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Investigating and assessing our climate system

In order to adapt to a changing climate, policymakers need information about

what to expect for the climate system.

Examples of local information:

e observational measurements
e regional climate models (RCMs)

e proxy measurements (e.g., paleoclimate — for another talk!)

Q: How well do regional models reproduce observed climate”



Climate models
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Regional climate models

Source: http://www.smhi.se/en/research/research-news/combined-science-on-climate-models-1.14533

e RCMs are a downscaled global circulation/climate model (GCM).

Mathematical model that describes, using partial differential equations,
the temporal evolution of climate, oceans, atmosphere, ice, and land-use

processes over a gridded spatial domain of interest.
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Regional climate models

e RCMs typically operate on relatively small areas.

— Within these small areas, there are more spatial locations than from a

GCM (more datal more information?)

e RCMs need to use boundary values for the global distribution of the

atmosphere, oceans, etc. (typically drawn from a GCM).
e Thus, there are two sources of variation to consider:

1. Inadequacies in the RCM;

2. Inadequacies in the boundary values.

e We run models based on historical data (a re-analysis) to try to reduce

the second source of variation [Samuelsson et al., 2011].
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Regional climate model assessment

The assessment of regional climate models (RCMs) using observations

1s a non-trivial task.

Climate, being the distribution of weather and other climatic factors over long
time periods [Rossow et al., 2005, Guttorp and Xu, 2011], cannot be measured

directly.

Rather, a variety of quantities (including weather) are measured, and usually

their long-term averages are compared to the model output.

More accurately, we argue one should compare the distribution of observa-

tions and model output, on comparable spatial and temporal scales.



Example: SMHI RCM output
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A control run of the Swedish Meteorological and Hydrological Institute (SMHI)

regional climate model RCA version 3 [Samuelsson et al., 2011]:
e Run using boundary conditions given by the ERA40 reanalysis |[Uppala
et al., 2005] in the earlier years, and the ERA-INTERIM reanalysis [Uppala

et al., 2008] in the later years.



SMHI RCM output, cont.
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Fractioned to different land types — we restrict our analysis to the 2 meter

temperature given for the open land and snow land covers.

Available from Dec 1, 1962 to Nov 30, 2007 with a temporal resolution of

7.5 minutes. 12.5 km x 12.5 km spatial resolution.



Observational data
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e Daily synoptic observations from 17 sites in an area of south central Sweden

(Also from Swedish Meteorological and Hydrological Institute, SMHI).
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Two analyses

1. A comparison of seasonal averages (DJF, MAM, JAJ, SON) of daily

mean temperature [Berrocal et al., 2012].

2. A comparison of seasonal minima (DJF, MAM, JAJ, SON) of daily

mean temperature [Craigmile and Guttorp, 2013].
In each case we fit (Bayesian hierarchical) statistical models to the

1. Observational data from reserved stations (point referenced), and

2. RCM output, observed on grids.

We infer upon the parameters in these models to learn about climate.

We will demonstrate with the second case — analyzing seasonal minima.
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Non spatio-temporal comparisons
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Seasonal minima for the station data and RCM agree best in the autumn (SON).

In the winter (DJF) and spring (MAM), the observed minima tend to be slightly
higher than is observed for the RCM.

For the summer (JJA), this relationship is reversed — we observe cooler minima

than is predicted by the model.
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Investigating shifts in the distribution

To compare distributions, we use Doksum’s shift function [Doksum, 1974].

We find a shift function A(-) such that for random variables
X (RCM) and Y (observations)

we have X + A(X) ~ Y.

Our estimate of A(x) is

AN

A(z) = G, (Fu(2)) - 2,

where F), (resp. G,,) is the empirical distribution function of X (resp. V)

Can also construct simultaneous confidence bands for A(+) [Doksum and Sievers,

1976).
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Investigating shifts in the distribution, continued
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Anomalous behavior of the RCM around 0°C.

E.g., for grid square containing Station/Site 1 there are no RCA minima be-

tween about -2 and 5 °, but there are observed minima in that range of values.
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Investigating shifts in the distribution, continued
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Minima around 0°C for the RCM are most likely in the autumn (SON).
Less likely for the spring (MAM) and summer, and unlikely in the winter (DJF).

