

Symmetry–Preserving Finite Element Methods: Preliminary Results

Francis Valiquette

Joint work with Alexander Bihlo (Memorial University)

BIRS

June 12, 2017

Statement of the Problem

Symmetry

Let G be a Lie group acting on $\mathbb{R}^{p+q} = \{(x, u)\}$:

Example: $G = SE(2, \mathbb{R})$ acts on \mathbb{R}^2 via

$$X = x \cos \theta - u \sin \theta + a$$

$$U = x \sin \theta + u \cos \theta + b$$

 $a, b, \theta \in \mathbb{R}$

Definition: G is a symmetry group of the differential equation

$$\Delta(x, u^{(n)}) = 0$$

if it maps solutions to solutions:

$$\Delta(g \cdot (x, u^{(n)})) = 0$$
 whenever $\Delta(x, u^{(n)}) = 0$

Symmetry

Let G be a Lie group acting on $\mathbb{R}^{p+q} = \{(x, u)\}$:

$$x = \text{independent variable(s)}$$

 $u = \text{dependent variables(s)}$

Example: $G=SE(2,\mathbb{R})$ acts on \mathbb{R}^2 via

$$X = x \cos \theta - u \sin \theta + a$$

$$U = x \sin \theta + u \cos \theta + b$$
 $a, b, \theta \in \mathbb{R}$

Definition: G is a symmetry group of the differential equation

$$\Delta(x, u^{(n)}) = 0$$

if it maps solutions to solutions

$$\Delta(g \cdot (x, u^{(n)})) = 0$$
 whenever $\Delta(x, u^{(n)}) = 0$

Symmetry

Let G be a Lie group acting on $\mathbb{R}^{p+q} = \{(x, u)\}$:

$$x = \text{ independent variable(s)}$$

 $u = \text{ dependent variables(s)}$

Example: $G = SE(2, \mathbb{R})$ acts on \mathbb{R}^2 via

$$X = x \cos \theta - u \sin \theta + a$$

$$U = x \sin \theta + u \cos \theta + b$$
 $a, b, \theta \in \mathbb{R}$

Definition: G is a symmetry group of the differential equation

$$\Delta(x, u^{(n)}) = 0$$

if it maps solutions to solutions:

$$\Delta(q \cdot (x, u^{(n)})) = 0$$
 whenever $\Delta(x, u^{(n)}) = 0$

Examples

•
$$\frac{\mathrm{d}u}{\mathrm{d}x} = \frac{u^3 + x^2u - x - u}{x^3 + xu^2 - x + u}$$
 is invariant under the rotation group

$$X = x \cos \theta - u \sin \theta$$
$$U = x \sin \theta + u \cos \theta$$

Burgers' equation

$$u_t + uu_x = \nu u_{xx}, \qquad \nu > 0$$

admits the (non-maximal) symmetry group

$$X = \lambda(x + vt) + a,$$
 $T = \lambda^2 t + b,$ $U = \lambda^{-1}(u + v),$

$$a, b, v \in \mathbb{R}, \ \lambda \in \mathbb{R}^+$$

Examples

• $\frac{\mathrm{d}u}{\mathrm{d}x} = \frac{u^3 + x^2u - x - u}{x^3 + xu^2 - x + u}$ is invariant under the rotation group

$$X = x \cos \theta - u \sin \theta$$
$$U = x \sin \theta + u \cos \theta$$

Burgers' equation

$$u_t + uu_x = \nu u_{xx}, \qquad \nu > 0$$

admits the (non-maximal) symmetry group

$$X = \lambda(x + vt) + a,$$
 $T = \lambda^2 t + b,$ $U = \lambda^{-1}(u + v),$

$$a, b, v \in \mathbb{R}, \lambda \in \mathbb{R}^+$$

Statement of the Problem

Given

$$\Delta(x, u^{(n)}) = 0$$

with symmetry group ${\it G}$, construct a numerical scheme that preserves ${\it G}$

Motivation

- Can apply symmetry group techniques to find exact solutions
- Can provide better numerical schemes: Particularly for solutions exhibiting
 - sharp variations
 - singularities

