣

∣

∣

∣

∣

2

.

The difference operators:

δ(u)i+1/2 = ui+1 − ui , δ(v)i = vi+1/2 − vi−1/2 .

Because ||δ|| = 2 the conserved quantity will be positive if

c
△t

△x
< 1 ,

which is the Courant-Friedrics-Lewy condition for stability.
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3 Dimensions

Continuum exact sequence:

0
HP

~∇
−−−−→ 1

HC

~∇×
−−−−→ 2

HS

~∇·
−−−−→ 3

HV

a





y
A





y

x




B

x




b

HV

3

~∇·
←−−−− HS

2

~∇×
←−−−− HC

1

~∇
←−−−− HP

0
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3 Dimensions

Continuum exact sequence:

0
HP

~∇
−−−−→ 1

HC

~∇×
−−−−→ 2

HS

~∇·
−−−−→ 3

HV

a





y
A





y

x




B

x




b

HV

3

~∇·
←−−−− HS

2

~∇×
←−−−− HC

1

~∇
←−−−− HP

0

Laplacian: ∆ =
1

a
~∇·A ~∇f

curl curl: A−1 ~∇×B
−1 ~∇×~v

useful: B ~∇ b−1 ~∇· ~w
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Units for Maxwell’s Equations

quantity units name

~B 1/d2 magnetic flux

~H 1/d magnetic field

µ 1/d permittivity

~D 1/d2 electric displacement

~E 1/d electric field

ǫ 1/d permeability tensor

~J 1/d2 current

~∇× 1/d curl operator

∂/∂t 1/t time derivative

– p. 24/36



Maxwell’s Equations

∂ ~B

∂t
+ ~∇× ~E = 0 ,

∂ ~D

∂t
− ~∇× ~H = ~J .
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~B = µ ~H , ~D = ǫ ~E .
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Maxwell’s Equations

∂ ~B

∂t
+ ~∇× ~E = 0 ,

∂ ~D

∂t
− ~∇× ~H = ~J .

~B = µ ~H , ~D = ǫ ~E .

〈~v1, ~v2〉ǫ =

∫

R3

ǫ~v1 · ~v2dx dy dz , 〈~v1, ~v2〉µ =

∫

R3

µ~v1 · ~v2 dx dy dz .
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Maxwell’s Equations

∂ ~B

∂t
+ ~∇× ~E = 0 ,

∂ ~D

∂t
− ~∇× ~H = ~J .

~B = µ ~H , ~D = ǫ ~E .

〈~v1, ~v2〉ǫ =

∫

R3

ǫ~v1 · ~v2dx dy dz , 〈~v1, ~v2〉µ =

∫

R3

µ~v1 · ~v2 dx dy dz .

Conserved quantity: C =
〈 ~E, ~E〉ǫ + 〈 ~H, ~H〉µ

2
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3d Staggered Grid

(i+1,j+1,k)

(i,j,k+1)

(i,j,k)

(i+1/2,j+1/2,k+3/2)

(i+1,j,k)

(i+1/2,j+3/2,k+3/2)

(i−1/2,j+1/2,k+3/2) (i−1/2,j+3/2,k+3/2)

(i+1/2,j+3/2,k+1/2)

(i,j+1,k)

Figure 2: The Primal and Dual Grids
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3D Discrete Functions

units primal dual units

1 si,j,k d⋆i,j,k 1/d3

ti+ 1

2
,j,k n⋆

i+ 1

2
,j,k

1/d ti,j+ 1

2
,k n⋆

i,j+ 1

2
,k

1/d2

ti,j,k+ 1

2

n⋆
i,j,k+ 1

2

ni,j+ 1

2
,k+ 1

2

t⋆
i,j+ 1

2
,k+ 1

2

1/d2 ni+ 1

2
,j,k+ 1

2

t⋆
i+ 1

2
,j,k+ 1

2

1/d

ni+ 1

2
,j+ 1

2
,k t⋆

i+ 1

2
,j+ 1

2
,k

1/d3 di+ 1

2
,j+ 1

2
,k+ 1

2

s⋆
i+ 1

2
,j+ 1

2
,k+ 1

2

1

units primal dual units
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Gradient and Star Gradient

(Gs)i+ 1

2
,j,k ≡

si+1,j,k − si,j,k
△x

;

(Gs)i,j+ 1

2
,k ≡

si,j+1,k − si,j,k
△y

;

(Gs)i,j,k+ 1

2

≡
si,j,k+1 − si,j,k

△z
.

