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3s maximum wind gust of the storm Lothar during winter 1999

S

» 169 km/h maximum observed windspeed in Paris (Parc Montsouris).
» Estimated loss around 8 billion dollars.
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» Classical techniques for risk estimation rely on historical catalogues and climate
models:

= Cannot generate completely new extreme events.

» Aim to develop a windstorm generator producing storms with

» unobserved intensities, i.e., extrapolation above known levels;
> unobserved patterns, i.e., new storm tracks and shapes.
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» Gaussian (red) and tzo (blue) density functions matched to have probabilities
0.05 for |X| > 1.96.

» Ratio of ty9/Gaussian probabilities for | X| > x:

X 2 3 4 5 6 7
Ratio of probabilities 1.01 1.7 6.1 58 1589 1.7e¢5

» Gaussian distribution has a quick tale decay which may strongly underestimate
rare events:

= Not suitable for extrapolation!
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» For a threshold v > 0 and a bivariate vector with Fréchet margins and Gaussian
copula,

Pr(Xe > u| Xo > u) ~ C x u~E=P)/(p+1) (jog ) =P/ (14P)

and
ILm Pr(Xy > u| X2 > u)=0.

where —1 < p < 1 is the correlation coefficient.
» With a Gaussian spatial model, the extent of an extreme event decreases as u

increases:

= Strength of dependence should not depend on the intensity.
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» Extreme value theory describes the tail of the distribution.

» Historically it was developped for "block maxima", i.e., to model annual/monthly
maxima with the Genralized Extreme Value (GEV) distribution.

» Max-stable processes, the functional equivalent of GEV, are mathematically very
complex and thus limited application to few dozens of locations.

» To model single events, an alternative is the peaks-over-threshold analysis.
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Peaks-over-threshold models
For any random variable X, there exist sequences a, > 0 and b, such that

npPr [ X=bake o o
an

- {bn*X}+>X — ve(x), n— oo,
an

and v¢ is either degenerate or

ve(x) = <1+5%)7I/§7 1+&(x—p)/o 20, £#0;
& B exp(_X;“‘)7 x>0, £=0.

with, u € R, o > 0.

¢, the tail index, determines the strength of the tail and its support:
» £ > 0: Fréchet type with x > p,
» & = 0: Gumbel type with x > p,
> £ < 0: Weilbull type with x € (u; u — o /1/€);
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For a large enough threshold u < inf{x : F(x) = 1}, we can use the approximation
—1/¢
PriX—u>x|X>u)~ (1 +8&x/o), 77, £#0,
exp (—x/0), £=0,

where o = o(u) > 0 and a; = max(a,0):

= The conditional distributions of exceedances over a high threshold can be
approximated by a GP distribution.
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> Let {X(s)}scs be a stochastic process with sample paths in the space of
continuous functions C(S), where S C R9.

> Suppose there exist £ € R, sequences a, > 0 and b, with limy— o an(s) = oo for
all s € S, such that

x—b,\11/¢ }
neri{ire(55)) e SAG), n— oo (1)
nPr < exp (Xa;nb") S }
> Ais a measure on C,(S) \ {0} satsifying
AMx€etA} =t A {x€ A}, t>0, AecC(S)\{0}.

» Condition (1), which we write X € GRV(A), is a form of functional regular
variation (Hult and Lindskog, 2005).
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» For a monotonic increasing functional r, an r-exceedance over a threshold u > 0
is an event {r(x) > u}.

» 1 is called a risk functional. Common examples are
— supses X(s) for events where X exceeds a threshold at least one location;

- Zthl Js Xt(s)ds for spatio-temporal accumulation;

- 4 /fs X(s)2ds when the risk is determined by the energy inside a system;

— X(s0), with sp € S for risks at a specific location, for instance a dam or a
power plant.