Statement of the Problem

Given

$$\Delta(x, u^{(n)}) = 0$$

with symmetry group ${\it G}$, construct a numerical scheme that preserves ${\it G}$

Motivation:

- Can apply symmetry group techniques to find exact solutions
- Can provide better numerical schemes: Particularly for solutions exhibiting
 - sharp variations
 - singularities

- Began with Dorodnitsyn in 1989
- Using Lie's infinitesimal approach, the focus was originally on the theoretical construction of symmetry-preserving schemes (Budd, Levi Winternitz, . . .)
 - Particularly fruitful for ODE
 - Mainly applied to time evolution PDE
- In 2001 Olver introduced the method of equivariant moving frames to construct finite difference symmetry-preserving schemes
- In recent years Bihlo, Nave et al. have focused on the numerical implementation:
 - evolution-projection techniques
 - equi-distribution principles

- Began with Dorodnitsyn in 1989
- Using Lie's infinitesimal approach, the focus was originally on the theoretical construction of symmetry-preserving schemes (Budd, Levi, Winternitz, . . .)
 - Particularly fruitful for ODE
 - Mainly applied to time evolution PDE
- In 2001 Olver introduced the method of equivariant moving frames to construct finite difference symmetry-preserving schemes
- In recent years Bihlo, Nave et al. have focused on the numerical implementation:
 - evolution-projection techniques
 - equi-distribution principles
 -

- Began with Dorodnitsyn in 1989
- Using Lie's infinitesimal approach, the focus was originally on the theoretical construction of symmetry-preserving schemes (Budd, Levi, Winternitz, . . .)
 - Particularly fruitful for ODE
 - Mainly applied to time evolution PDE
- In 2001 Olver introduced the method of equivariant moving frames to construct finite difference symmetry-preserving schemes
- In recent years Bihlo, Nave et al. have focused on the numerical implementation:
 - evolution-projection techniques
 - equi-distribution principles
 -

- Began with Dorodnitsyn in 1989
- Using Lie's infinitesimal approach, the focus was originally on the theoretical construction of symmetry-preserving schemes (Budd, Levi, Winternitz, . . .)
 - Particularly fruitful for ODE
 - Mainly applied to time evolution PDE
- In 2001 Olver introduced the method of equivariant moving frames to construct finite difference symmetry-preserving schemes
- In recent years Bihlo, Nave et al. have focused on the numerical implementation:
 - evolution-projection techniques
 - equi-distribution principles
 - . . .

Other numerical methods

- Finite element
- Finite volume
- Spectral method
- . . .

We now consider

symmetries and finite elements

Disclaime

- Preliminary investigation
- Comments/suggestions are welcome!

Other numerical methods

- Finite element
- Finite volume
- Spectral method
- . . .

We now consider

symmetries and finite elements

Disclaimer

- Preliminary investigation
- Comments/suggestions are welcome!

Other numerical methods

- Finite element
- Finite volume
- Spectral method
- . . .

We now consider

symmetries and finite elements

Disclaimer

- Preliminary investigation
- Comments/suggestions are welcome!

Finite Elements and Symmetries

Approximation

Subdivide \mathbb{R} :

$$x_{k-1}$$
 x_k x_{k+1} x_{k+2}

We consider the hat functions

$$\phi_k(x) = \begin{cases} 0 & x \in (-\infty, x_{k-1}) \\ \frac{x - x_{k-1}}{x_k - x_{k-1}} & x \in [x_{k-1}, x_k] \\ \frac{x_{k+1} - x}{x_{k+1} - x_k} & x \in (x_k, x_{k+1}] \\ 0 & x \in (x_{k+1}, \infty) \end{cases}$$

$$u(x) \approx u_h(x) = \sum_{i=1}^{\infty} u_i \phi_i(x) \qquad u_i = u(x_i)$$

Approximation

Subdivide \mathbb{R} :

$$\xrightarrow{x_{k-1}} \xrightarrow{x_k} \xrightarrow{x_{k+1}} \xrightarrow{x_{k+2}}$$

