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Introduction

Make the discreate differential operators mimic the important
properties of the continuum operators.

Must work for anisotropic material properties.
|dentities for second order differential operators play a critical role.
Adjoint operators play a critical role.

Showing that energy is conserved requires the use of adjoint
operators.

K.S. Yee, 1966 and A.A. Samarski, 1977
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Non Mimetic Finite Differences

Let f = f(x) be a smooth function, Az > 0 and then define f; = f(x;).
The second-order accurate cental finite difference approximation of the
first derivative is

_ Jit1 — fi—a
2 Az '

Cfi
Now if f; =cthen C f = 0.
However if C f = 0 then f; = a + b (—1)"!

This is NOT mimetic. Multidimensional analogs cause problems like far
field oscillations for finite differences and hourglass modes for finite
elements.
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Mimetic

Identities: V-Vx =0; VxV =0;

Existence of Local Potentials
Vf=0 = f= constant
UxT=0 = v = ﬁf

Vi=0 — v=VXxu

—

V ,Vx , V-is and exact sequence of operators.
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Adjoint Operators

Product Rule:

O:/OO i(fg)d:z::/oo d—];gdx+/_o:0fd—gdx
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Adjoint Operators

oo dx o dx dx
o df dg d” d

Very important: V* = —-V.; Vx = Vx
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Adjoint Operators

Very important:  V* = —-V.; Vx = Vx

O** = O . Does this require that the dual of a dual grid be the grid?

°
—p. 5/36



Fix The First Derivative

Define the left and right differences:

fz' — fz'—l

_ Jir1— i
Az R i = '

Lfi= Az
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Fix The First Derivative

Define the left and right differences:

Ji — Ji—1

_ i — fi
Az '

Az

Lfi= R,

Now L f =0and R f = 0 imply f is constant.
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Fix The First Derivative

Define the left and right differences:

Ji — Ji—1

_ i — fi
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L= Az

R f;
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Both L and R are second order accurate at z = (i + 1/2)Ax.



Fix The First Derivative

Define the left and right differences:

Ji — Ji—1

_ i — fi
Ax '

L= Az

R f;

Now L f =0and R f = 0 imply f is constant.
Both L and R are second order accurate at z = (i + 1/2)Ax.

fix1 =2 fi + fia

LRfi=RLf; = A

The adjoint L* = —R so —L R and —R L are positive operators.
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Material Properties

T - o
cpp%—tzv-KVT, Set W =KVT

=

" Cp p \V2 K \V, A% 1774
Units: d° d° d3 d1' d' da! @& d!

<T1,T2> Z/CppTlTQdV, <W1,W2> :/le ngV

oT oT S
(5 T) —/cppETdV—/(V-KVT) T dv

— /KﬁTﬁTdV = —(VT,VT)



Important

— —

ldentities: V-Vx =0: VxV

0;

%

f

0 — f = constant .
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Important

—

ldentities: V-Vx =0: VxV

Adjoints: 4" = — 4. V¥*=_V.; Vx =Vx.

Conservation of energy. Quadratic functions of the solution.

Conservation of mass. Linear functions of the solution. Mass > 0.

Explict time discretization and high order in space and time.

Accuracy? Groundwater modeling?

0; Vf=0 = f= constant.
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Harmonic Oscillator

Harmonic oscillator:

u' WP =0.

Here u = u(t) is a smooth function of time ¢t and v’ = du/dt,
v’ = d*u/dt* and w > 0 is a real constant.

The total energy or Hamiltonian is the sum of the kinetic and potential
energies:

This is conserved quantity because

/
E =44 +0%ud = (u"+w2u) W =0.



First Order System

Write as a first order system:

U =wv, UV =—-Wu.
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Conserved quantity:
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First Order System

Write as a first order system:

Conserved quantity:

DO | —

Because

/ /
C'=uv +vv =vuwv—vwu=0.
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First Order System

Write as a first order system:

Conserved quantity:

DO | —

Because

/ / /
C'"=uu +vv =uwv—vwu=20.

Note that C'is a constant multiple of the energy E.

° ° ° ° ° ° ° ° °
—p. 10/36



Discretize

un—l—l —2um + un—l

JANZ

+wur =0
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Discretize

un—l—l —2um + un—l
At?
At > 0,t" =nAt, —oo < n < o0,

+wur =0
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Discretize

un—l—l —2um + un—l
JAVE:
At > 0,t" =nAt, —oo < n < o0,

+w?u" =0

Given u(0) and «/(0) set u® = u(0) and u! = u(0) + At «/(0) and then

u" = (2 — (WA —u" T n > 1.