(G⋆s⋆)i,j+ 1

2
,k+ 1

2

≡
s⋆
i+ 1

2
,j+ 1

2
,k+ 1

2

− s⋆
i− 1

2
,j+ 1

2
,k+ 1

2

∆x
;

(G⋆s⋆)i+ 1

2
,j,k+ 1

2

≡
s⋆
i+ 1

2
,j+ 1

2
,k+ 1

2

− s⋆
i+ 1

2
,j− 1

2
,k+ 1

2

∆x
;

(G⋆s⋆)i+ 1

2
,j+ 1

2
,k ≡

s⋆
i+ 1

2
,j+ 1

2
,k+ 1

2

− s⋆
i+ 1

2
,j+ 1

2
,k− 1

2

∆x
;
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Exact Sequence 3D

SN
G

−−−−→ VE
R

−−−−→ VF
D

−−−−→ SC

a





y
A





y
B

x




b

x





SC⋆
D⋆

←−−−− VF⋆
R⋆

←−−−− VE⋆
G⋆

←−−−− SN⋆
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Exact Sequence 3D

SN
G

−−−−→ VE
R

−−−−→ VF
D

−−−−→ SC

a





y
A





y
B

x




b

x





SC⋆
D⋆

←−−−− VF⋆
R⋆

←−−−− VE⋆
G⋆

←−−−− SN⋆

Gc ≡ 0 , RG ≡ 0 , DR ≡ 0 , G⋆c ≡ 0 , R⋆G⋆ ≡ 0 , D⋆R⋆ ≡ 0 .
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Adjoint Operators

〈s1, s2〉N =
∑

i,j,k

ai,j,k s1i,j,k s2i,j,k△x△y△z .

〈s1⋆, s2⋆〉N⋆ =
∑

i,j,k

bi+ 1

2
,j+ 1

2
,k+ 1

2

s1⋆i+ 1

2
,j+ 1

2
,k+ 1

2

s2⋆i+ 1

2
,j+ 1

2
,k+ 1

2

△x△y△z .
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Adjoint Operators

〈s1, s2〉N =
∑

i,j,k

ai,j,k s1i,j,k s2i,j,k△x△y△z .

〈s1⋆, s2⋆〉N⋆ =
∑

i,j,k

bi+ 1

2
,j+ 1

2
,k+ 1

2

s1⋆i+ 1

2
,j+ 1

2
,k+ 1

2

s2⋆i+ 1

2
,j+ 1

2
,k+ 1

2

△x△y△z .

〈AG s, ~n⋆〉F⋆ = −〈s,
1

a
D⋆ ~n⋆〉N

〈B−1R~t,~t⋆〉E⋆ = +〈~t ,A−1R⋆~t⋆〉E

〈b−1D~n, s⋆〉N⋆ = −〈~n ,BG⋆~s⋆〉F
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Discrete Maxwell’s Equations

This is the Yee discretization (1966) that has has become the FDTD

method!!

~En+1 − ~En

△t
= ǫ−1R⋆ ~Hn+ 1

2 ,
~Hn+ 1

2 − ~Hn− 1

2

△t
= −µ−1R ~En .
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Discrete Maxwell’s Equations

This is the Yee discretization (1966) that has has become the FDTD

method!!

~En+1 − ~En

△t
= ǫ−1R⋆ ~Hn+ 1

2 ,
~Hn+ 1

2 − ~Hn− 1

2

△t
= −µ−1R ~En .

Note that D⋆ ~En is constant.

Conserved quantity:

Cn+1/2 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

~En+1 + ~En

2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

E

+
∣

∣

∣

∣

∣

∣

~Hn+1/2
∣

∣

∣

∣

∣

∣

2

E⋆
−

∆t2

4

∣

∣

∣

∣

∣

∣ǫ−1R⋆ ~Hn+1/2
∣

∣

∣

∣

∣

∣

2

E
.
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Discrete Maxwell’s Equations

This is the Yee discretization (1966) that has has become the FDTD

method!!

~En+1 − ~En

△t
= ǫ−1R⋆ ~Hn+ 1

2 ,
~Hn+ 1

2 − ~Hn− 1

2

△t
= −µ−1R ~En .

Note that D⋆ ~En is constant.

Conserved quantity:

Cn+1/2 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

~En+1 + ~En

2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

E

+
∣

∣

∣

∣

∣

∣

~Hn+1/2
∣

∣

∣

∣

∣

∣

2

E⋆
−

∆t2

4

∣

∣

∣

∣

∣

∣ǫ−1R⋆ ~Hn+1/2
∣

∣

∣

∣

∣

∣

2

E
.

Big success!!!
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Positive Solutions

Solutions of the transport and diffusion equations should be positive

because they are things like density ρ(x, t) ≥ 0.
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Positive Solutions

Solutions of the transport and diffusion equations should be positive

because they are things like density ρ(x, t) ≥ 0.

Conservation does not use a quadratic form but is given by the total

amount of material so

∫ ∞

−∞

ρ(x, t) dx = constant.
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Transport

Assume v = v(x) is a given velocity and then

∂ρ

∂t
+

∂ v ρ

∂x
= 0 ,

is the transport equation.
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Transport

Assume v = v(x) is a given velocity and then

∂ρ

∂t
+

∂ v ρ

∂x
= 0 ,

is the transport equation.

