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Example 1: Pacific Ocean Sea Surface Temperature Data

Sea surface temperature is a major indicator of climate
change.

Data collected by voluntary observing ships, buoys, military
and scientific cruises for last 30 years.

The figure shows data observed in 1,008,371 locations in 2016
in the Eastern Pacific.
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Example 2: Forest Biomass Data

Prediction of forest biomass is important to understand
current carbon stock and flux, bio-feedstock for emerging
bio-economies, and impact of deforestation.

Forest Inventory and Analysis (FIA) under USDA collects data
on Biomass regurlarly.

The figure shows data observed in 114,371 locations in 2012.
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Spatial Regression Model: Geostatistical Model

Geostatistical Model

y(s) = x(s)′β + w(s) + ε(s), ε(s) ∼ N(0, τ2)

w(s) is an unknown function that captures local level spatial
variation of the response.

Produce spatial map for {y(s) : s ∈ D} and {w(s) : s ∈ D}
based on the observed data, i.e. provide y(s0)|y(s1), ..., y(sn)
for any unobserved location s0.

D is the spatial domain i.e. D ⊂ R2.

Potentially very rich to understand the spatial impact on the
response.

Distributed Spatial Kriging (DISK)



Spatial Gaussian Process

{w(s) : s ∈ D} ∼ GP(0,Cθ(·, ·)) implies

w = (w(s1), ...,w(sn))′ ∼ N(0,Cθ)

for any finite set of locations s1, ..., sn.

Cθ = (Cθ(s i , s j)) is the n × n spatial covariance matrix.

Stationary: Cθ(s i , s j) = Cθ(s i − s j); Isotropic:
Cθ(s i , s j) = Cθ(||s i − s j ||).

Examples of spatial covariance function: exponential
covariance function, θ = {σ2, φ}

Cσ2,φ(s i , s j) = σ2 exp(−φ||s i − s j ||) .
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Full Likelihood from Gaussian Process (GP) model

y = y(s1), ..., y(sn) are observed data and x(s1), ..., x(sn) are
the corresponding predictors.

Let X = [x(s1) : · · · : x(sn)]′ be the predictor matrix.

Model: y ∼ N(Xβ,Cθ + τ2I ).

Estimating parameters β,θ from the likelihood

−1

2
log(det(Cθ + τ2I ))− 1

2
(y − Xβ)′(Cθ + τ2I )−1(y − Xβ)

Bayesian Inference: Prior on {β,θ}

Challenges

Store Cθ + τ2I
Compute Chol(Cθ + τ2I ) = LL′.
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Literature on Spatial Big Data

Low rank model (Wabha, 1990; Higdon, 2001; Kamman &
Wand, 2003; Paciorek, 2007; Lemos and Sanso, 2006;
Banerjee et al., 2008; Cressie & Johannesson, 2008; Finley et
al., 2009; Gramacy and Lee, 2008; Guhaniyogi et al., 2011 &
2013; Sang et al. 2012; Katzfuss, 2016).

Multiscale approaches (Nychka, 2002; Johannesson et al.,
2007; Tzeng and Huang, 2015; Nychka et al., 2015; Katzfuss,
2016; Guhaniyogi & Sanso, 2017).

Spectral approximations and composite likelihoods (Funetes,
2007; Eidvisk, 2016).

Sparsity: (Solve Ax = b: (a) A sparse (b) A−1 sparse)
(i) Covariance tapering (Kaufman et al., 2008; Shaby and
Ruppert, 2012; Sang et al., 2012).
(ii) INLA (Rue et al., 2009), lagp (Gramacy and Apley,
2015), nearest neighbor processes (Stein et al., 2004; Stroud
et al., 2014; Datta et al., 2016).
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Low Rank Model

Approximate Cθ ≈ BθC ∗−1θ B ′θ + Dθ

Bθ is the n × r spatial basis matrix r << n.

C ∗θ is an r × r spatial covariance matrix.

Dθ is either sparse or diagonal.

Different choices of basis functions leads to different low rank
models.