We consider the hat functions

$$\phi_k(x) = \begin{cases} 0 & x \in (-\infty, x_{k-1}) \\ \frac{x - x_{k-1}}{x_k - x_{k-1}} & x \in [x_{k-1}, x_k] \\ \frac{x_{k+1} - x}{x_{k+1} - x_k} & x \in (x_k, x_{k+1}] \\ 0 & x \in (x_{k+1}, \infty) \end{cases}$$

and approximate

$$u(x) \approx u_h(x) = \sum_{i=1}^{\infty} u_i \phi_i(x)$$
 $u_i = u(x_i)$

Preserving the Decomposition

Let G be a Lie group acting on $\mathbb{R}^2 = \{(x, u)\}$

$$X = g \cdot x$$
 $U = g \cdot u$

Acting on
$$u_h(x) = \sum_{i=-\infty}^{\infty} u_i \, \phi_i(x)$$
:

$$g \cdot u_h := \sum_{i=1}^{\infty} U_i (g \cdot \phi_i(x))$$
 $U_i = g \cdot u_i$

We require

$$g \cdot \phi_i(x) = \Phi_i(x) \quad \Rightarrow \quad \text{projectable action} \quad \Rightarrow \quad g \cdot x = X(x)$$

Preserving the Decomposition

Let G be a Lie group acting on $\mathbb{R}^2 = \{(x, u)\}$

$$X = g \cdot x$$
 $U = g \cdot u$

Acting on $u_h(x) = \sum_{i=1}^{\infty} u_i \, \phi_i(x)$:

$$g \cdot u_h := \sum_{i=-\infty}^{\infty} U_i (g \cdot \phi_i(x))$$
 $U_i = g \cdot u_i$

We require

$$g \cdot \phi_i(x) = \Phi_i(x) \quad \Rightarrow \quad \text{projectable action} \quad \Rightarrow \quad g \cdot x = X(x)$$

Preserving the Decomposition

Let G be a Lie group acting on $\mathbb{R}^2 = \{(x, u)\}$

$$X = g \cdot x$$
 $U = g \cdot u$

Acting on $u_h(x) = \sum_{i=1}^{n} u_i \phi_i(x)$:

$$g \cdot u_h := \sum_{i=1}^{\infty} U_i (g \cdot \phi_i(x))$$
 $U_i = g \cdot u_i$

We require

$$g \cdot \phi_i(x) = \Phi_i(x) \quad \Rightarrow \quad \text{projectable action} \quad \Rightarrow \quad g \cdot x = X(x)$$

$$SL(2,\mathbb{R})$$

There's a restriction on

$$g \cdot x = X(x)$$

Theorem (Lie): The largest Lie subgroup of $\mathcal{D}(\mathbb{R})$ is $SL(2,\mathbb{R})$:

$$X = g \cdot x = \frac{\alpha x + \beta}{\gamma x + \delta}$$
 $\alpha \delta - \beta \gamma = 1$

The hat function ϕ_k transform according to

$$\Phi_k = g \cdot \phi_k = \left(\frac{\gamma x_k + \delta}{\gamma x + \delta}\right) \phi_k$$

and its derivative

$$\Phi'_k = g \cdot \phi'_k = (\gamma x_k + \delta)[(\gamma x + \delta)\phi'_k(x) - \gamma \phi_k(x)]$$

There's a restriction on

$$g \cdot x = X(x)$$

Theorem (Lie): The largest Lie subgroup of $\mathcal{D}(\mathbb{R})$ is $SL(2,\mathbb{R})$:

$$X = g \cdot x = \frac{\alpha x + \beta}{\gamma x + \delta}$$
 $\alpha \delta - \beta \gamma = 1$

The hat function ϕ_k transform according to

$$\Phi_k = g \cdot \phi_k = \left(\frac{\gamma x_k + \delta}{\gamma x + \delta}\right) \phi_k$$

and its derivative

$$\Phi'_k = g \cdot \phi'_k = (\gamma x_k + \delta)[(\gamma x + \delta)\phi'_k(x) - \gamma \phi_k(x)]$$

