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Outline

1. Problem Statement / Overview: Review of sampling
based approaches for SSMs including computational

algorithms.

2. Approximating the Observation Update: ensemble
Kalman filter, and approximate Bayesian computation

3. Approximating Dynamical Model Prediction: Model
Surrogates and Emulators for SSMs / Data Assimilation

... illustrated with applications in ocean data assimilation



An Acknowledgement to Weather Forecasting

Numerical Weather Prediction pioneered large-scale
estimation for time dependent systems
based on dynamic / numerical models.

1960s: Optimal Interpolation (Lev Gandin):
- The data assimilation cycle, approximate Kalman filter updating step

1980s: Variational Data Assimilation (Olivier Talagrand)
- Time dependent optimization, adjoints need for gradient, initial

2000s: Ensemble Kalman filter (Geir Evensen)
- Modular, sample based, incorporates dynamical model uncertainty

Performance Metric for Data Assimilation: Forecast Skill



General Problem Statement
DATA ASSIMILATION = (SIMPLIFIED) SSMS

1.Dynamical Models: Ocean, Atmosphere, Earth, Space;
Physics, Chemistry, Biology

2. Observations: many and varied, temporal and/or spatial

3. Prior Knowledge: accumulated scientific knowledge
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General Problem Statement
DATA ASSIMILATION = (SIMPLIFIED) SSMS

1.Dynamical Modem ohere _Farth, Space;
Physics{Chemistry, Biolog

2. Observations: many and varied, temporal and/or spatial

3. Prior Knowledge: accumulated scientific knowledge

GENERAL GOAL: to improve scientific understanding
* Estimate the system state and its parameters
 Model selection / system identification
 Sampling and observing array design



Features

* Dynamics centric: Numerical models considered a
good representation of reality.

* Data Paucity (relative to scales of variation),
partially observable system

Science driven by assessing data/model discrepancy
and using to identify knowledge gaps

Engineering approach to methodology : Do what
“works” ....



A Useful Statistical Framework; State Space Model

x, =d(x_,0,e) |_

y, =h(x,,0,v,) y,~p(y,,0lx,) |« OBSERVATIONS
r=1,...T

x, ~p(x,,0lx,_,) | «— pynamICS




State Space Model: Dynamics

x, =d(x,_,0,e) | | x~px.0lx_) DYNAMICS

Dynamical Models =»



DYNAMICAL MODELS

(numerical models/ complex computer code)

ROMS ESPRESSO bathymetry and grid

Incompressible Navier—-Stokes equations (convective form)
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State Space Model: Observations

y, = h(x,,0,v,) y, ~p(y,,0lx,) OBSERVATIONS

t=1,....,T

Observations =



OBSERVATIONS

(a true technological revolution ...)

Traditional Observations: point observations, time series, or
spatial imagery

New observations: complex spatio-temporal multivariable
sampling via autonomous robotic sampling platforms (high
information content but hard to visualize/interpret/analyse)



6 -12 hours at surface
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Keep in Mind ... the General Probabilistic Solution

The Hierarchical Bayesian Model:

p(X,7,01y,0) < p(yr 1 x,7,0) p(x,;10)- p(0)

X, = (x,,...,X;) 18 the system state
where: V7 = (y,...,¥,) are the observations

6 are the dynamical model parameters

« p(x,,0 1y, ) 1s our target distribution
« p(y,; | x,7,0) 1s the conditional measurement distribution
 p(x,, 10) 1s indentified with the numerical ocean model

e p(0) is any prior information (from literature)

Rely on sampling based solutions in practice =



Aside: Common Simplifications™

(i) Deterministic Numerical Model.:

e System state is a deterministic function of the parameters.

* Yields optimization problem (wrt likelihood or cost function)
* Most common large-scale DA approach: variational DA
 Parameters are often include initial (or boundary conditions)

(ii) Parameters are Fixed and Known:
e State estimation via filtering (and smoothing)
 Sample based solutions for nonlinear and non-Gaussian

problems rely on sequential Monte Carlo methods (e.g.
particle filter)

*You’ll see these later



General Computational Solution: Particle MCMC

fork=1tom
Generate candidate 0" =0 + ¢

*

L} for 67
Evaluate likelihood L(@ 1y, ) o< 1", (Z p(y, 1 x, )j

Run particle filter to determine {x

k=1
Do Metropolis-Hastings accept/reject step )
L©O ly.)
LO"1y,.)

