...you might like to give a talk about how priors are
useful for modelling spatial data but we certainly would
not hold you to that
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Overview

Plan

Priors

@ Background on priors

@ Penalised complexity priors
Examples

@ The easier ones

@ Area models (more)

e Gaussian fields (less)
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Background

Joint and ongoing work with many, including...

A
'

Daniel Simpson Haakon Bakka Anna Sterrantino Andrea Riebler

Geir-A Fuglstad Finn Lindgren Massimo Ventrucci Sigrunn Sgrbye

and others

H.Rue (bayescomp.kaust.edu.sa) about priors December 4, 2017

3/43



Our background: R-INLA (www.r-inla.org)

@ INLA do Bayesian inference on Latent Gaussian models

o & = E DA
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Our background: R-INLA (www.r-inla.org)

INLA do Bayesian inference on Latent Gaussian models

Accurate, fast, scale well wrt size, great spatial models support, quite
general with an easy R-interface (www.r-inla.org).

Build models adding model component

n=XB+f(..;01)+ fH(...02) +

for Gaussians {f;(-)} conditioned on some hyperparameters 6

Likelihood(s) have hyper-parameters as well

Of course, the model include prior specification for 6, which is the
topic of this talk
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What do we know about priors for 8 in this framework?

o & = E DA
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Background

What do we know about priors for 8 in this framework?

| cannot say what you know, here is my story...

@ Not much. And | am not proud of it!
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What do we know about priors for 8 in this framework?

| cannot say what you know, here is my story...
@ Not much. And | am not proud of it!

o | knew reference priors, which |, except in simple cases, cannot
compute, and | do not want to use. Conjugate priors does not apply
here, and is more “math, not priors”.

@ | could dig up similar studies/models/examples, and copy and refer to
their prior choice. (Risk averse)

@ | ran into problems when a student presented his/her hierarchical
model and ask about advice for how to set priors for the f.ex
5-dimensional hyperparameter ¢; | did not believed my own advises.
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Background

What do we know about priors for 8 in this framework?

| cannot say what you know, here is my story...
@ Not much. And | am not proud of it!

o | knew reference priors, which |, except in simple cases, cannot
compute, and | do not want to use. Conjugate priors does not apply
here, and is more “math, not priors”.

| could dig up similar studies/models/examples, and copy and refer to
their prior choice. (Risk averse)

| ran into problems when a student presented his/her hierarchical
model and ask about advice for how to set priors for the f.ex
5-dimensional hyperparameter ¢; | did not believed my own advises.

@ | do not think that | am that unique
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Why is the additive model situation different?

Classical:

@ | want to estimate the precision from data y, without any context

Additive model:
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Classical:
@ | want to estimate the precision from data y, without any context

@ In this case | just want to get it right!

Additive model:
@ From data y | add an additional iid random effect
formula =y ~ ... + f(idx, model="iid")

with the “hope” it is not there.
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Why is the additive model situation different?

Classical:
@ | want to estimate the precision from data y, without any context

@ In this case | just want to get it right!

Additive model:
@ From data y | add an additional iid random effect
formula =y ~ ... + f(idx, model="iid")
with the “hope” it is not there.

@ In this case | have a preference for “no random effect” doing inference
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Background

How to proceed from here?

@ How to think about priors in
hierarchical models?
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Background

How to proceed from here?

@ How to think about priors in
hierarchical models?

@ Is it possible to understand/have
good intuition about them?
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0, 0% T, pp, ..

@ | want to understand their
impact on something |
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Parameters!

| have an issue with parameters.
o, 0% T, p, P, ...

| want to understand their
impact on something |

understand, not their numerical
values!

@ Invariance
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KISS (Keep it simple, stupid!)

@ ...most systems work best if
they are kept simple rather than
made complicated

@ ...there is no value in a solution
being “clever” but in one being
easily understandable
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Background

Our take on the “prior”-problem

which is

a principled and practical approach to constructing priors

KISS-friendly

a unified way to think about priors
useful

is widely applicable

is transparent

invariant for reparameterisations
something I can understand

better than not knowing what to do

It is not “optimal” or “unique” in any sense. If you prefer something else,
please do...
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Principle I: Occam’s razor

CORE PRINCIPLES IN RESEARCH

OCCAM'S RAZOR OCCAM'S PROFESSOR
“WHMEN FACED WMH TWo POSSBLE “WHEN FACED WITH TWO POSSIBLE WAYS OF
EXPLAHATIONS, THE SMPLER oF DOING SOMETUING, THE MORE

THE TWO IS TUE ONE MOST OHE 15 TUE ONE YOouR

LKELY TO BE TRUE.” MOST LIKELY ASK You To DO.”