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
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Conserved Quantity

Proposed discrete conserved quantity:
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Conserved Quantity

Proposed discrete conserved quantity:

Nope, but this is conserved:

» wA\?\ ., yntl — n—1\
C—<1(2>>(u)+( 50 Al )
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Conserved Quantity

Proposed discrete conserved quantity:

0 =

|
=
N
o
+
N\
S
N
_|_
[y
|
S
N
o
N———
[\

Nope, but this is conserved:
. wA\?\ ., yntl — n—1\
C—<1(2>>(u)+( 50 Al )

Stability for A¢ < 2/w!! Accuracy for At < 2 /w ?7?

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
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Phase Plane

Figure1: w=1and At=1.9,3/2, 1, 1/2, 1/19

[ J
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Staggered Time

Primary grid: t» = nAt. Dual grid: t"T1/2 = (n + 1/2) At.

[ ]
—p. 14/36



Staggered Time

Primary grid: " = n At. Dual grid: t"T%/2 = (n +1/2) At.
The leap-frog discretization:

un—|—1 oy

AN

oy +1/2 _ o n—1/2

vn—|—1/2’ — —wu”

JAV

= W
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Staggered Time

Primary grid: t" = n At.

The leap-frog discretization:

un—|—1 oy

vn—|—1/2

= W

At . ’

Given «° and v'/2 update using

u

n+1

= u" + Atwo /2,

Dual grid: t"T1/2 = (n + 1/2) At.

oy +1/2 _ o n—1/2

JAV

= —WwW1u

n+1

[ ]
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Staggered Time

Primary grid: " = n At. Dual grid: t"T%/2 = (n +1/2) At.
The leap-frog discretization:

yntl — n Un—i—1/2 _ ,Un—1/2

_wvn+1/2 n

At . ’ AN ’

Given «° and v'/2 update using

W = u” + Atw o2 32 = 2 A u .

Same as the discretization of the second order equation.

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
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Conserved Quantities
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Conserved Quantities

i n+1/2 n—1/2)\ 2
on — 5 ((1 . C¥2) (un)Z 4 (U —;’U ) ’

1 w4\ 2
nt+1/2 _ * 1 — a2) (o*+1/2)2
C 5 (( 5 ) +(1—0a?) (v ) ) :




Conserved Quantities

i n+1/2 n—1/2)\ 2
Cn _ 5 ((1 o C¥2) (un)Q 4 (U —;’U ) 7

stable for a = w At/2 < 1
explicit

second order accurate

[ J
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Systems of ODEs

Consider the system of ODEs

ff=Ag, ¢ =-A"f,

where f = f(t) e X and g =g(t) € Y.
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Systems of ODEs

Consider the system of ODEs

fl=A4g, ¢=-4A"f,
where f = f(t) e X andg=g(t) € Y.

Here X and Y are linear spaces with inner product (f, g) and norm

I£11? = (f, ). Also A is a linear map from X to Y and A* is the adjoint
of X3y v&X.
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Systems of ODEs

Consider the system of ODEs

fl=A4g, ¢=-4A"f,
where f = f(t) e X andg=g(t) € Y.

Here X and Y are linear spaces with inner product (f, g) and norm
I£11? = (f, ). Also A is a linear map from X to Y and A* is the adjoint
of X3y v&X.

If fe Xandge Ythen(Af g) = (f,A"g).

Conserved quanitity:

c®) = 5 (IFOIF + g

° ° ° ° ° ° ° ° °
—p. 16/36
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Discretization

Leapfrog discretization:
fn—l—l _ fn iy i1/ gn—|—1/2 _ gn—1/2 " fn

At 9 ’ At

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
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Discretization

Leapfrog discretization:
fn—l—l _ fn ) i1/ gn—|—1/2 _ gn—1/2 _ fn

At 9 ’ At

Conserved quantity:

A2 :

4

gnt1/2 4 gn=1/2

cm =P - ;

HA*f”H2+|
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Discretization

Leapfrog discretization:
fn—l—l _ fn ) i1/ gn—|—1/2 _ gn—1/2 _ fn

At 9 ’ At

Conserved quantity:

A2 :