$SL(2,\mathbb{R})$

There's a restriction on

$$g \cdot x = X(x)$$

Theorem (Lie): The largest Lie subgroup of $\mathcal{D}(\mathbb{R})$ is $SL(2,\mathbb{R})$:

$$X = g \cdot x = \frac{\alpha x + \beta}{\gamma x + \delta}$$
 $\alpha \delta - \beta \gamma = 1$

The hat function ϕ_k transform according to

$$\Phi_k = g \cdot \phi_k = \left(\frac{\gamma x_k + \delta}{\gamma x + \delta}\right) \phi_k$$

and its derivative

$$\Phi'_k = g \cdot \phi'_k = (\gamma x_k + \delta)[(\gamma x + \delta)\phi'_k(x) - \gamma \phi_k(x)]$$

Consider

$$u'(x) = A'(x) u + B'(x)e^{A(x)}$$

The solution is

$$u(x) = (B(x) + C)e^{A(x)}$$

The ODE admits the symmetry

$$X = x$$
 $U = u + \epsilon e^{A(x)}$ $\epsilon \in \mathbb{R}$

sending solutions to solutions

$$C \to C + \epsilon$$

$$\int_{-\infty}^{\infty} [u(x) e^{-A(x)} + B(x)] \phi'(x) dx = 0$$

Consider

$$u'(x) = A'(x) u + B'(x)e^{A(x)}$$

The solution is

$$u(x) = (B(x) + C)e^{A(x)}$$

The ODE admits the symmetry

$$X = x$$
 $U = u + \epsilon e^{A(x)}$ $\epsilon \in \mathbb{R}$

sending solutions to solutions

$$C \to C + \epsilon$$

$$\int_{-\infty}^{\infty} [u(x) e^{-A(x)} + B(x)] \phi'(x) dx = 0$$

Consider

$$u'(x) = A'(x) u + B'(x)e^{A(x)}$$

The solution is

$$u(x) = (B(x) + C)e^{A(x)}$$

The ODE admits the symmetry

$$X = x$$
 $U = u + \epsilon e^{A(x)}$ $\epsilon \in \mathbb{R}$

sending solutions to solutions

$$C \to C + \epsilon$$

$$\int_{-\infty}^{\infty} [u(x) e^{-A(x)} + B(x)] \phi'(x) dx = 0$$

Consider

$$u'(x) = A'(x) u + B'(x)e^{A(x)}$$

The solution is

$$u(x) = (B(x) + C)e^{A(x)}$$

The ODE admits the symmetry

$$X = x$$
 $U = u + \epsilon e^{A(x)}$ $\epsilon \in \mathbb{R}$

sending solutions to solutions:

$$C \to C + \epsilon$$

$$\int_{-\infty}^{\infty} [u(x) e^{-A(x)} + B(x)] \phi'(x) dx = 0$$

Consider

$$u'(x) = A'(x) u + B'(x)e^{A(x)}$$

The solution is

$$u(x) = (B(x) + C)e^{A(x)}$$

The ODE admits the symmetry

$$X = x$$
 $U = u + \epsilon e^{A(x)}$ $\epsilon \in \mathbb{R}$

sending solutions to solutions:

$$C \to C + \epsilon$$

$$\int_{-\infty}^{\infty} [u(x) e^{-A(x)} + B(x)] \phi'(x) dx = 0$$

The weak form

$$\int_{-\infty}^{\infty} [u(x) e^{-A(x)} + B(x)] \phi'(x) dx = 0$$

is invariant under

$$X = x$$
 $U = u + \epsilon e^{A(x)}$ $\epsilon \in \mathbb{R}$

Check

$$0 = \int_{-\infty}^{\infty} [U(X) e^{-A(X)} + B(X)] \phi'(X) dX$$

$$= \int_{-\infty}^{\infty} [u(x) e^{-A(x)} + B(x)] \phi'(x) dx + \epsilon \underbrace{\int_{-\infty}^{\infty} \phi'(x) dx}_{=0}$$