The computational complexity O(r3 + nr2) ≤ O(n3).

Modified Predictive Process

S ∗ = {s∗1, ..., s∗r },S = {s1, ..., sn}.
Bθ = Cov(w(S ),w(S ∗)), C ∗θ = Var(w(S ∗)).

Dθ = diag{Cθ − BθC ∗−1θ B ′θ}
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Modified Predictive Process (MPP): Computation Cost vis
a vis Accuracy

True surface (n = 5000) Gaussian Process

MPP(r = 80 knots)
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Requirement from Next Generation Spatial Models

Scalability

Avoid storage of entire data

Divide and conquer

Map Reduce (HADOOP)

Theoretical support
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Posterior on Data Subsets (Subset Posteriors)

Split the data S = {s1, ..., sn},Y = {y(s1), ..., y(sn)},X =
{x(s1), ..., x(sn)} into k non-overlapping and exhaustive
subsets Sj ,Yj ,Xj , j = 1, .., k .

Each subset has m = n/k data points drawn randomly from
the entire domain.

Inference
with

subsets

Bayesian
Inference
with Π1

· · ·
· · ·
· · ·

Bayesian
Inference
with Πk
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“Weak learner” of full posterior

Πj(β,θ|Yj) ∝ [p(Yj |Xj ,Sj ,β,θ)]kp(β,θ)

p(Yj |Xj ,Sj ,β,θ) is the likelihood of the model under
consideration.

p(β,θ) is the prior distribution.

Πj ’s are referred to as the subset posteriors.

These are stochastic approximations to the full posterior
Π(β,θ|Y ).

How to combine Πj ’s optimally?
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Combine Subset Posteriors: DISK Pseudo Posterior

Compute Wasserstein mean Π̄ of Π1, ...,Πk .

Wasserstein mean Π̄ is calculated using the simple algorithm.
Denote Ω = {β,θ}.

for j in 1:k
(1) Draw s MCMC samples Ωj1, ....,Ωjs of Ω from Πj .
(2) Calculate α-th quantile from the MCMC sample in j-th

subset. Denote it by Ω
(α)
j .

(3) Ω(α) = 1
k

k∑
j=1

Ω
(α)
j is the α-th quantile of Π̄.

One Ω(α) are estimated for a range of α, samples are drawn
from Π̄ using the inverse CDF method.

Π̄ is called DISK pseudo posterior and it is used as a
substitute to the full posterior distribution.
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Surface Interpolation and Prediction at Unobserved
Locations

Let s0 be a location where response has not been observed.

for j in 1:k
(1) Draw s MCMC samples yj1(s0), ...., yjs(s0) from y(s0)|Yj .
(2) Calculate α-th quantile from the MCMC sample in j-th

subset. Denote it by y
(α)
j (s0).

(3) y (α)(s0) = 1
k

k∑
j=1

y
(α)
j (s0) is the α-th quantile of DISK

pseudo posterior for prediction.

Surface interpolation is carried out similarly by calculating
DISK pseudo posterior for w(s0)|Y .
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DISK: Novelty Over Other Divide & Conquer Techniques

Aggregation of point estimates through median (Wang and
Dunson, 2013; Wang et al., 2015; Minsker, 2014)

Aggregation of subset posteriors through median (Minsker et
al., 2017; Guhaniyogi and Banerjee, 2017)

Consensus Monte Carlo (CMC) (Scott et al., 2016),
Semiparametric Density Product (SDP) (Neiswenger et al.,
2014).

Wasserstein Mean posterior (Srivastava et al., 2015; Li et al.,
2017; Savitsky and Srivastava, 2017).

Both theory and practice are only applicable for i.i.d data.
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Simulation Study

s = (s1, s2) are drawn randomly on [−2, 2]2.

predictor x(s) are sampled iid from N(0,1).