4

gnt1/2 4 gn=1/2

cm =P - ;

HA*f”H2+‘

Stability:

2

At?

n+1/2 | n—1/2
etz (1= S 1Al ) 1771 +

2

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
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1D-Wave

The 1D wave equation is

Utt = ¢’ Ugg
Where ¢ > 0 and u = u(t, x) is a smooth real valued function of the real
variables = and ¢ such that u(t, +o00) = 0. Also u; = 0u/0t,
Uy = Ou/0x, uyy = 0*u/0t?, and uy, = 0%u/0x>.
The initial conditions for this equation are (0, x) and u;(0, x).
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1D-Wave

The 1D wave equation is

2
Uit = C Ugy

Where ¢ > 0 and u = u(t, x) is a smooth real valued function of the real
variables = and ¢ such that u(t, +o00) = 0. Also u; = 0u/0t,

Uy = Ou/0x, uyy = 0*u/0t?, and uy, = 0%u/0x>.

The initial conditions for this equation are (0, x) and u;(0, x).

First order system:

Ut = CVgp, UV = ClUy.

[ J [ ) [ ) [ ) [ ) [ J [ ) [ J [ J
—p. 18/36



Energy 1D-Wave

The inner product and norm are

ra)= | T @@ dz, IR =)

If f(+o00) =0 and g(+o0) = 0 then integration by parts gives
(f',9) =(f,—g'), so

0" 0

dxr Oz
So the wave equation has the same form as the equations in the
previous sections.

[ J [ ) [ ) [ ) [ ) [ J [ ) [ J [ J
—p. 19/36



Energy 1D-Wave

The inner product and norm are

ra)= | T @@ dz, IR =)

If f(+o00) =0 and g(+o0) = 0 then integration by parts gives
(f',9) =(f,—g'), so

0" 0

dxr Oz
So the wave equation has the same form as the equations in the
previous sections.

Energy and conserved quantity:

1

b= —
2

((uey w) + ¢ (g, ug)) , C=

[ J
—p. 19/36



Space-Time Staggered Grid



Discrete Wave Equation

Primary and dual grid points:

(t", ;) = (n At 1 Ax)

(2, zig1y0) = (0 +1/2) At, (i +1/2) Az)



Discrete Wave Equation

Primary and dual grid points:
(tn7 xz) — (n At) 2 AZU) )

(772,21 1172) = ((n+1/2) At, (i +1/2) Az)

The discretized first order system

) n+1/2  nt1/2
up Tt — . Yit172 — Yic1/2

YAN 5 Ax

ntl/2  n—1/2
Vit1/2 ~ Yir/2 Ui — W

/\t Ax

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
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Conserved Quantity

A conserved quantity is:

P 1/2 4 gn—1/2 2

2

2
Cn) = " (55 ) 160"+




Conserved Quantity

A conserved quantity is:

c AL\’ -
0<n>=uu“\\2—( ) 162 +

The difference operators:

5(U)z‘+1/2 = Uiyl — U, O(V); = Vit1/2 — Vi—1/2 -

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
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Conserved Quantity

A conserved quantity is:

n c AL\’ -
C(n) = |Ju \\2—( ) l6u|2 +

The difference operators:

5(U)i+1/2 = Uiyl — U, O(V); = Vit1/2 — Vi—1/2 -

Because ||d|| = 2 the conserved quantity will be positive if

A <1
C—
Az ’

which is the Courant-Friedrics-Lewy condition for stability.



3 Dimensions

Continuum exact sequence:
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3 Dimensions

Continuum exact sequence:

. 1o
Laplacian: A = » V-AVf
curlcurl: A1V x B 1 Vx @
useful: BV b~ V.-

° ° ° ° ° ° ° ° °
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Units for Maxwell’s Equations

quantity | units | name

B 1/d?> | magnetic flux

H 1/d | magnetic field

L 1/d | permittivity

D 1/d? | electric displacement
E 1/d | electric field

€ 1/d | permeability tensor
J 1/d* | current

V% 1/d | curl operator

0/0t 1/t | time derivative

[ ]
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Maxwell’s Equations
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Maxwell’s Equations

— —

B - 5 D
0 +VXxE =0, 0

wufl

H, D=¢E.

