VY New ez L

Symmetry—Preserving Finite Element Methods:
Preliminary Results

Francis Valiquette

" New Paltz

STATE UNIVERSITY OF NEW YORK

Joint work with
Alexander Bihlo (Memorial University)

BIRS

June 12, 2017



Statement
of the
Problem



WY ez L
Symmetry

Let G be a Lie group acting on RPT? = {(z,u)}:
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Symmetry

Let G be a Lie group acting on RPT? = {(z,u)}:

x = independent variable(s)

u = dependent variables(s)
Example: G = SE(2,R) acts on R? via

X =xcosf —usinf + a

) a, b, 0 € R
U=xsinf +ucosf+5b

Definition: G is a symmetry group of the differential equation
Az, u™) =0
if it maps solutions to solutions:
Alg- (z,u™)) =0 whenever Az, u™) =0
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Examples

du WHzPu—z—u
e =3 2
dr z3+4+zu?—x+u

X =z cosf — usinf ﬁw
~\J

is invariant under the rotation group

U=2xsinf +wucosb
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Examples

du WHzPu—z—u
e =3 2
dr z3+4+zu?—x+u

fvmoums T
U

is invariant under the rotation group

U = xsinf + ucost
o Burgers' equation

Ut + UUy = VUgy, v >
admits the (non-maximal) symmetry group
X = Nz +vt) +a, T =Nt +b, U=\t u+v),

a,b,v € R, A € RT
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with symmetry group GG, construct a numerical scheme that preserves G
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Statement of the Problem

Given
Az, u™) =0

with symmetry group GG, construct a numerical scheme that preserves G

Motivation:
@ Can apply symmetry group techniques to find exact solutions

@ Can provide better numerical schemes: Particularly for solutions
exhibiting
e sharp variations

e singularities
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@ Began with Dorodnitsyn in 1989
@ Using Lie's infinitesimal approach, the focus was originally on the

theoretical construction of symmetry-preserving schemes (Budd, Levi,
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o Particularly fruitful for ODE
e Mainly applied to time evolution PDE
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Ove

rview

Most efforts have focused on finite difference equations

Began with Dorodnitsyn in 1989

Using Lie's infinitesimal approach, the focus was originally on the
theoretical construction of symmetry-preserving schemes (Budd, Levi,
Winternitz, ...)

o Particularly fruitful for ODE
e Mainly applied to time evolution PDE

In 2001 Olver introduced the method of equivariant moving frames to
construct finite difference symmetry-preserving schemes

In recent years Bihlo, Nave et al. have focused on the numerical
implementation:

e evolution-projection techniques

e equi-distribution principles

o ...
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Other numerical methods

@ Finite element
@ Finite volume
@ Spectral method
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Other numerical methods

@ Finite element
@ Finite volume

@ Spectral method
° ...

We now consider

symmetries and finite elements

Disclaimer
@ Preliminary investigation

e Comments/suggestions are welcome!
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Approximation

Subdivide R:

Ti—1 a5 Th+1 Tk+2

We consider the hat functions

0 x € (—00, K1)
T —Tp_1
PR
P () = Thir— v o]
Thi1 — Th kyLk+1
0 T € (Tht1,00)

Tp_1 T Thyl
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Approximation

Subdivide R:

Thk—1 Tk Th41  Th42

We consider the hat functions

0 x € (—00,xp_1)
T — Tk-1
m x e [a:k_l,a:k]
T) = T k-1
o k1 7T T € (Tgy Thot1]
Tyl — Tk Fo kL
0 T € (Tg41,00)
Th—1 xk Tht1
and approximate
o
u(@) mup(z) = Y wigi(z)  u = u(w;)
1=—00
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Let G be a Lie group acting on R? = {(z,u)}

X=g-zx U=g-u
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Preserving the Decomposition

Let G be a Lie group acting on R? = {(z,u)}

X=g-zx U=g-u

Acting on up(x) = Z u; ¢i(x):
g-uh:='2 Ui (g - ¢i(x)) Ui=g- u
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Preserving the Decomposition

Let G be a Lie group acting on R? = {(z,u)}

X=g-zx U=g-u

Acting on up(x) = Z u; ¢i(x):
9'“h¢=.2 Ui(g - ¢i(x)) Ui=g-ui

We require

g-¢i(r) = P;(x) = projectable action = g -x= X (1)
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SL(2,R)
There's a restriction on
g-z=X(z)
Theorem (Lie): The largest Lie subgroup of D(R) is SL(2,R):

ar+
X=g-x= 0 — =1
g yx 49 ad = By
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SL(2,R)
There's a restriction on
g-z=X(z)
Theorem (Lie): The largest Lie subgroup of D(R) is SL(2,R):

ar+
X=g-x= 0 — =1
g yx 49 ad = By

The hat function ¢ transform according to

yxR + 90
@ = . = R —
k=9 Ok (7x+5)¢k

and its derivative

k=90 = (yze + 0)[(va + 0)(z) — v (@)]
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Simple example

Consider
u'(z) = A(z) u+ B (z)e™®
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Simple example

Consider
u'(z) = A(z) u+ B (z)e™®

The solution is
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Simple example