Compute the acceptance probability: o =
Draw u ~U(0,1)
If min(1,0t) > u then 6 =6,

else ¢ =“*"

end (for k)

yields sample drawn from target p(x,., 01y,..)



Computational Solution: Particle MCMC

fork=1tom
Generate candidate 0" =0 + ¢

Run particle filter to determine {2 01 6

Evaluate likelihogd L(0 1 y,,.) o< H,T_l( p(y, Ix;’;)
k=1

Do Metropolis-Hastings accept/r€jc

L© 1y,)
LO“"1y,)

Compute the acceptance probability: o =
Draw u ~ U (0,1)
If min(1,ex) > u then 6 =6",

else ¢ =“*"

end (for k)



Computational Solution: Particle MCMC

fork=1tom
Generate

*

.t for o
Evaluate likelihood (81 y,; ) o< [1,| ¥ p(y, | X, ))
k=1

Run particle filter to determine {x

Do Metropolis-Hastings accept/reject step )
L©O ly.)
LO"1y,.)

Compute the acceptance probability: o =
Draw u ~ U (0,1)
If min(1,ex) > u then 6 =6",

else ¢ =“*"

end (for k)



The particle filter is the “engine”

for sample based estimation
in time dependent systems




Particle Filter Schematic: Sequential State Estimation

Single stage transition of system from time {-7 to time ¢

prediction observation update
x,=d(x_,0,e) Y,

l l

.......... _ nowcast ——— forecast —» nowcast — -
p(xt_] | yl:t—l’e) p(xt | yl;t_199) p('xt | yl:tﬂe)

N N _/
Y N

time = t-1 time =t

| 1 ’

time




Basic Particle FilterSequential Importance Resampling

fort=1toT

(a) Prediction: generate sample {x } following p(x, |y, ,,0)

(l) - (1) (i) .
t|l‘ 1 d('x[ 1|t—1’0’ et ) fOr = 1,...,l’l

(b) Observation update: Using newly available observation y,

(i)

Generate sample {x,,

} from p(x, 1y,,.6)

w e p(y, 1x),,0) fori=1,...,n

(1)
tlr—1

} using weights w'"’

e resample with replacement from {x
— yields {x}

tlt
end (for t)

Note: there are lots of other (better) particle filtering algorithms



Bottleneck for High Dimensional Applications
NUMERICAL MODELS ARE COMPUTATIONALLY EXPENSIVE

Sample size required for particle filter to work is exponential
in effective dimension of problem; this which is set by
dimension of state and the observations (Bickel et al. 2008)

Practical Issue:
small ensembles must represent a large state space

TWO STRATEGIES:

1. Approximate the Observation update
(so small ensembles work better)

2. Approximate the Prediction step
(so we can generate bigger ensembles)



Approximating the Observation Update Step



(1) An Alternative Observation Update:
the Ensemble Kalman Filter

IDEA: Instead of doing weighted resampling for observation update
(like SIR based particle filter), instead use Kalman filter updating:

7 = xW +K(y(’) Hx!" i=1,...,n

tt tlt 1 tr—1

where: y"' =y +v”, i=1,..,n and K=PH' (HPH" +R)"



(1) An Alternative Observation Update:
the Ensemble Kalman Filter

IDEA: Instead of doing weighted resampling for observation update
(like particle filter), instead approximate it with Kalman filter

updating:
x\ + K" — Hx! i=1,...,n

tt tlt 1 tt—1

=y, ¥V T=1,...n and K=PH'(HPH' +R)"

)z(i)

where: y,

The most common approximation for inference
in large-scale dynamical systems

* “Works” for large systems (with a couple of fixes: localization,
variance inflation).

* Easy to implement.