$$= \int_{-\infty}^{\infty} [u(x) e^{-A(x)} + B(x)] \phi'(x) dx$$

The weak form

$$\int_{-\infty}^{\infty} [u(x) e^{-A(x)} + B(x)] \phi'(x) dx = 0$$

is invariant under

$$X = x$$
 $U = u + \epsilon e^{A(x)}$ $\epsilon \in \mathbb{R}$

Check:

$$0 = \int_{-\infty}^{\infty} [U(X) e^{-A(X)} + B(X)] \phi'(X) dX$$
$$= \int_{-\infty}^{\infty} [u(x) e^{-A(x)} + B(x)] \phi'(x) dx + \epsilon \underbrace{\int_{-\infty}^{\infty} \phi'(x) dx}_{=0}$$
$$= \int_{-\infty}^{\infty} [u(x) e^{-A(x)} + B(x)] \phi'(x) dx$$

At the discrete level,

$$0 = \int_{-\infty}^{\infty} \left[\sum_{i=-\infty}^{\infty} u_i \phi_i e^{-A(x)} - B(x) \right] \phi_k' dx$$

the weak form is not invariant under

$$X = x$$
 $U_i = u_i + e^{A_i}$ $A_i = A(x_i)$

Indeed

$$0 = \int_{-\infty}^{\infty} \left[\sum_{i=-\infty}^{\infty} (u_i + \epsilon e^{A_i}) \phi_i e^{-A(x)} - B(x) \right] \phi_k' dx$$
$$= \int_{-\infty}^{\infty} \left[\sum_{i=-\infty}^{\infty} u_i \phi_i e^{-A(x)} - B(x) \right] \phi_k' dx + \epsilon \underbrace{\int_{-\infty}^{\infty} \sum_{i=-\infty}^{\infty} e^{A_i - A(x)} \phi_i \phi_k' dx}_{(0)}$$

At the discrete level,

$$0 = \int_{-\infty}^{\infty} \left[\sum_{i=-\infty}^{\infty} u_i \phi_i e^{-A(x)} - B(x) \right] \phi_k' dx$$

the weak form is not invariant under

$$X = x U_i = u_i + e^{A_i} A_i = A(x_i)$$

Indeed

$$0 = \int_{-\infty}^{\infty} \left[\sum_{i=-\infty}^{\infty} (u_i + \epsilon e^{A_i}) \phi_i e^{-A(x)} - B(x) \right] \phi_k' dx$$
$$= \int_{-\infty}^{\infty} \left[\sum_{i=-\infty}^{\infty} u_i \phi_i e^{-A(x)} - B(x) \right] \phi_k' dx + \epsilon \underbrace{\int_{-\infty}^{\infty} \sum_{i=-\infty}^{\infty} e^{A_i - A(x)} \phi_i \phi_k' dx}_{(0)}$$

Moving Frames

Given a non-invariant discrete weak form, we derive an invariant version using moving frames

Definition: Let G be a Lie group acting on a space M parametrized by z. A (right) moving frame is a map

$$\rho \colon M \to G$$

satisfying the G-equivariance

$$\rho(g \cdot z) = \rho(z) g^{-1}$$

- \bullet A moving frame is constructed by choosing cross-section $\mathcal{K} \subset M$ to the group orbits
- At $z \in M$, $\rho(z) \in G$ is the unique group element sending z onto \mathcal{K} :

$$\rho(z) \cdot z \in \mathcal{K}$$

Requires the action to be free and regular

Moving Frames

Given a non-invariant discrete weak form, we derive an invariant version using moving frames

Definition: Let G be a Lie group acting on a space M parametrized by z. A (right) moving frame is a map

$$\rho \colon M \to G$$

satisfying the G-equivariance

$$\rho(g \cdot z) = \rho(z) g^{-1}$$

- \bullet A moving frame is constructed by choosing cross-section $\mathcal{K} \subset M$ to the group orbits
- At $z \in M$, $\rho(z) \in G$ is the unique group element sending z onto \mathcal{K} :

$$\rho(z) \cdot z \in \mathcal{K}$$

Requires the action to be free and regular

Moving Frames

Given a non-invariant discrete weak form, we derive an invariant version using moving frames

