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US Infant Mortality Data by County
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Ratio of deaths to births, each averaged over 2002-2004.
Darker indicates higher rate. n =3071

Question (regression): which factors impact infant mortality ?
(Yang, Haran, Matthews, 2008)
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Bamber et al. (2001)

Question: How to interpolate this surface?
How to calibrate (infer parameters for) ice sheet model based
on these data? (Chang, Haran, Applegate, Pollard, 2016a,b,c)
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House Finch Abundances

House Finch in 1999 (BBS)

Pardieck et al. 2015. North American Breeding Bird Survey Dataset 1966 - 2014
Question (interpolation): Abundance at unsampled location?
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Talk Summary

v

Spatial data are common in environmental science:

disease modeling, ecology, climate...
Spatial generalized linear mixed models (SGLMMs)
» Popular for lattice or areal data
Besag, York, Mollie (1991) ~ 3,000 citations
» and continuous-domain data
Diggle et al. (1998) ~ 2,000 citations
Broadly: hierarchical spatial models (Banerjee et al. ~
2,500 citations)
Shortcomings of SGLMMs:
1. Computational challenges, especially with large data sets
2. Regression parameter interpretation is unreliable

v

v

v

| will describe projection-based methods that
simultaneously resolve both these issues
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Spatial Generalized Linear Mixed Models

» Spatial linear mixed models (SLMMs): for Gaussian data
» Spatial generalized linear mixed models (SGLMMs): for
non-Gaussian data
» What are these models used for?
1. interpolation (continuous-domain) or smoothing the spatial
field (lattice-domain)

2. regression while adjusting for residual spatial dependence
3. as a component in a multi-level hierarchical model
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Spatial Linear Mixed Models (SLMMs)

» Spatial process at locations € D c R% is

Z(s) = X(s)B+ W(s)

» X(s) is covariate at s, and 3 is a vector of coefficients
» Model dependence among spatial random variables by
imposing it on W(s), the random effects
» Same framework works for both lattice data and
continuous-domain data. Model for W(s)
» Continuous domain: Gaussian process (GP)
» Lattice data: Gaussian Markov Random field (GMRF)
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Gaussian Processes

Infinite dimensional process {W(s) : s € D} such that

(W(sy),... W(sn))" | © ~ N(0,%(9))

» Covariance often specified via a positive definite
covariance function with parameters ©

» E.g. (stationary) exponential covariance function

> ©=(0%9)

¥i(©) = Cov(W(s)), W(s))) = o® exp(—|s; — sj|/¢)
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Gaussian Markov Random Fields

(W(s1),... W(sn))" | © ~ N(0,Q(O) )

Q(©) is a precision matrix based on a graph that describes a
neighborhood structure: adjacencies specify dependence
(skip detalils....)
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Inference for Spatial Linear Mixed Models

» MLE involves low-dimensional optimization

argmax L(©,3;2)
0,8

» Bayesian inference:

» Priors for ©,3
» Inference based on 7(©,3 | Z) x L(O, 3;Z)p(©)p(B)

» Markov chain Monte Carlo with low-dimensional posterior
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Literature on Computing for Spatial Linear Models

» Likelihood: high-dimensional matrices, O(n®) operations
» Lots of excellent approaches that scale very well

» Multiresolution methods, with parallelizations (Katzfuss,
2017; Katzfuss and Hammerling, 2014)

» Nearest neighbor process (Datta et al., 2016)

» Random projections (Banerjee, A., Tokdar, Dunson, 2013)

» Stochastic PDEs (Lindgren et al., 2011)

» Lattice kriging (Nychka et al., 2010)

» Predictive process (Banerjee, Gelfand, Finley, Sang 2008)

Largely a “solved” problem
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Spatial Generalized Linear Mixed Models (SGLMMs)

Model for Z at location s;
1. Z(s)|B8,0, W(s;),i =1,...,n, conditionally independent
E.g. Z(s)) | B, W(s;) ~Poisson(u(s;))
2. Link function g(u(s;)) = X(s;)3 + W(s))
E.g. log(ui) = X(si)B + W(si)
3. W= (W(sq),..., W(sp))" modeled as

» Gaussian Markov random field model (Besag et al., 1991)
» Gaussian processes (Diggle et al., 1998)

4. Priors for ©,3

Commonly embedded within hierarchical models (cf. Banerjee,
Carlin, Gelfand, 2014)

Murali Haran, Penn State



Problem 1. Computational Challenge

» MLE: low-dimensional optimization of integrated likelihood

argmax//;e,BWZ)

High-dimensional integration due to W
MCMC-EM or MCMC-MLE: slow, challenging to implement
(Zhang, 2002, 2003; Christensen, 2004)

» Bayesian inference based on

m(©,8,W|2)
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Bayes for SGLMMs

v

Handle missing data easily

v

Combine multiple data sets and uncertainties elegantly

v

Rich inference about parameters, functions of parameters

MCMC-based inference is easier than for MLE

v
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Computing for SGLMMs

But... MCMC algorithms are not easy/scalable

» MCMC is slow per iteration due to high-dimensional
m(©,8,W | Z)

» Markov chain is slow mixing (need longer chain) due to
strong cross-correlations among W

» Can become impractical for large N

» Impetus for very fast, popular non-MCMC approach: INLA
and follow-up work (Rue, Lindgren, Simpson....*)
Later: Our approach may be combined with INLA
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MCMC for SGLMMs

» Markov chain is slow mixing (need longer Markov chain)
due to strong cross-correlations among W

» Block updating schemes may help. E.g. blocks:

7(W|©,8,2)| (0] B,W,2)||x(8]|©,W,2Z)|

» Challenging to obtain good proposals for W, especially for
high-dimensions
» Computationally expensive per update
Attempts to address these issues: Rue and Held (2005),
Christensen et al. (2006), Haran and Tierney (2003/2010)
They do not scale well (problem for N > 1000 )
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Problem 2. Spatial Confounding

> Let P=X(XTX)"'XT,and Pt = |- P

» PWis in span of X

» Basic regression issue: multicollinearity

Leads to variance inflation, unstable estimates of 3

(Hodges and Reich 2010; Paciorek, 2010)

Hints of the symptom, without diagnosis, by others (e.g. Diggle,
1994)
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Sketch of Our General Solution

v

Culprit: W is cause of confounding as well as
computational challenges

v

W: just a device to induce dependence
Idea: project W on random effects é such that\

v

v

Preserve spatial dependence implied by original W
4 is low-dimensional

4 is less dependent (“cross-correlated”)

Project orthogonal to space spanned by X

v

v

v

v

Applies to both Gaussian process and GMRF models
» GMRF models: projection based on Moran operator which
uses neighborhood structure (Hughes and Haran, 2013)
» GPs and GMRFs: general approach using
eigendecomposition (Guan and Haran, 2017)
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Outline of Projection-based Approach

1. Fast approximation to the principal components of >,
» Approximate first m eigenvectors U = (uy,...,up) and
eigenvalues D, = diag(A1, ..., Am)
2. Replace n-dimensional W with UD,1,,/25
4: lower dimensional and ~ independent
faster and better mixing MCMC algorithm
3. Project UD}Y?68 to C+(X)
Makes random effects orthogonal to fixed effects
handles confounding issues

4. Fit the reduced model under Bayesian framework
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Step 1: Eigendecomposition

For speed we use a fast approximate eigendecomposition

Left: deterministic approximation
Center: random approximation
Right: exact eigendecomposition

15th Eigenvector (Nystrom) 15th Eigenvector (Random Projection) 15th Eigenvector (Exact)
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» Random projections used in Banerjee, Tokdar, Dunson
(2013); also Sarlos (2006), Halko et al. (2009)
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Step 2: Reducing Dimensions via Projection

» Approximates the leading m eigencomponents of the
covariance matrix X,

» Replace W with UD;n/Zé

Murali Haran, Penn State

21



Step 3: Projection to Handle Confounding

» Let P=X(XTX)"'XT,and P- =1-P
» Recall: PW is in span of X, causes confounding

» Solution: Remove it
9{E(Z| B,W,02,¢)} = XB+W = X3 + PW + PLW

[cf. Reich et al., 2006; Hughes and Haran, 2013]
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Step 4: Inference Based on Reparameterization

» Spatial generalized linear mixed models
Usual: inference based on 7(3, 02, ¢, W | Z)

» Obtain U, Dy, of ¥,

» D, is m-dim diagonal matrix with D; = i eigenvalue

» FRP: replace W with UD}/25 to approximate SGLMM or
RRP: replace W with P+ UD,1n/ 25 to approximate restricted
spatial model

» Reduced Model:

9{E(Z | B,U, D, 8)} = X8 + (P-UD}/?):6
61 ... PR N0, 0%))

Now: inference based on (83, 2, ¢, 4 | Z)
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Reduced Correlations

Between Fixed and Random Effects Among Random Effects
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» Reparameterized random effects are approximately
independent of each other and fixed effects
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Computational Speed-up

v

Drastic reduction in dimension of random effects, e.g. m =
50 for n = 1,000, or m = 60 for n = 3,000,...

v

Reparameterized random effects are approximately
independent of each other and fixed effects

v

Easy to construct fast-mixing MCMC algorithm

v

Eg. 10 to 50 to 300-fold reduction in compute time
Scale beyond n > 10,0007

» computational cost is of order nm?
» discretization of space/pre-computing
» new decomposition algorithms/parallelization

v
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Prediction Study: Poisson SGLMM

» Simulate n = 1000 spatial count data
» Prediction on 20 x 20 grid using rank = 50

True Expectation (log)
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FRP: full model
RRP: restricted model (orthogonalized random effects)
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Summary of Projected SGLMM

» reduces dimensions + better MCMC mixing
» adjusts for spatial confounding

» simple to implement, mostly “automated”

Murali Haran, Penn State
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Summary of Projected SGLMM

» reduces dimensions + better MCMC mixing
» adjusts for spatial confounding
» simple to implement, mostly “automated”

» Our approach does not result in exchangeability between
observed and predicted. (Predictive process does.)

» But we use optimal (minimal truncation error) projection

» And prediction is still straightforward
» Other approaches
» may be better for the basic linear model
» our approach works better for SGLMMs
» our approach and predictive process approach: easy for
more complex hierarchical settings
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FAQ (Stuff/Wit/Insight/Matters of Great Importance?®)

(* cf. Brown, Coeurjolly, Duchesne et al., 2017)

1. Why not just use INLA?
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FAQ (Stuff/Wit/Insight/Matters of Great Importance?®)

(* cf. Brown, Coeurjolly, Duchesne et al., 2017)

1. Why not just use INLA?

» Great ideal
» Our reparameterization can be combined with INLA
» For multi-level hierarchies or if people are interested in a
fully sample-based approach, our approach still applies
2. How is this different from a reduced-rank approach?

» It is not different
» Similar to predictive process approach. But... more
efficient, more accurate, and automated (knot choice)

3. How about log-Gaussian Cox processes?

» Under consideration....
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