Units dictate that we use a cell centered discretization as is done in

finite volumes:

ρ
n+3/2

i+ 1

2

− ρ
n+ 1

2

i+ 1

2

∆t
+

vi+1 ρ
n+ 1

2

i+ 1

2

− vi ρ
n+ 1

2

i− 1

2

∆x
= 0 .
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Upwind

if vi ≥ 0 then ρ
n+3/2

i− 1

2

= ρ
n+3/2

i− 1

2

− vi
∆t

∆x
ρ
n+ 1

2

i− 1

2

;

ρ
n+3/2

i+ 1

2

= ρ
n+3/2

i+ 1

2

+ vi
∆t

∆x
ρ
n+ 1

2

i− 1

2

;

if vi ≤ 0 then ρ
n+3/2

i− 1

2

= ρ
n+3/2

i− 1

2

− vi
∆t

∆x
ρ
n+ 1

2

i+ 1

2

;

ρ
n+3/2

i+ 1

2

= ρ
n+3/2

i+ 1

2

+ vi
∆t

∆x
ρ
n+ 1

2

i+ 1

2

.
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Upwind

if vi ≥ 0 then ρ
n+3/2

i− 1

2

= ρ
n+3/2

i− 1

2

− vi
∆t

∆x
ρ
n+ 1

2

i− 1

2

;

ρ
n+3/2

i+ 1

2

= ρ
n+3/2

i+ 1

2

+ vi
∆t

∆x
ρ
n+ 1

2

i− 1

2

;

if vi ≤ 0 then ρ
n+3/2

i− 1

2

= ρ
n+3/2

i− 1

2

− vi
∆t

∆x
ρ
n+ 1

2

i+ 1

2

;

ρ
n+3/2

i+ 1

2

= ρ
n+3/2

i+ 1

2

+ vi
∆t

∆x
ρ
n+ 1

2

i+ 1

2

.

If V = max(|vi|) then to keep ρ ≥ 0 it must be that V ∆t
∆x ≤ 1 .
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Upwind

if vi ≥ 0 then ρ
n+3/2

i− 1

2

= ρ
n+3/2

i− 1

2

− vi
∆t

∆x
ρ
n+ 1

2

i− 1

2

;

ρ
n+3/2

i+ 1

2

= ρ
n+3/2

i+ 1

2

+ vi
∆t

∆x
ρ
n+ 1

2

i− 1

2

;

if vi ≤ 0 then ρ
n+3/2

i− 1

2

= ρ
n+3/2

i− 1

2

− vi
∆t

∆x
ρ
n+ 1

2

i+ 1

2

;

ρ
n+3/2

i+ 1

2

= ρ
n+3/2

i+ 1

2

+ vi
∆t

∆x
ρ
n+ 1

2

i+ 1

2

.

If V = max(|vi|) then to keep ρ ≥ 0 it must be that V ∆t
∆x ≤ 1 .

So all is OK!! This solution is very diffusive:(

– p. 34/36



Diffusion

∂ρ

∂t
=

∂

∂x
D

∂ρ

∂x
,
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Diffusion

∂ρ

∂t
=

∂

∂x
D

∂ρ

∂x
,

Forward time centered space finite difference discretization:

ρ
n+ 1

2

i+ 1

2

− ρ
n− 1

2

i+ 1

2

∆t
=

1

∆x



Di+1

ρ
n− 1

2

i+ 3

2

− ρ
n− 1

2

i+ 1

2

∆x
−Di

ρ
n− 1

2

i+ 1

2

− ρ
n− 1

2

i− 1

2

∆x




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Diffusion

∂ρ

∂t
=

∂

∂x
D

∂ρ

∂x
,

Forward time centered space finite difference discretization:

ρ
n+ 1

2

i+ 1

2

− ρ
n− 1

2

i+ 1

2

∆t
=

1

∆x



Di+1

ρ
n− 1

2

i+ 3

2

− ρ
n− 1

2

i+ 1

2

∆x
−Di

ρ
n− 1

2

i+ 1

2

− ρ
n− 1

2

i− 1

2

∆x





This algorithm will preserve positive solutions for

(Di+1 +Di)
∆t

∆x2
≤ 1 ,

which is the standard stability constraint for this discretization.
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Good, Bad and Ugly

Discretizations are second order accurate, stable and explicit.
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Good, Bad and Ugly

Discretizations are second order accurate, stable and explicit.

Conserved quantities converge to the continuum energy.

For Maxwell’s, divergence of ~B and ~D are constant is trivial.

I studied rectangualr grids. Will work for logically rectangular grids!

Higher order is not difficult.

There are papers on mimetic methods for general grids.

Finite elements using differential geometery are strong competitors.

Search for “arXiv Stanly Steinberg” (arXiv:1605.08762v2 [math.NA].)

Email me for codes for rectangular grids.
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