Definition: Let G be a Lie group acting on a space M parametrized by z. A (right) moving frame is a map

$$\rho \colon M \to G$$

satisfying the G-equivariance

$$\rho(g \cdot z) = \rho(z) g^{-1}$$

- \bullet A moving frame is constructed by choosing cross-section $\mathcal{K} \subset M$ to the group orbits
- At $z \in M$, $\rho(z) \in G$ is the unique group element sending z onto \mathcal{K} :

$$\rho(z) \cdot z \in \mathcal{K}$$

Requires the action to be free and regular

Moving Frames

Given a non-invariant discrete weak form, we derive an invariant version using moving frames

Definition: Let G be a Lie group acting on a space M parametrized by z. A (right) moving frame is a map

$$\rho \colon M \to G$$

satisfying the G-equivariance

$$\rho(g \cdot z) = \rho(z) g^{-1}$$

- \bullet A moving frame is constructed by choosing cross-section $\mathcal{K} \subset M$ to the group orbits
- At $z \in M$, $\rho(z) \in G$ is the unique group element sending z onto \mathcal{K} :

$$\rho(z) \cdot z \in \mathcal{K}$$

Requires the action to be free and regular

Invariantization

Definition: Let $\rho(z)$ be a moving frame. The invariantization of a function $F\colon M\to\mathbb{R}$ is the invariant

$$\iota(F)(z) = F(\rho(z) \cdot z)$$

Check

$$\iota(F)(g \cdot z) = F(\rho(g \cdot z) \cdot g \cdot z)$$
$$= F(\rho(z) \cdot g^{-1} \cdot g \cdot z) = F(\rho(z) \cdot z) = \iota(F)(z)$$

Also possible to invariantize

- differential forms
- differential operators
- functionals, . . .

Invariantization

Definition: Let $\rho(z)$ be a moving frame. The invariantization of a function $F\colon M\to\mathbb{R}$ is the invariant

$$\iota(F)(z) = F(\rho(z) \cdot z)$$

Check:

$$\iota(F)(g \cdot z) = F(\rho(g \cdot z) \cdot g \cdot z)$$
$$= F(\rho(z) \cdot g^{-1} \cdot g \cdot z) = F(\rho(z) \cdot z) = \iota(F)(z)$$

Also possible to invariantize

- differential forms
- differential operators
- functionals, . . .

Invariantization

Definition: Let $\rho(z)$ be a moving frame. The invariantization of a function $F\colon M\to\mathbb{R}$ is the invariant

$$\iota(F)(z) = F(\rho(z) \cdot z)$$

Check:

$$\iota(F)(g \cdot z) = F(\rho(g \cdot z) \cdot g \cdot z)$$
$$= F(\rho(z) \cdot g^{-1} \cdot g \cdot z) = F(\rho(z) \cdot z) = \iota(F)(z)$$

Also possible to invariantize

- differential forms
- differential operators
- functionals, . . .

Returning to the group action

$$X = x_i$$
 $U_i = u_i + \epsilon e^{A_i}$ $i \in \mathbb{Z}$

we choose the cross-section

$$\mathcal{K} = \{u_k = 0\}$$

Solving the normalization equation

$$0 = U_k = u_k + \epsilon e^{A_k} \qquad \Rightarrow \qquad \epsilon = -u_k e^{-A_k}$$

Invariantizing $0 = \int_{-\infty}^{\infty} \left[\sum_{i=0}^{\infty} u_i \phi_i e^{-A(x)} - B(x) \right] \phi_k' dx$:

$$0 = \int_{-\infty}^{\infty} \left[\sum_{i=-\infty}^{\infty} (u_i + \epsilon e^{A_i}) \phi_i e^{-A(x)} - B(x) \right] \phi_k' \, \mathrm{d}x \Big|_{\epsilon = -u_k e^{-A_k}}$$
$$= \int_{-\infty}^{\infty} \left[\sum_{i=-\infty}^{\infty} (u_i - u_k e^{A_i - A_k}) \phi_i e^{-A(x)} - B(x) \right] \phi_k' \, \mathrm{d}x$$