* “Breaks” under strong nonlinear, non-Gaussianity.



depth

depth

Results EnKE: Ensemble Mean

Particulate Organic Nitrogen

ensemble mean

g s <— Stochastic Simulation
. 4 (no observations used)
s .3
H . <— Ensemble Kalman Filter
I . (MV observations assimilated

-200

using enKF)

-250
1990-04-01 1990-07-01 1990-10-01 1091-01-01 1991-04-01 1991-07-01 1991-10-01 1992-01-01

time

* assimilated state variables: particulate organic N, dissolved inorganic N,, chloropyhll, oxygen



Results EnKF: Ensemble Std Dev

Particulate Organic Nitrogen

ensemble standard deviation

s <— Stochastic Simulation

1990-04-01 1090-07-01 1000-10-01 1091-01-01 1001-04-01 1991-07-01 1991-10-01 1992-01-01

- ' -i: o

1990-04-01 1990-07-01 1990-10-01 1991-01-01 1901-04-01 1991-07-01 1991-10-01 1992-01-01

time

* assimilated state variables: particulate organic N, dissolved inorganic N,, chloropyhll, oxygen



(2) An Alternative Observation Update:
Approximate Bayesian Computation:

Problem: Likelihood ‘hard to formulate’. Measurement distribution
includes: instrument error, environmental variation, errors of

represe ntativeness, etc

Approach: Replace likelihood with scalar distance metric.

Benefit: Eliminates sample impoverishment in particle filter.
Allows for use of small sample sizes.

EXAMPLE
For image comparision, we used Adaptive Grey Block Distance to
measure discrepancy between model predicted spatial field and
the observed one.




I'mage Comparison: Adaptive Grey-Block Distance

Observations | Model Prediction

Long Island

chlorophyll concentration (mg m)
0 1 2 3 5 6

Issues addressed: missing values, mis-alignment/registration errors,
scale dependence

Application:

e State estimation using 3-D ocean model. AGBD replaced likelihood
in particle filter (used for resampling weights)

* Application proved successful (not shown) and with small
ensembles (<100)



Approximating the Prediction Step



Approximating the Dynamical Model : Emulators

Numerical

IIIPUt — Model — OUtPUt

Idea: Approximate targeted aspects of a computationally costly
numerical model (a simulator) with an efficient ‘statistical’
model (an emulator®)

Approach:

(1) Identify inputs and outputs of interest

(2) Run selected input/output simulations with simulator
(experimental design aspect)

(3) Build an emulator from input/output data

(4) Apply it to your inference problem!

* simplest emulator is coarse-resolution numerical model with simplified dynamics



(1) An Emulator for Parameter Estimation

(for Deterministic Dynamics)

GOAL: Estimate biological ocean state in mid-Atlantic Bight using:
(1) Data: Satellite observations,
(2) Model: Deterministic 3-D ocean biogeochemical model

Input: two selected ‘independent’ biological parameters.

Output: discrepancy metric, i.e. the AGB distance between model
predicted surface field and satellite observations.

Application:

* build a statistical emulator using specified input/output simulations

* estimate seasonal evolution of the two parameters by minimizing
the discrepancy metric.



Polynomial Chaos Emulator

k

max

f(x,1,0) = Eak(x,t) ¢.(0)+¢, .(0) where:
= 0 : inputs
f(x,t,0) : outputs
a,(x,t) : expansion coefficents
¢, (0) : basis functions

g,...(0) : truncation error

Note:
- Assumptions about p(6) determine which polynomial basis to use

- The polynomial basis and order determines the n design points.
- Mean and Variance of output are given by:

E{f(x,t,@)} =a,(x,t), Var{f(x,t,H)} = iai(x,t)



Results: Seasonal co-evolution of the 2 parameters
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(2) An Emulator for Particle Filtering

(Stochastic Dynamics)

Rationale: the one-step-ahead state prediction (x,_; to x, ) is a key
qguantity for SSMs

Idea: Replace numerical model prediction with an emulator
=>allow for computationally efficient sample generation

Input: system state at time t-1: x_
Output: system state at time t: x, xt_l —>-—> X ;

Approach:
(1) Emulate the state transition with copula-based MV distribution
(2) Use these approximate dynamics in particle filter/smoother



Building a Transition Density with Copulas
*We want: X, ~ p(x,|x,_,0) - predictive/transition density

eWe have: X, =d(x,,,0,e) -anumerical model to generate samples

Idea: create multivariate distributions using copulas ...

K
px, lx, )= CK(vl"“’vK)H p(x, X k)
k=1

Used elliptical copulas (normal and t) to build the transition density
Numerical simulations yield CORRELATIONS and MARGINALS
used to build the desired distribution =



MARGINALS

Det

Chl Oxy

15

500
120

10

300

100
0 50 100 150 200 250

5
0 20 40 60 80

o

-0.10 0.00 0.10

-0.002 -0.010  0.010 0.025 -0.005 0.010

CORRELATION

Based on 1D PZND
model of BATS site

4 )
P(x,,...,x, )=

C(P(x,),...,P(x)))
o )

Samples from predictive
density, or model errors




Results Sequential M(C: Ensemble Mean

PON ensemble mean

e N : . . .