Response y(s) is simulated from

f0(s) = e−(s−1)
2

+ e−0.8(s+1)2 − 0.05 sin{8(s + 0.1)},
y(s1, s2) = β0 + x(s1, s2)β1 − f0(s1)f0(s2) + ε, ε ∼ N(0, 0.01),

Yields highly nonstationary spatial surface that is difficult to
estimate (Gramacy & Apley, 2015).

Simulations

Simulation 1: n = 104 locations for model fitting, l = 2025
for prediction.

Simulation 2: n = 106 locations for model fitting, l = 2025
for prediction.
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Competitors

Competitors

full GP (GP on the full dataset)

full MPP (MPP on the full dataset)

DISK-GP (with different choices of k)

DISK-MPP (with different choices of k and r)

SDP (Neiswenger et al., 2014), CMC (Scott et al., 2016)

laGP (Gramacy & Apley, 2015), NNGP (Datta et al., 2016)

LatticeKrig (Nychka et al., 2015)

Predicted locations: S 0 = {s01, ..., s0l }.

ˆbias
2

=
1

l

l∑
i ′=1

{ŵ(s0i ′)− w0(s0i ′)}2, v̂ar =
1

l

l∑
i ′=1

v̂ar{w(s0i ′)},

L2-risk = ˆbias
2

+ v̂ar,
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Simulation 1: Surface Interpolation

True w*
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Simulation 1: Inference on Surface
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Simulation 1: Parameter Estimation and Predictive
Inference
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Choice of the number of subsets (k) for fixed n
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variance term decreases as a function of k .

Bias2 term varies within a small window for upto a cetain k ,
then it keeps on increasing.

As a result, L2-risk also increases from that inflexion point.
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Assumptions

1 w0 belongs to the RKHS of GP(0,Cα(·, ·)) and
Cα(s, s ′) =

∑∞
i=1 µiφi (s)φi (s ′).

2 ∃ ρ > 0 and r ≥ 2 s.t. E{φ2ri (s)} ≤ ρ2r ∀ i .

Theoretical Result on the L2 − risk under Assumptions 1-2

1 If Cα is a finite-rank kernel with µ1 ≥ µ2 ≥ . . . ≥ µd∗ > 0,
µd∗+1 = µd∗+2 = . . . = 0 for some constant integer d∗, and

for some constant c > 0, k ≤ cn
r−4
r−2 /(log n)

2r
r−2 , then

E‖w − w0‖22 = O
(
n−1
)

as n→∞.

2 If µi ≤ c1µ exp
(
−c2µi2

)
for some constants c1µ > 0, c2µ > 0

and all i , and for some constant c > 0, k ≤ cn
r−4
r−2 /(log n)

3r−1
r−2 ,

then E‖w − w0‖22 = O
(√

log n/n
)

as n→∞.

3 If µi ≤ cµi
−2ν for some constants cµ > 0, ν > r−1

r−4 and all i ,

and for some constant c > 0, k ≤ cn
(r−4)ν−(r−1)

(r−2)ν /(log n)
2r
r−2 ,

E‖w − w0‖22 = O
(
n−

2ν−1
2ν

)
as n→∞.
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Results from Simulation 2

Notable advantage in terms of L2 risk compared to laGP.

Coverage is same with narrower length of the 95% credible
interval.

Provides precise parameter estimates with 95% CIs.

Enables fitting MPP for 1 million observations in manageable
time.
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Sea Surface Temperature Data

Recall the data on SST between 400 − 650 N latitude and
1200 − 1800 W. longitude.

Fit an ordinary linear regression with latitude and longitude as
predictors.

Residual surface showing lots of spatial variability left
untapped.

Use 1, 000, 000 for model fitting, rest for prediction.

Fit: y(s1, s2) = β0 + s2β1 + w(s1, s2) + ε(s1, s2)
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Sea Surface Temperature Data
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Conclusion

Parallelizable framework for analyzing large spatial data with
complex nonstationarity.

Subset inference can be carried out with any spatial model
conceptually.

Enables us to employ powerful spatial models for big data.

Provides model based estimation, prediction and spatial
surface recovery.

The framework can potentially scale any stochastic process
model based model.
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