Returning to the group action

$$X = x_i$$
 $U_i = u_i + \epsilon e^{A_i}$ $i \in \mathbb{Z}$

we choose the cross-section

$$\mathcal{K} = \{u_k = 0\}$$

Solving the normalization equation

$$0 = U_k = u_k + \epsilon e^{A_k} \qquad \Rightarrow \qquad \epsilon = -u_k e^{-A_k}$$

Invariantizing $0 = \int_{-\infty}^{\infty} \left[\sum_{i=0}^{\infty} u_i \phi_i e^{-A(x)} - B(x) \right] \phi_k' dx$:

$$0 = \int_{-\infty}^{\infty} \left[\sum_{i=-\infty}^{\infty} (u_i + \epsilon e^{A_i}) \phi_i e^{-A(x)} - B(x) \right] \phi_k' \, \mathrm{d}x \Big|_{\epsilon = -u_k e^{-A_k}}$$
$$= \int_{-\infty}^{\infty} \left[\sum_{i=-\infty}^{\infty} (u_i - u_k e^{A_i - A_k}) \phi_i e^{-A(x)} - B(x) \right] \phi_k' \, \mathrm{d}x$$

Returning to the group action

$$X = x_i$$
 $U_i = u_i + \epsilon e^{A_i}$ $i \in \mathbb{Z}$

we choose the cross-section

$$\mathcal{K} = \{u_k = 0\}$$

Solving the normalization equation

$$0 = U_k = u_k + \epsilon e^{A_k} \qquad \Rightarrow \qquad \epsilon = -u_k e^{-A_k}$$

Invariantizing
$$0 = \int_{-\infty}^{\infty} \left[\sum_{i=0}^{\infty} u_i \phi_i e^{-A(x)} - B(x) \right] \phi_k' dx$$
:

$$0 = \int_{-\infty}^{\infty} \left[\sum_{i=-\infty}^{\infty} (u_i + \epsilon e^{A_i}) \phi_i e^{-A(x)} - B(x) \right] \phi_k' \, \mathrm{d}x \Big|_{\epsilon = -u_k e^{-A_k}}$$
$$= \int_{-\infty}^{\infty} \left[\sum_{i=-\infty}^{\infty} (u_i - u_k e^{A_i - A_k}) \phi_i e^{-A(x)} - B(x) \right] \phi_k' \, \mathrm{d}x$$

Returning to the group action

$$X = x_i$$
 $U_i = u_i + \epsilon e^{A_i}$ $i \in \mathbb{Z}$

we choose the cross-section

$$\mathcal{K} = \{u_k = 0\}$$

Solving the normalization equation

$$0 = U_k = u_k + \epsilon e^{A_k} \qquad \Rightarrow \qquad \epsilon = -u_k e^{-A_k}$$

Invariantizing
$$0 = \int_{-\infty}^{\infty} \left[\sum_{i=0}^{\infty} u_i \phi_i e^{-A(x)} - B(x) \right] \phi_k' dx$$
:

$$0 = \int_{-\infty}^{\infty} \left[\sum_{i=-\infty}^{\infty} (u_i + \epsilon e^{A_i}) \phi_i e^{-A(x)} - B(x) \right] \phi_k' \, \mathrm{d}x \Big|_{\epsilon = -u_k e^{-A_k}}$$
$$= \int_{-\infty}^{\infty} \left[\sum_{i=-\infty}^{\infty} (u_i - u_k e^{A_i - A_k}) \phi_i e^{-A(x)} - B(x) \right] \phi_k' \, \mathrm{d}x$$

Returning to the group action

$$X = x_i$$
 $U_i = u_i + \epsilon e^{A_i}$ $i \in \mathbb{Z}$

we choose the cross-section

$$\mathcal{K} = \{u_k = 0\}$$

Solving the normalization equation

$$0 = U_k = u_k + \epsilon e^{A_k} \qquad \Rightarrow \qquad \epsilon = -u_k e^{-A_k}$$