=

[ ]
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Maxwell’s Equations

— —

B - = D
9 +VXxE =0, 0

H, D=¢E.

wufl

=

/eﬁl-ﬁgdazdydz, <7717772>u:/ WU - Ug dr dydz .
IRE: R3

7
c
—
e
\V)
~—
™M
|

° ° ° ° ° ° ° ° °
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Maxwell’s Equations

— —

— E = — _VxH=1J.
Py + V X 0, 5 V X J

H, D=c¢E.

el

=

<?71,?72>€:/ 6’171'?72d£€dyd2’, <?71,’l72>'u:/ ,uﬁ’lﬁ’gda:dydz
R3 R3

Conserved quantity: C' =

<Eaﬁ>€ =+ <FI7FI>M
2

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
—p. 25/36



3d Staggered Grid




3D Discrete Functions

units primal dual units
* 3
1 Si,5,k 0,7,k 1/d
*
Litd .k Titl ik
* 2
*
Ci g ot 1 N g k+i
*
Nigrim+d || G kel
2 *
L/d” | Mg ety IS WS ljd
n,,1 .,1 x
it3,Jt35:k it3,d+3,k
3 *
L/d” | dityivd ks it Lkl !
units primal dual units

[ ]
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Gradient and Star Gradient

)
2 Az
Sl?]+17k 'L,j,k
(gs)z,j—ké,k — Ay ,
:S7“7]7k+1 - S'L,j,k
) — §*
xg*x S’L‘i‘%,j—l—%,k—k% 7’_%7]_'_%7]{_'_%
(G7s )i>j+%>k+% _ Az ;
: — 8% )
x St lgd ikl T Sitl-ik+l
(G )73+2,3,k+l = Ar ;
) — 8T .
x > St lgtdk+d T Sitlg+dk-1

—p. 28/36



Exact Sequence 3D

Sy —— Ve — 25 Ve —2 5 5

I |

D* R* *
SC* G V]:* < Vg* L SN*



Exact Sequence 3D

SN‘L)Vg LV;LSC

I |

D* R* *
Ser 2 Ve 2 Voo 2 — Sars

Gc=0, RG=0, DR=0, G¢=0, RG'=0, DR*=0.

°
—p. 29/36



Adjoint Operators

(s1,82) nr Z Qi gk SLlij ke S2i ik DxAYyANz.
0,k

* * * *
(817, 8275+ = Z bitd 5+t htd SLivt i1l htd 5211 511 k4 d DTAYAZ.
0,5,k

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
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Adjoint Operators

(s1,82) nr Z Qi gk SLlij ke S2i ik DxAYyANz.

6,3,k
* * * *
(s1%, 82" p\rs = g Diyl 4l ksl SLi1 it L el 52Z+2,+2,k+1A33AyAz
0,3,k
1
—>% * =k
(AGs,M")F+ = —<s,aD ) A

(B™IRE ) ee = +(T, AR )¢

* =k

(b~ DR, s* )\ = — (7, BG*5*) =

[ ] [ ] [ ) [ ] [ ) [ ] [ ] [ J [ ]
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Discrete Maxwell’s Equations

This is the Yee discretization (1966) that has has become the FDTD
method!!

En+1 . En
YA

— 1
— ¢ 'R*H" 2,

[ ]
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Discrete Maxwell’s Equations

This is the Yee discretization (1966) that has has become the FDTD

method!!

I__jn—l—% _ ﬁn—%
AN

En+1 . En
YA

= ¢ 'R*H" =, =y 'RE".

Note that D* E™ is constant.

[ ]
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Discrete Maxwell’s Equations

This is the Yee discretization (1966) that has has become the FDTD
method!!

En+1 . En ) . N ﬁn—l—% . ﬁn—% .
— LRt 3 — —u 'RE™.
At € ’ At H
Note that D* E” is constant.
Conserved quantity:
grt o Bl > Af2 )
n + n - .
C — Hn—l—l/Q‘ il | RS Hn+1/2H
n+1/2 5 : + - 1 €

. .
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Discrete Maxwell’s Equations

This is the Yee discretization (1966) that has has become the FDTD
method!!

En+1 . En ) . N ﬁn—l—% . ﬁn—% .
— LRt 3 — —u 'RE™.
At € ’ At H
Note that D* E” is constant.
Conserved quantity:
grt o Bl > Af2 )
n + n - .
C — Hn—l—l/Q‘ il | RS Hn+1/2H
n+1/2 5 : + - 1 €

Big success!!!

. .