» For simplicity of exposure, we now further suppose that r is linear.
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Theorem (de Fondeville and Davison, 2018)

Let r be a risk functional and let X € GRV(A). Then there exist £ € R and a measure
Cang ON
Sang = {x € C(S) : [Ix[[x =1},

such that for any W C Sang, and p > 0,

r(X) — r(bn) p X —1(bn)
r(an) "X = x(bn)llang

g

X— =1/&
nPr |: € Wj| — (1 + & ) O'ang(W)7

as n — oo, for £ # 0, and

r(X) — r(bn) . X —1(X)
i [ ) 7% )

€ W:| — exp (—u) ang(W),
g

for £ = 0.
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Generalized r-Pareto process (de Fondeville and Davison, 2018)
A generalized r-Pareto process P is defined by

w
p_{ R £#0, B
R+ log W — r(log W), ¢ =0,

where

> R is a univariate generalized Pareto variable with tail parameter &, and
distribution function

pu) e
R = {14622 1T, pzuzo,
g

with o > 0;
» W is the stochastic process
W = A{R1Q}¢ + B.

where A > 0, B € C(S) with r(A) =1 and r(B) =0, Ry is a unit Pareto
distribution and Q is a stochastic process on {x € C;(S) : ||x||]1 = 1} with
probability measure gang.
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» r-Pareto processes are the only possible limits of rescaled threshold exceedances
for a regularly varying stochastic process. This means for a large enough
threshold v > 0,

Pr(X—ue-|[r(X)>u)=Pr(Pec-).

» The r-exceedance distribution of P is

_ -1/¢
P(e(P) 2} = {14200 oz

» The generalized r-Pareto process has generalized Pareto marignals above a
sufficiently high threshold g > 0:

_ ~1/¢
P N(SO)} RS

PV{P(50)>P|P(50)2“0}:{1+§TUO) Z Ug,

with o(up) > 0 and u(sp) € R.
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» In practice, choose a high threshold vector u > 0 such that the density function

of the r-exceedances fJ can be approximated by its limit

o N
AORS wywmys

with Ar(u) = {x € C(S) : r(x) > u} and where

x € Ar(u),

/\g{Ar(u)}:/A “ p(x)dx, u>0.

For most models, the limiting measure A and its partial derivatives are known in
Cartesian coordinates.

Direct maximum likelihood estimation is in general not recommended and
dimensionally limited because it requires Ag{A(u)}.

Model estimation in "moderately high" dimensions is possible within the
framework of proper scoring rules (de Fondeville and Davison, 2017).
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» An adaptation of the gradient scoring rule (de Fondeville and Davison, 2017)

allows statistical inference using partial derivatives, with respect to xi,

ceey Xp, of
the log-density function,

Ow;(x) dlog Ay ,(x)
o) = 3 (2w T 28000
’ = OX; Ox;

w;(x)

6XI-2 2 ox;

PlogAh (x) 1 {Blogz\g u(x)}2
7’_’_ - s

where w : Ac(u) — 1 is a weighting function differentiable on A.(u) and

vanishing on the boundaries of A(u).

» Maximization of dy, gives an asymptotically unbiased and normal estimator.

lized k hreshold.

p modelling 15 / 29
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» Recall that for £ #£0, P is
_p ARIQ*+B
{A(R1Q)¢ + B}

» Suppose W follows a log-Gaussian distribution with stationary increments and
semi-variogram -y.

» The ¢-dimensional intensity function is

P (x) = [Zol 22 exp (J;Tfli) x € RE\ {0}
0 x2xg -+ xp(2m)(E=1)/2 2 0 ’ + ’
where X is the (¢ — 1)-dimensional vector

{Iog(xj/Xl)+79(Sj - 51) J = 27"'»£}T7

and X is the (£ — 1) x (¢ — 1) matrix

{ve(si —s1) +v0(s; — s1) — ve(si — sp)}ijjeq2,....e3-
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» The extremogram m(h) is a tool to measure the strength of dependence (~
variogram for extremes);
X
{X(s) >u}n {r (—) > 1}] .
u
» For the Brown—Resnick model,

afee {2

where 7 is a valid semi-variogram and & is the cumulative distribution function of
a Gaussian random variable.

w(h) = Pr [X(s +h)>u
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Simulation of generalized r-Pareto process with [¢ X(s)ds > 100.

Power
050,
— Power Exp

0.0

% 50 7s 160
Distance

Theoretical 7(h) for two different variograms
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» 3s maximum windgust every 3 hours for the period 1979 to 2016 from
ERA-Interim reanalysis model.

» Storms are defined as an exceedance of an 24 hours temporal aggregation of the
spatial mean:
8
r(X) = Z/X(s)ds.
=173

» Time frame is centered on the 24 hour maximum of the spatial mean.