Invariantizing $0 = \int_{-\infty}^{\infty} \left[\sum_{i=-\infty}^{\infty} u_i \phi_i e^{-A(x)} - B(x) \right] \phi_k' \, \mathrm{d}x$:

$$0 = \int_{-\infty}^{\infty} \left[\sum_{i=-\infty}^{\infty} (u_i + \epsilon e^{A_i}) \phi_i e^{-A(x)} - B(x) \right] \phi_k' \, \mathrm{d}x \Big|_{\epsilon = -u_k e^{-A_k}}$$
$$= \int_{-\infty}^{\infty} \left[\sum_{i=-\infty}^{\infty} (u_i - u_k e^{A_i - A_k}) \phi_i e^{-A(x)} - B(x) \right] \phi_k' \, \mathrm{d}x$$

Introducing

$$a_k = \left[\int e^{-A(x)} dx \right]_{x=x_k} \qquad \langle f \rangle_{I_k} = \frac{1}{x_{k+1} - x_k} \int_{x_k}^{x_{k+1}} f(x) dx$$

the corresponding invariant scheme is

$$\frac{u_{k+1}e^{A_k} - i_k e^{A_{k+1}}}{x_{k+1} - x_k} (a_{k+1} - \langle a \rangle_{I_k}) - e^{A_k} \langle B \rangle_{I_k}$$

$$= \frac{u_k e^{A_{k-1}} - u_{k-1} e^{A_k}}{x_k - x_{k-1}} (a_{k-1} - \langle a \rangle_{I_{k-1}}) - e^{A_k} \langle B \rangle_{I_{k-1}}$$

Note: When B(x) = 0, the solution is

$$u_k = Ce^{A_k} = Ce^{A(x_k)}$$

Introducing

$$a_k = \left[\int e^{-A(x)} \, \mathrm{d}x \right]_{x=x} \qquad \langle f \rangle_{I_k} = \frac{1}{x_{k+1} - x_k} \int_{x_k}^{x_{k+1}} f(x) \, \mathrm{d}x$$

the corresponding invariant scheme is

$$\frac{u_{k+1}e^{A_k} - i_k e^{A_{k+1}}}{x_{k+1} - x_k} (a_{k+1} - \langle a \rangle_{I_k}) - e^{A_k} \langle B \rangle_{I_k}$$

$$= \frac{u_k e^{A_{k-1}} - u_{k-1} e^{A_k}}{x_k - x_{k-1}} (a_{k-1} - \langle a \rangle_{I_{k-1}}) - e^{A_k} \langle B \rangle_{I_{k-1}}$$

Note: When B(x) = 0, the solution is

$$u_k = Ce^{A_k} = Ce^{A(x_k)}$$

Final Remarks

The previous considerations extend to

- higher order ODE (Done several examples involving 2nd order ODE)
- evolutive PDE in 1+1 variables using the method of lines (Considered Burgers' equation – Requires an adaptive mesh to preserve the symmetries)

Still needs to be done

- Consider other basis functions
 - higher order Lagrangian polynomials
 - splines
- consider boundary terms
- consider non-projectable group actions
- extend to PDE in 2 or more spatial dimension
- run numerical tests

Comments and Suggestions are Welcome!!!

Final Remarks

The previous considerations extend to

- higher order ODE (Done several examples involving 2nd order ODE)
- evolutive PDE in 1+1 variables using the method of lines (Considered Burgers' equation – Requires an adaptive mesh to preserve the symmetries)

Still needs to be done

- Consider other basis functions
 - higher order Lagrangian polynomials
 - splines
- consider boundary terms
- consider non-projectable group actions
- extend to PDE in 2 or more spatial dimension
- run numerical tests

Comments and Suggestions are Welcome!!!

Final Remarks

The previous considerations extend to

- higher order ODE (Done several examples involving 2nd order ODE)
- evolutive PDE in 1+1 variables using the method of lines (Considered Burgers' equation – Requires an adaptive mesh to preserve the symmetries)

Still needs to be done

- Consider other basis functions
 - higher order Lagrangian polynomials
 - splines
- consider boundary terms
- consider non-projectable group actions
- extend to PDE in 2 or more spatial dimension
- run numerical tests

Comments and Suggestions are Welcome!!!