See Nikulin et al. [2011] for an example of the spatial estimation of shifts using

the gridded E-OBS data product [Haylock et al., 2008] (with some caveats).
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Extreme value theory-based comparisons

Use (marginal) extreme value theory (EVT) to analyze and model the

seasonal minima for both the
station data
and the

RCM output.

[See Wang et al., 2016, for another example of this.|
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Example: modeling the station data

At location s € D, let Z;(s) denote the block minima in year y;(s) and
season di(s) (taking on values 1: DJF; 22 MAM; 3: JJA; 4. SON), for time
indext=1,..., N(s).

Modeling the negative of the minima we suppose

—Zu(s)] ~ GEV(ju(s), 01(s),&(s)),

conditionally independent over s and .
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The GEV parameters

t:(s) € R: location parameter indicating values which the distribution of

the negative minima are concentrated around.
oi(s) > 0: scale parameter defining the spread of the distribution.

£:(s): shape parameter. The tails of the GEV distributions are heavier
for higher values of the shape parameter (A negative shape parameter leads to

bounded tails; otherwise the tails of the distribution are unbounded.)
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Interpreting the GEV parameters

We think GEV parameters as describing climate, with the changes in the

parameters indicating seasonal differences and possible trends.

Given the climate, the model technically assumes that weather at different

stations is conditionally independent.

e A oversimplification, since typically events of extremely cold air arise

from arctic air moving south during a high pressure situation.

e S0 given that one station is extremely cold, it is more likely that another is.

We will critique this later!
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Modeling the location parameter

Spatio-temporal model for {u:(s) = —p(s)}:
4

ui(s) = Bo(s) + Bi(s)(yuls) —1960) + > Bals)I(di(s) = d).

d=2

where I(-) is the indicator function.

We assume each {f3;(s)} are independent Gaussian processes each with

mean \; and isotropic covariance, cov(f3;(s), B;(s + h)) = 7, exp(—||h||/9;)

Here 7; > 0 is the (partial) sill parameter, ¢; > 0 is the range parameter, and

|| - || denotes the Euclidean norm.

20



Modeling the scale and shape parameters

Assume that the scale parameters vary over space, but are constant in time:
oi(s) = o(s) for all t and s.

We suppose {logo(s)} is a Gaussian process with mean A\, and isotropic

covariance cov(logo(s),logo(s + h)) = 7, exp(—||h||/bs).

Our assumption of a constant shape parameter, £, is an oversimplification,

but is reasonable |e.g. Cooley et al., 2007, Sang and Gelfand, 2010].
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Bayesian inference

Our parameters of interest are

o = ({5]-(3) s€D,j=0,...,4), {logo(s) : s € D}, ¢,
T
D5 =00 A AT A6} Ao T 0 )
With the exception of the hyperparameters for the shape parameter £ and the
spatial range parameters, we assume vague priors.

For the range parameters we use the gamma prior choice of Craigmile and
Guttorp [2011], who modeled daily mean temperature from the same synoptic

stations.
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The posterior

The posterior distribution of 0 given the data is not available in closed

form.

We use a Markov chain Monte Carlo (MCMC) algorithm to sample from the

posterior distribution.
The algorithm used is adapted from Mannshardt et al. [2013].
F'it one model to the observational data; another model to the RCM output.

The results are robust to minor changes in this choice of prior distribution.
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Approximations required to fit the RCM model

Because we have 1989 spatial locations, we made two approximations:

1. In updating the spatially varying GEV parameters, we calculated the ac-
ceptance ratios for Metropolis updates at each spatial location using the 15

nearest neighbors, rather than all the spatial locations.

2. In updating the hyperparameters in the spatial models, we broke the spatial
field up into 4 sub-regions (NW, NE, SW and SE). This sped up matrix

1Nversions.

Experiments demonstrated our results were robust to these approximations.
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Model verification
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Section 6.2.3] were used to assess the

distributional assumptions made by the GEV models on a site-by-site basis.

e Excellent goodness of fit at all locations.

e Also indicates model fit improved over a model in which scale parameter

was held fixed over locations.
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Model verification, cont.