» 200 events are used to fit a Pareto process.
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Estimated 7(h) for two different locations

[ 500 1000 1500 2000
Distance (km)

S
L it it
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Scales Locations
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» Variogram model:
K

Q{S,‘ -5 =+ V(t,‘ — tj)}
T

s S,',Sjes, t,-,tje{O,...,21},
2

’Y(sl'7sj7 ti, tj) = H
with 0 < k < 2,7 > 0, wind vector V € R? and anisotropy matrix

Q:[CO_S" _S'""}, ne(—z;f], a>o0.
asiny acosn 4’4

» Estimated parameters

K T a n Vi Vo
1.17 3486 125 —-0.02 025 —-0.01

50

lrso

1500 2000

[ 500 1000
Distance (km)
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Simulated extreme windstorm over Europe

S
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» Classical geostatistics should be avoided when modelling extreme events.

» Generalized r-Pareto process is the functional equivalent of the generalized Pareto
distribution and allows one to model r-exceedances.

» The Brown—Resnick model uses classical variogram models, while the
corresponding stochastic process is heavy-tailed.

» Inference using the gradient scoring rule enables inference in "moderately high"
dimensions and is limited by matrix inversion.

» We developed a (too) simple spatio-temporal generator for extreme windstorms in
Europe.

» Ongoing work:
»> Marginal modelling;
» Complex dependence structure to better capture the characteristics of the
dependence structure.

G lized peak hresholds modelling 24 / 29



L (il

ibli ECOLE POLYTECHNIQUE
Blbllography FEDERALE DE LAUSANNE

de Fondeville, R. and Davison, A. C. (2017). High-dimensional Peaks-over-threshold Inference.
arXiv:1605.08558.

de Fondeville, R. and Davison, A. C. (2018). Functional Peaks-over-threshold and Generalized
r-Pareto Process. preprint.

Hult, H. and Lindskog, F. (2005). Extremal Behavior of Regularly Varying Stochastic
Processes. Stochastic Processes and their Applications, 115(2):249-274.

Hyviarinen, A. (2007). Some Extensions of Score Matching. Computational Statistics & Data
Analysis, 51(5):2499-2512.

Kabluchko, Z., Schlather, M., and de Haan, L. (2009). Stationary Max-stable Fields
Associated to Negative Definite Functions. Annals of Probability, 37(5):2042—2065.

Lindskog, F., Resnick, S. I., and Roy, J. (2014). Regularly Varying Measures on Metric Spaces:
Hidden Regular Variation and Hidden Jumps. Probability Surveys, 11(1):270-314.

G lized peak hresholds modelling 25 / 29




L (il

i 1 ECOLE POLYTECHNIQUE
Risk functional FEDERALE DE LAUSANNE

Risk functional
A monotonic increasing functional r : C(S) — R satisfying

r continuous at {B — A¢71} andr(B—A¢71) <0, £€>0
r(x) > —oco, x— —o0 £ <0,

and for which there are functions A > 0 and B such that

lim sup 713'7(5) — r(bn) —
=% gz § I'(an)

an(s)
d%)iA@)

is called a risk functional.

lim sup =0,

n— oo =)

G lized peak hresholds modelling 26 / 29




(|

i i _ ECOLE POLYTECHNIQUE
Properties of generalized r-Pareto processes ECOLE POLYTECHNIQUE

» The r-exceedance distribution of P is

g

oV
Pr{r(P)>p}:{1+gp “} —

» The generalized r-Pareto process has generalized Pareto marignals above a
sufficiently high threshold ug > 0:

— ugA(s0) — B(s0) }71/5 P> uo

Pr{P(s0) > p| P(s0) > uo} = {1 ¢ o(uo)

with o(ug) = cA(sp) + & {uo — A(so)u — B(so)}-
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Proposition (de Fondeville and Davison, 2017)

The scoring rule i ()}, ,, ) is strictly proper, i.e., the estimator

n m
r 1 n\ __ X r m
05{x ,...,x}—arg?ea\é(ze{r(u—n)>1}5()\67un,x ), (3)
m=1
where ¢{-} is the indicator function and x*,...,x" are sampled from the random

vector X with normalized marginals, is consistent and asymptotically normal as
n — oo and u, — oo with N, = o(n).

In a simulation study, we compared the gradient scoring rule with spectral likelihood
and censored likelihood.
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Scales Locations
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