Consider
u'(z) = A(z) u+ B (z)e™®

The solution is
u(z) = (B(z) + C)e®

The ODE admits the symmetry
X=x U=u+eed® eeR
sending solutions to solutions:

C—=CH+e
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Simple example

Consider
U (z) = A'(z) u+ B'(z)e®

The solution is
ulz) = (B(x) + )

The ODE admits the symmetry
X=x U=u+eed® eeR
sending solutions to solutions:
C—C+e

A weak form is given by

| e 4 B ar =0

—0o0

9/16



VY New ez L

The weak form

is invariant under
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The weak form

is invariant under

Check:

= / [w(z) e 4@ + B(x)]¢/(z) dz + € / - ¢ (z) dw
—c0 —0o0
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At the discrete level,
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At the discrete level,

oo

0= / [ > uigie ) — B(x)| ¢} dz
the weak form is not invariant under

X=2 U=u+e A=A

Indeed

0:/Oo [ i (u; + et A(w)—B(m)]qb?Cda:

:/ [ Z upie” (m)] b, das-q-e/_oo z Ai=AW) g0t g

1=—00

-~

#0
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Given a non-invariant discrete weak form, we derive an invariant version
using moving frames
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Given a non-invariant discrete weak form, we derive an invariant version
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Definition: Let G be a Lie group acting on a space M parametrized by z.
A (right) moving frame is a map

pM—G

satisfying the G-equivariance

plg-2)=p(z)g"
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Moving Frames

Given a non-invariant discrete weak form, we derive an invariant version
using moving frames

Definition: Let G be a Lie group acting on a space M parametrized by z.
A (right) moving frame is a map

pM—G
satisfying the G-equivariance

plg-2)=p(z)g"

@ A moving frame is constructed by choosing cross-section X C M to
the group orbits
e At z € M, p(z) € G is the unique group element sending z onto K:
p(z)-z€e K

Requires the action to be free and regular
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Invariantization

Definition: Let p(z) be a moving frame. The invariantization of a function
F: M — R is the invariant
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Invariantization

Definition: Let p(z) be a moving frame. The invariantization of a function
F: M — R is the invariant

Also possible to invariantize
o differential forms
o differential operators

o functionals, ...
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Returning to the group action

X =z Ui:ui—keeAi 1 E€Z
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Returning to the group action
X =z Uizui+eeAi 1 E€Z
we choose the cross-section
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Example (Continuation)

Returning to the group action

X =z Uizui+eeAi 1 E€Z
we choose the cross-section
K = {ux =0}
Solving the normalization equation
0=Us = up + ece* = €= —upe ¥
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Example (Continuation)

Returning to the group action

X =z Ui:ui+€e‘4i 1 E€Z
we choose the cross-section
K = {ux =0}

Solving the normalization equation

OzUk:uk—keeA’“ = e:—uke*A’v

00 o
Invariantizing 0 = / [ Z uigie @) — B(az)} ¢y, dz:
0 Li=—x0
) 00
0= / [ D (it ee)ge ) — B(w)] ¢ da
—00 Lo e=—up e~k

-/ [ S s — e A e A B<x>] ol da

> Li=—
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Introducing
Az 1 Th+1
0 [/ Al )d:c] =y [ty
T=x) T+1 — Tk T

the corresponding invariant scheme is

ukHeAk — ikeAkH

Th+1 — Tk

(a1 — (a)r,) — ¥ (B)y,

Ag—1 _ Ap

ure _

= By — (@) ) — € (B,
Tl — Tk—1
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Introducing
1 Th+1
ap = [/e_A(x) d:c] (f)r, = —/ f(z)dz
r=x) Lh4+1 — Tk Tp

the corresponding invariant scheme is

ukHeAk — ikeAkH

Th+1 — Tk

(a1 — (a)r,) — ¥ (B)y,

Ag—1 _ Ap
= &° By — (@) ) — € (B,
Tl — Tk—1

Note: When B(z) = 0, the solution is

up = Celr = CeA@r)
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Final Remarks

The previous considerations extend to

o higher order ODE (Done several examples involving 2" order ODE)

@ evolutive PDE in 1+1 variables using the method of lines (Considered
Burgers' equation — Requires an adaptive mesh to preserve the
symmetries)
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The previous considerations extend to

o higher order ODE (Done several examples involving 2" order ODE)

@ evolutive PDE in 141 variables using the method of lines (Considered
Burgers' equation — Requires an adaptive mesh to preserve the
symmetries)

Still needs to be done

@ Consider other basis functions
o higher order Lagrangian polynomials
e splines
consider boundary terms
consider non-projectable group actions
extend to PDE in 2 or more spatial dimension
run numerical tests
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Final Remarks

The

Still

previous considerations extend to

higher order ODE (Done several examples involving 2"¢ order ODE)
evolutive PDE in 1+1 variables using the method of lines (Considered
Burgers' equation — Requires an adaptive mesh to preserve the
symmetries)

needs to be done

Consider other basis functions
o higher order Lagrangian polynomials
o splines
consider boundary terms
consider non-projectable group actions
extend to PDE in 2 or more spatial dimension
run numerical tests

Comments and Suggestions are Welcome!!!
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