DJF MAM JJA SON
o_ o_ o_| o_|
A A A A
o o o o
© +~ c ~ ] © " o ~ |
£ £ g™ oAV g
g o € o € o € o
£ © £ ° £ ° £ ° ,
T O = O A/ \/V 4\ = O T O [\] /\l"\/
c T c —— c —— c ——
o | N \\N o | o | o |
wn (7] wn (7]
[4v] 4y [4v] 4y
() | (] ] () ] (] ]
()] /\/ n n ()]
o o o o
3- 3 3 3-
T T T T 1 T T T T T T T T T
1960 1980 2000 1960 1980 2000 1960 1980 2000 1960 1980 2000

Year Year Year Year

Also assess model using series at Borlange — located at 15° 30" E and 60° 25" N,
at an elevation of 152 meters. Station has been moved twice, and has long

stretches of missing data, and was not included in the GEV model fit.

GEV model is underestimating the variation of seasonal minima in the

summer (JJA).
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GEV model results: the shape parameters

We fit our spatio-temporal GEV model to both the observational data and the
RCM output.

Observed stations RCM
Parameter | Post. mean  95% CI | Post. mean  95% CI

¢ 018 (-0.21,-0.15)|  -0.14  (-0.15,-0.14)

Shape parameters, (, are similar in both models.

Both parameters negative: hence distribution of seasonal minima is bounded.
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GEV model results: temporal trends

Observed stations
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GEV model results: seasonal effects
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GEV model results: scale parameters
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Summary of GEV modeling results
1. Increasing trend in seasonal minima — warming underestimated in the RCM.

For observations, change per year ranges from 0.04-0.10 °C.

2. Seasonal patterns in observations and RCM output are similar in direction.

RCM too cold in DJF.

3. Differences in the spatial distribution of the scale parameter.
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Thinking about change of support

In Berrocal et al. [2012] we spent considerable time building statistical models
that respect the spatial and temporal scales of the observational data and

climate model output.

Key idea: (I'll draw a doodle in the talk!)
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Change of support for extremes

For RCM output, what does the seasonal minimum calculated for a grid box

represent’
e [s it the minimum over the grid box region, or the minimum at the centroid?

We could answer these questions by simulating minima (based on the obser-
vation model) at a finer spatial scale than the regional climate model output,

and then changing support by calculating minima at the grid box level.

But requires the use of multivariate models for extremes. ..

33



Joint modeling of extremes

There are many interesting approaches. Some include:
1. Conditional modeling |e.g., Ledford and Tawn, 1996, Heffernan and Tawn,
2004]

2. Max-stable approach |e.g. Davison et al., 2012, Wadsworth and Tawn, 2012,
Huser and Genton, 2016]

3. Copula-based approaches [e.g., Ghosh and Mallick, 2011, Fuentes et al.,
2013]

Multivariate inference is computationally demanding [e.g. Ribatet et al., 2012].

There is a question of whether it would be even be possible for this RCM.
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Discussion: Why are we assessing RCMs?

Do we believe that observations are the best information about the truth?

e Are we using these observations (in some sense) to grade how well RCMs

perform?

See Heaton et al. [2014] for a non-trivial example of how one might grade a

computer model.
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What are the RCMs being used for?

le.g. Jun, 2017]

e To learn about the spatio-temporal dynamics of the climate system

e To compare different climate models [e.g. Smith et al., 2009, Sain et al.,

2010]
e To distinguish between different forcing scenarios |e.g. Tingley et al., 2015]
e To blend model outputs |e.g. Kang et al., 2012)]
e For projections |e.g. Poppick et al., 2016]

e For detection and attribution |e.g. Hegerl et al., 2000]
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How are we assessing regional climate model assessment

e Do we just compare the observations and RCMs directly? |e.g. Craigmile

and Li., 2017]

e Do we build models independently on observations and RCMs and compare

the parameters from each model?

e Do we regress one on the other, trying to learn about possible associa-

tions? [e.g. Sain et al., 2010, Braverman et al., 2016].

e What about joint modeling, rather than conditional modeling? [e.g. Philbin
and Jun, 2015

(The statistical modeling gets more complex as we move down the page.)
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Challenges moving forward

e Building statistical models that capture the important features of climate.

e (Head-nod to Jim Zidek) how do we test the implementation of the statistical

models?
e Handling massive datasets: model complexity versus computation
e Change of support

e How do we diagnose and comparing statistical models used for assessing

RCMs?

e Uncertainty quantification (e.g., understanding the uncertainty of spatial
features — for example, the peaks and troughs over space of temperature
minima).
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