W, PHDCOMICS. COM

o Prefer simplicity over complexity. Simplicity defines the base model

o F
H.Rue (bayescomp.kaust.edu.sa) about priors



Principle I: Occam’s razor

CORE PRINCIPLES IN RESEARCH §
e
¢
OCCAM'S RAZOR OCCAM'S PROFESSOR
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THE TWO 15 THE ONE MOST ONE 15 THE ONE YOUR PROFESSOR WiLL
LIKELY TD BE TRUE." MOST LIKELY ASK You TO T0."

WU, PHRCOMICS. COM

o Prefer simplicity over complexity. Simplicity defines the base model
e x ~ N(0,71), base model T = 00
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WU, PHRCOMICS. COM

o Prefer simplicity over complexity. Simplicity defines the base model
e x ~ N(0,71), base model T = 00

@ Student-t, base model Gaussian

@ Spline model, base model linear/constant effect
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Principle I: Occam’s razor

CORE PRINCIPLES IN RESEARCH §
e
¢
OCCAM'S RAZOR OCCAM'S PROFESSOR
“WHEN FACED WMH TWo POSSBLE “WHEN FACED WITH TWO POSSIBLE WAYS OF
TIONS, THE SMPLER oF DOING SOMETHING, THE MORE COMPLICATED
THE TWO 15 THE ONE MOST ONE 15 THE ONE YOUR PROFESSOR WiLL
LIKELY TD BE TRUE." MOST LIKELY ASK You TO T0."

WU, PHRCOMICS. COM

Prefer simplicity over complexity. Simplicity defines the base model
x ~ N(0,7l), base model 7 = o0

Student-t, base model Gaussian

Spline model, base model linear/constant effect

AR(1), base model p=0o0r p=1"
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Principle I: Occam’s razor

Consider the more complex model

m(x[§),  £>0
with base model 7(x|¢ = 0).
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@ The prior for £ > 0 should penalise the complexity introduced by £

@ The prior should be decaying with increasing measure by the
complexity (the mode should be at the base model)
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Principle I: Occam’s razor

Consider the more complex model

m(x[€), £>0

with base model 7(x|¢ = 0).
@ The prior for £ > 0 should penalise the complexity introduced by £

@ The prior should be decaying with increasing measure by the
complexity (the mode should be at the base model)

A prior will cause overfitting/force complexity if, loosely speaking,
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Principle II: Measure of complexity

Use Kullback-Leibler discrepancy to measure the
increased complexity introduced by £ > 0,

KLD(f|lg) = / f(x)log (%) dx

for flexible model f and base model g.
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Principle II: Measure of complexity

Use Kullback-Leibler discrepancy to measure the
increased complexity introduced by £ > 0,

KLD(f|lg) = / f(x)log (%) dx

for flexible model f and base model g.

Gives a measure of the information lost when the
base model is used to approximate the more flexible
models

H.Rue (bayescomp.kaust.edu.sa) about priors December 4, 2017 13 / 43



Principle Ill: Constant rate penalisation

Define
d(§) = V2 KLD(¢)

as the (uni-directional) “distance” from flexible-model to the base model.
Need the square-root to get the scale right.
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Principle Ill: Constant rate penalisation

Define
d(§) = V2 KLD(¢)

as the (uni-directional) “distance” from flexible-model to the base model.
Need the square-root to get the scale right.

Constant rate penalisation:

7(d) = Aexp (—Ad), A>0

with mode at d =0

H.Rue (bayescomp.kaust.edu.sa) about priors December 4, 2017 14 / 43



Principle Ill: Constant rate penalisation

Define
d(§) = V2 KLD(¢)

as the (uni-directional) “distance” from flexible-model to the base model.
Need the square-root to get the scale right.

Constant rate penalisation:

7(d) = Aexp (—Ad), A>0

with mode at d =0

Invariance: OK
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Riigr
Principle IV: User-defined scaling

The rate A is determined from knowledge of the scale or some
interpretable property or impact, Q(¢) of &:

Pr(Q(&§) > U) =«
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Riigr
Principle IV: User-defined scaling

The rate A is determined from knowledge of the scale or some
interpretable property or impact, Q(¢) of &:

Pr(Q(&§) > U) =«

@ Problem dependent: must be!!!