B ‘<— Stochastic Simulation

T " . (no observations used)

< f .
ol . <— Ensemble Kalman Filter
© 2

1990-04-01 1990-07-01 1990-10-01 1991-01-01 1991-04-01 1991-07-01 1991-10-01 1992-01-01

S
. ij% Copula Based Particle Filter

1990-04-01 1990-07-01 1990-10-01 1991-01-01 1001-04-01 1991-07-01 1991-10-01 1992-01-01

time



Results Sequential MC: Ensemble Std Dev

ensemble standard deviation

1990-04-01 1990-07-01 1990-10-01 1991-01-01 1001-04-01 1991-07-01 1991-10-01 1002-01-01

0.6

; 0.5

| S 04
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' 02
; 0.1

1900-04-01 1990-07-01 1990-10-01 1091-01-01 1001-04-01 1991-07-01 1991-10-01 1992-01-01

time

Stochastic Simulation

Ensemble Kalman Filter

Copula based Particle Filter



Concluding Remark,

Good approximations needed for estimation for
realistic (high dimension, spatio-temporal)
applications of State Space Models for Data

Assimilation

General guidelines, but no easy (“one size fits
all”’) answer.

Questions/Comments/Concerns?



Challenges/Ideas

Small: <10

Moderate: 10-100

High: > 100

Stochastic dynamics

Interpreting complex spatio-temporal observations — really hard with DA

Use subject matter specific numerical models. Otherwise no one will care. If so, big impact
Towards full Bayesian problems

Separate state and parameter estimation? Model calbration vs online prediction?

Characterizing model errors (ensemble simulations). Characterizing approximation errors

Characterizing measurement distributions: instrument error, errors of represenativess/change of
support (point observation vs grid cell average)

Alternatives to sample based estimation? Functional, variational weak-constraint

Move beyond state and parameter estimation. Mainly in online prediction, some reconstruction. Want
model selection, etc.

How to make most effective use of small samples?



Incorporating Emulator in Hierarchy

The Hierarchical Bayesian Model with an emulator ‘level’:

p(X,%7,0 1 y7)
o< p(V7 | X7 ,X,7,0) (X7 1 X,7,0) - p(X,; 10)- p(O)

Would alter particle-MCMC algorithm as follows:

- particle filter now uses emulator approximation as proposal
=>» alter weight calculation

— M-H acceptance probability now uses of emulator error, rather
than just likelihood ratio, in its calculation

Computationally more efficient, but would lose dynamical balances
of basic (SIR) particle filter.



Adaptations of PF for Ocean DA for 3-D BGC

Alter the Likelihood function: change its functional form, or inflate
or alter the measurement error.

Error Subspace: confine stochasticity to parameters only. Dimension
reduction.

Use Fixed lag smoother, Batch processing incorporate observations
from multiple times into observation update. Robustness.

Clever Proposal Distributions and look-ahead filters: move beyond
using “prior” (predictive density) as proposal, e.g. Use EnKF



Goal: Incorporating Emulator in Hierarchy

The Hierarchical Bayesian Model with an emulator ‘level’:

p(xX,X,7,01y,4)
o< p(Vip 1 X7, %17,0) - p(X7 1 X,7,0) - p(X,; 10)- p(6)

Would alter particle-MCMC algorithm as follows:

- particle filter now uses emulator approximation as proposal
=>» alter weight calculation

— M-H acceptance probability now uses of emulator error, rather
than just likelihood ratio, in its calculation

Computationally more efficient, BUT do lose dynamical balances
between prognostic variables inherent in basic (SIR) particle filter.



The Filtering Problem: State Estimation
A single stage transition of the system for time -7 to t involves:
Dynamic Model Prediction:
p(x, 1y,,.0)= | p(x, 1x_,.0)- p(x,_, 1y,,_,.0) dx,_,

Observation Update:
p(yt | A, 99) ' p('xt | V141 96)
p(y,)

p('xt lyl:t’e) —

dO fOr t:], ceey T, g'Ven p(‘XO) and yl:T = ()’1,)’2,--,)’T)