[ J
—p. 31/36



Positive Solutions

Solutions of the transport and diffusion equations should be positive
because they are things like density p(x,t) > 0.

° ° ° ° ° ° ° ° ° °
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Positive Solutions

Solutions of the transport and diffusion equations should be positive
because they are things like density p(x,t) > 0.

Conservation does not use a quadratic form but is given by the total
amount of material so

/ p(z,t) dx = constant.

— OO

[ J [ ) [ ) [ ) [ ) [ J [ ) [ J [ J
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Transport

Assume v = v(x) is a given velocity and then

dp Jdvp
8t+ or

0,

Is the transport equation.

° ° ° ° ° ° ° ° °
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Transport

Assume v = v(x) is a given velocity and then

dp Ovp
(9t+ or

0,

Is the transport equation.

Units dictate that we use a cell centered discretization as is done in
finite volumes:

n+3/2 n+2 - n+1 ‘ n+1
Pit1 i+1 +UZ+1pz’+% Vi P,

JAN Ax

1
2

= 0.
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Upwind

: JAV 1
if v; > 0 then p?—+§/2 = p;’jg/Q — UiA—x P?jg :
n+3/2 n+3/2 At g
i+3 vy TUIR AL
: At E
if v; <0 then p?:r;/Q = p?:r;/Q — ?J@'A—x P?:f ;
n+3/2 _ n+3/2 | Al nyl
i+ T Pip TR Pirg
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Upwind

: JAV 1
if v; > 0 then p:"Jrf/Q — ;f"_+13/2 — U — p?_Jrf :
P) 2 A$ 2
nt3/2 _ nt3/2 At gl
o Py A Py
_ nt+3/2 _ nt3/2 Al ngl
If v; < 0then P,_1 = i—1 () Ar PH% )
n+3/2  n+3/2 At nyl
1 1 + v; P, 1
1+ 3 +3 Ax " T3
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Upwind

: JAV 1
if v; > 0 then p?+l3/2 — p?_+13/2 — U — p?_Jrf :
2 2 AZC 2
nt3/2 _ n+3/2 v-ﬁ n+3
o Py A Py
_ n+3/2 _ n+3/2 Al ng i
If v; < 0then P,_1 = i—1 _UZA—ZCPH_% )
JAN; 1
n—|—13/2 n—|—13/2 4o 2t pn+12
i+ 3 +3 AN A

If V' = max(|v;|) then to keep p > 0 it must be that V 2L < 1.

So all is OKI!! This solution is very diffusive:(

[ J [ ) [ ) [ ) [ ) [ J [ ) [ J [ J
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Diffusion

dp 0 _ Op
ot Ox Ox’
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Diffusion

dp 0 _ Op
ot 8wD8x’

Forward time centered space finite difference discretization:

n—l—% n—% n—% n—% n—% n—%
Pixs —Pigd 1 . Piys — Pl o Piys —Pi1
At Ax ) Ax ‘ Ax
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Diffusion

dp 0 _ Op
ot 833D8:1:’

Forward time centered space finite difference discretization:

n—i—% n—% n—% n—% n—% . n—%
Pixs —Pigd 1 7 Piys — Pl - Pyt — P12
AN Az o Az ‘ Az

This algorithm will preserve positive solutions for

YA
D; D;) — <1,
( +1 T ) A2

which is the standard stability constraint for this discretization.
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Good, Bad and Ugly

Discretizations are second order accurate, stable and explicit.
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Good, Bad and Ugly

Discretizations are second order accurate, stable and explicit.
Conserved quantities converge to the continuum energy.

For Maxwell’s, divergence of B and D are constant is trivial.

| studied rectangualr grids. Will work for logically rectangular grids!
Higher order is not difficult.

There are papers on mimetic methods for general grids.

Finite elements using differential geometery are strong competitors.

Search for “arXiv Stanly Steinberg” (arXiv:1605.08762v2 [math.NA].)
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Good, Bad and Ugly

Discretizations are second order accurate, stable and explicit.
Conserved quantities converge to the continuum energy.

For Maxwell’s, divergence of B and D are constant is trivial.

| studied rectangualr grids. Will work for logically rectangular grids!
Higher order is not difficult.

There are papers on mimetic methods for general grids.

Finite elements using differential geometery are strong competitors.
Search for “arXiv Stanly Steinberg” (arXiv:1605.08762v2 [math.NA].)

Email me for codes for rectangular grids.
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