@ Can make the prior more informative or weakly informative this way
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g

o & = E DA
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N up
@ Base model N(0,1)

@ Flexible model N(u,1), u > 0.
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Example

Ma

ug
@ Base model N(0,1)

@ Flexible model N(u,1), u > 0.
e KLD is p?/2 and d(p) = p.
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Example
Ua ‘ HB ‘
@ Base model N(0,1)
@ Flexible model N(u,1), u > 0.
e KLD is p?/2 and d(p) = p.
e PC prior:

m(n) = Aexp(—An)
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Example

“A Hp
@ Base model N(0,1)
@ Flexible model N(u,1), u > 0.
e KLD is p?/2 and d(p) = p.
@ PC prior:

m(n) = Aexp(—An)

@ Can determine A from a question like

Prob(p > u) = «
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Example: Student-t with unit variance

@ Degrees of freedom (dof) parameter v > 2.
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Example: Student-t with unit variance

@ Degrees of freedom (dof) parameter v > 2.

o This is a difficult case: It is hard to intuitively
construct any reasonable prior for v at all.
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Example: Student-t with unit variance

@ Degrees of freedom (dof) parameter v > 2.

o This is a difficult case: It is hard to intuitively
construct any reasonable prior for v at all.

@ It is hard to even think of dof.
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A useful but negative result

Result Let 7, () be a prior for v > 2 where E(v) < oo, then m4(0) =0
and the prior overfits

o & E DA
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A useful but negative result

Result Let 7, () be a prior for v > 2 where E(v) < oo, then m4(0) =0
and the prior overfits

@ Priors with finite expectation defines the flexible model to be different
from the base model!!!
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A useful but negative result

Result Let 7, () be a prior for v > 2 where E(v) < oo, then m4(0) =0
and the prior overfits

@ Priors with finite expectation defines the flexible model to be different
from the base model!!!

@ Why? A finite expectation bounds the tail behaviour as v — oo
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The student.t case
The exp-prior with mean 5, 10, 20, converted to a prior for

the distance

Distance
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The uniform prior with upper= 20, 50, 100, converted to a
prior for the distance

(=]
[¢¢]

Density
40 60
|

20

R .

T T T
0.00 005 010 015 020 025 0.30
Distance
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The precision of a Gaussian

PC prior for the precision k when k = oo defines the
base model

e “random effects” /iid-model
@ The smoothing parameter in spline models

@ etc...
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The precision of a Gaussian

PC prior for the precision k when k = oo defines the
base model

e “random effects” /iid-model
@ The smoothing parameter in spline models

@ etc...

Result Let 7, (k) be a prior for k > 0 where
E(k) < oo, then m4(0) = 0 and the prior overfits.
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The precision case (II)

(o) = Aexp(—Ao)

o & = E DA
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Comparison with a similar Gamma-prior

Density
0.015  0.020 0.025  0.030
1 !

0.010
1

0.005
1

0.000
1

Precision
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Comparison with a similar Gamma-prior

Density

2.0

Distance
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Student-t case revisited

@ PC prior for the dof v

o & = E DA
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Student-t case revisited

@ PC prior for the dof v

@ PC prior for precision &

o & = E DA
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Student-t case revisited

@ PC prior for the dof v

@ PC prior for precision &

@ This is OK as the parameters are (almost) orthogonal in interpretation
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SIEREINGTE S Area models

Area models
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SMR

0.000 to 1.150
1.150 to 1.508 3
1.508 to 1.945
1.945 to 2.464
2.464105.714
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Many call this “the CAR model”, never really understood why. This is why it is

named model="besag" in R-INLA
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There are several issues!

@ What to do with singeltons?
@ What to do with islands?

-ZEro

@ What to do with ‘sum-to

constraint?
@ What to do with effect of the

graph itself?

[
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Without getting these issues right and internally coherent, there is no

point of thinking of a prior for k.
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There are several issues!

@ What to do with singeltons?
@ What to do with islands?

@ What to do with ‘sum-to

constraint?
@ What to do with effect of the

graph itself?

Without getting these issues right and internally coherent, there is no

point of thinking of a prior for k. Same issues, but more serious, with

RW1/RW2 models.
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Scaling (1)

@ Assume a connected graph

@ « controls the deviation from the null-space
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Area models
Scaling (1)

@ Assume a connected graph
@ « controls the deviation from the null-space

@ The geometric mean of the marginal
variances are

## largest area

> gmean(diag(INLA:::inla.ginv(Q)))
[1] 0.4987539796

## island

> gmean(diag(INLA:::inla.ginv(Q)))
[1] 0.3910586057

when k =1
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Spatial models

Scaling (I1)
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Spatial models

Scaling (I1)

@ Scale each connected component to have

unit gmean
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marginal precision, controlling the deviance

@ Then k is has clear interpretation as the
from the null-space
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Area models
Scaling (111)

@ PC-prior for k

R
(0-09)
(0.9-1]
(1-1.1]
(L1-258]
Missing

formula = obs35 ~ 1+f(id, model=’besag’,
scale.model=TRUE, graph=’Toscana.graph’,
hyper = list(prec = list(
prior = "pc.prec",
param = c(1, 0.01))))
res = inla(formula, family="poisson", E=exp35, data=counties@data)
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Scaling (111)

@ PC-prior for k

e Feasible max range (—1,1)

R
(0-09)
(0.9-1]
(1-1.1]
(L1-258]
Missing

formula = obs35 ~ 1+f(id, model=’besag’,
scale.model=TRUE, graph=’Toscana.graph’,
hyper = list(prec = list(
prior = "pc.prec",
param = c(1, 0.01))))
res = inla(formula, family="poisson", E=exp35, data=counties@data)
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Area models
Scaling (111)

@ PC-prior for k
e Feasible max range (—1,1)
e Gives PC-prior params: (U,«) = (1,0.01)

R
(0-09)
(0.9-1]
(1-1.1]
(L1-258]
Missing

formula = obs35 ~ 1+f(id, model=’besag’,
scale.model=TRUE, graph=’Toscana.graph’,
hyper = list(prec = list(
prior = "pc.prec",
param = c(1, 0.01))))
res = inla(formula, family="poisson", E=exp35, data=counties@data)
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Towards the BYM-model

@ Additional random effect: structured and
unstructured
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Towards the BYM-model

@ Additional random effect: structured and
unstructured

@ Here, there is a lot of “confusion” in the
literature

[m] = =
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Spatial models

Towards the BYM-model

@ Additional random effect: structured and
unstructured

@ Here, there is a lot of “confusion” in the
literature

@ We also need to distribute variance between
the structured and unstructured part

H.Rue (bayescomp.kaust.edu.sa)

about priors
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The Leroux model

@ Unstructured precision matrix /
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SIEREINGTE S Area models

The Leroux model

@ Unstructured precision matrix /
@ Structured precision matrix R

@ Leroux model

(1= ¢) + ¢R)
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Spatial models Area models

The Leroux model

Unstructured precision matrix /

Structured precision matrix R

Leroux model

(1= ¢) + ¢R)

@ Just the wrong way to doit!
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Spatial models Area models

The Leroux model

Unstructured precision matrix /

Structured precision matrix R

Leroux model

(1= ¢) + ¢R)

@ Just the wrong way to doit!

e Convex combination of precision
matrices??7?
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Spatial models Area models

The Leroux model

Unstructured precision matrix /

Structured precision matrix R

Leroux model

(1= ¢) + ¢R)

@ Just the wrong way to doit!
e Convex combination of precision
matrices??7?
e What is ¢ without scaling???
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Spatial models Area models

The Leroux model

Unstructured precision matrix /

Structured precision matrix R

Leroux model

(1= ¢) + ¢R)

@ Just the wrong way to doit!
e Convex combination of precision
matrices??7?
e What is ¢ without scaling???
o No meaningful interpretation

H.Rue (bayescomp.kaust.edu.sa) about priors December 4, 2017 32 /43
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The BYM model: alternative paramerisation

@ The basic idea is to have a convex
combination of two limiting cases
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@ The basic idea is to have a convex
combination of two limiting cases
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Spatial models Area models

The BYM model: alternative paramerisation

@ The basic idea is to have a convex
combination of two limiting cases
e unstructured
o structured (scaled!)
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Spatial models Area models

The BYM model: alternative paramerisation

@ The basic idea is to have a convex
combination of two limiting cases

e unstructured
o structured (scaled!)

@ This means

S e

(1—9) +¢R")

Cov(sum) =

which is not the Leroux model
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Spatial models Area models

The BYM model: alternative paramerisation

@ The basic idea is to have a convex
combination of two limiting cases

e unstructured
o structured (scaled!)

@ This means

S e

(1—9) +¢R")

Cov(sum) =

which is not the Leroux model
@ We have priors
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Spatial models Area models

The BYM model: alternative paramerisation

@ The basic idea is to have a convex
combination of two limiting cases

e unstructured
o structured (scaled!)

@ This means

S e

(1—9) +¢R")

Cov(sum) =

which is not the Leroux model
@ We have priors
o PC-prior for T to shrink the sum to zero
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SIEREINGTE S Area models

The BYM model: alternative paramerisation

@ The basic idea is to have a convex
combination of two limiting cases

e unstructured
o structured (scaled!)

@ This means

S e

Cov(sum) = = ((1 — @) + ¢R") CHOICE
which is not the Leroux model
@ We have priors

o PC-prior for T to shrink the sum to zero
e PC-prior for ¢ to shrink to the simpler
model ¢ = 0, and is graph dependent

H.Rue (bayescomp.kaust.edu.sa) about priors December 4, 2017 33 /43
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Computation of the prior for ¢

e Depends on the graph or R~}

i ualka
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@ Computations need to make use of the
sparse structure of R
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e Depends on the graph or R~}

@ Computations need to make use of the
sparse structure of R

@ Let z = x4y, where x and y are indep
normal
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A
Computation of the prior for ¢

e Depends on the graph or R~}

@ Computations need to make use of the
sparse structure of R

@ Let z = x4y, where x and y are indep
normal

@ Then z is the marginal from the joint
distribution of (x, z)

x ~ N(0,..) and z|x ~ N(x,...)

and (x, z) is Markov
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A
Computation of the prior for ¢

e Depends on the graph or R~}

@ Computations need to make use of the
sparse structure of R

@ Let z = x4y, where x and y are indep
normal

@ Then z is the marginal from the joint
distribution of (x, z)

x ~ N(0,..) and z|x ~ N(x,...)

and (x, z) is Markov

@ And we need to use that

(I+A H=AA+ 1)
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Spatial models Area models

Prior for ¢

Q = INLA:::inla.pc.bym.Q("Toscana.graph")
prior = INLA:::inla.pc.bym.phi(Q,
u = 0.5, alpha = 0.5)
phi = seq(0.01, 0.99, 1len=1000)
plot(phi, exp(prior(phi)), lwd=2, type="1")

exp(prior(phi))

Rue (bayescomp.kaust.edu about priors
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A
Application

Proper Poisson quantile regression...

formula = obs35 ~ 1+f(id,
model="bym’,
scale.model=TRUE,
graph=’Toscana.graph’)
res = inla(formula, family="poisson",

E=exp35, data=counties@data, oos,
. . ©.7.08 *#

control.family = list( 0o

control.link = list( o

(1.2,1.3]
(13,14

model = "quantile", azsa o A S
quantile = 0.9)))
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Gaussian fields

o Gaussian field in RY (d< 3) with a Matérn

covariance function with fixed smoothness v.

o & = E DA
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Spatial models

Gaussian fields

o Gaussian field in RY (d< 3) with a Matérn
covariance function with fixed smoothness v.

@ PC-prior for range r and variance o2, with base
model 02 = 0 and r = oo (a constant).

[m] = =
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Spatial models Area models

Gaussian fields

o Gaussian field in RY (d< 3) with a Matérn
covariance function with fixed smoothness v.

@ PC-prior for range r and variance o2, with base
model 02 = 0 and r = oo (a constant).

e Joint PC-prior is (dim= 2)
(1/r,0) ~ Exp(Ar) x Exp(As),

with E(r) = oo to prevent overfitting.

H.Rue (bayescomp.kaust.edu.sa) about priors
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Spatial models Area models

Non-stationary Gaussian fields

71'(9) = 7"'(6)stationary) X W(gnon—stationary | Hstationary)
N——— -~
PC-prior for range & stdev shrinkage towards stationarity

H.Rue (bayescomp.kaust.edu.sa) about priors December 4, 2017
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Spatial models
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Spatial models Area models

Non-separable space-time model

Based on Finn's ideas

(e~ A =(5,1) = 77 (s,1)

(1 — 7eA)¥€/2E(s,6t) = We(s,dt)

written up in the forthcoming PhD-thesis of Elias Krainski.
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Spatial models Area models
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Based on Finn's ideas

(e~ A =(5,1) = 77 (s,1)

(1 — 7eA)¥€/2E(s,6t) = We(s,dt)

written up in the forthcoming PhD-thesis of Elias Krainski.

We need to understand the parameters in this model, which we can map
into

@ marginal variance

@ spatial range

@ temporal range
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Makes a difference

Need to ‘calibrate’ priors based on intuitive model properties

PC-priors is a principled constructive approach to construct priors,
and seems very promising

Easy and natural interpretation, as a well defined shrinkage to a
base-model: KISS!

Still work in progress
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