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Tropical rain forest data

Large Spatio-Temporal point pattern data:

I Locations of high number (≈ 300.000) of trees

I Many (≈ 300) different types of trees

I temporal data: trees observed each 5 years
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Aim: discuss selected approaches to statistical analysis of
multivariate point patterns - and some plans for further
development

Outline:

1. bivariate cross summary statistics

2. multivariate log Gaussian Cox process models

3. efficient algorithms and regularization
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Example: Lansing Woods data (small)
Locations of 6 types of trees in Lansing Woods, Michigan.

lansing
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Each type separately:
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Objectives of statistical analysis

I Basic: study bivariate dependence for pairs of species

I Advanced: study underlying mechanisms that govern
multivariate dependence structure

Both objectives can be addressed using statistics for spatial point
processes.
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Multivariate point process
Multivariate point process on R2:

X = (X1, . . . ,Xp)

collection of point processes Xi .

Each Xi random set of points in R2 so that Xi ∩ B is finite for any
bounded B ⊆ R2.

Intensity function ρi (·):

E#Xi ∩ B =

∫
B
ρi (u)du

ρi (u)du ≈ P(Xi has a point at u)

NB: u generic notation for location in R2.
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Cross summary statistics (stationary case)
Stationary case: ρj(u) = ρj constant.

Consider number of points in Xj within distance r from u ∈ Xi .

●

●

●

●

u
r

Cross Kij -function:

ρjKij(r) = E [ number of points in Xj within distance r from u |u ∈ Xi ]

Can be generalized to the case of non-constant intensity ρj(·).
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Cross pair correlation function
Kij is a cumulative quantity.

Pair correlation function is derivative:

gij(r) =
K ′ij(r)

2πr

Infinitesimal interpretation:

gij(‖u − v‖) ≈
P(Xj has point at v |Xi has point at u)

P(Xj has point at v)

If Xi and Xj independent then

P(Xj has point at v |Xi has point at u) = P(Xj has point at v)

⇒ gij(·) = 1

gij(·) = 1⇒ Xi and Xj uncorrelated
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Example: Lansing woods
6 species (⇒ 15 pairs of species):

lansing
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Empirical cross pair correlation functions
Pair correlation function can be estimated using kernel density
estimate.
4 out of 15 cross pair correlation functions:
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E.g. black oak and maple:

  black oak and maple
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Seems that these species are segregated.

Perhaps species adapted to different environmental conditions ?
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Issues with non-parametric analyses

1. given p species we have many - O(p2) - cross summary
statistics.

I hard to grasp information in O(p2) plots.
I multiple testing.

2. pairwise/bivariate analyses only. Hard to get the big picture.

To learn more we need joint model-based approach.

Waagepetersen, Jalilian, Guan, Mateu (2016): multivariate log
Gaussian Cox processes (p = 9)

Rajala, Olhede, Murrell (2017): multivariate Gibbs point processes
(p = 83) - penalized pseudo-likelihood estimation.

I prefer Cox due to easier interpretation - but want higher p ,
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Multivariate Cox processes

Consider a multivariate non-negative random process

Λ(u) = [Λ1(u), . . . ,Λp(u)], u ∈ R2

A multivariate point process

X = (X1, . . . ,Xp)

is a multivariate Cox process if X|Λ is a multivariate Poisson
process with intensity function Λ.

Within- and between-species dependence originates from
dependencies within and between the Λi .

Note Λ is unobserved latent process
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Multivariate log Gaussian Cox process

log Λi (u) = z(u)Tβi + Yi (u) + Ui (u)

where

Yi (u) =

q∑
l=1

αilEl(u)

and E1, . . . ,Eq, U1, . . . ,Up independent Gaussian random fields.

I z(u) observed spatial covariate

I El common latent factors (e.g. unobserved environmental
covariates).

I Ui species-specific factors (within-species clustering - e.g. seed
dispersal)

I known as linear model of coregionalization in geostatistics
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Recall:
Λi (u) = exp[z(u)Tβi + Yi (u) + Ui (u)]

Intensity function:

ρi (u) = EΛi (u) = exp[z(u)Tβi+

q∑
l=1

α2
il/2+σ2i /2] = exp[µ+z(u)Tβi ]

Cross pair correlation function:

gij(h) =

{
exp

[∑q
l=1 βijlcl(h)

]
i 6= j

exp
[∑q

l=1 βijlcl(h) + 1[i = j ]σ2i ci (h)
]

i = j
βijl = αilαjl

where cl(·) and ci (·) correlation functions of the El and Ui .
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Estimation I

Intensity function can be estimated using composite likelihood
approach:

ρ̂i (u) = exp[µ̂+ z(u)β̂Ti ]

Non-parametric kernel density estimates ĝij(r) of cross pair
correlation functions.
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Estimation II

Use exponential correlation models for El and Ui :
c(r ;φ) = exp(−r/φ).

For fixed q minimize weighted least squares criterion to estimate θ
(α and covariance parameters)

Q(θ) =
∑
k,i ,j

wijk [log ĝij(tk)− log gij(tk ; θ, q)]2

Determination of q: K -fold cross-validation based on least squares
criterion (1/K of log ĝij(tk) left out)

E.g. K = 8 on a multicore machine with 8 CPUs → parallel
computation
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What can be inferred from fitted multivariate LGCP ?

I How many common latent fields E1, . . . ,Eq ? q measure of
‘complexity’

I Decomposition of covariance into covariance due to common
fields E1, . . . ,Eq and species specific fields Ui .

I Group species according to their pattern of dependence
αi1, . . . , αiq on common fields:

Yi (u) = αi1E1(u) + · · ·+ αiqEq(u)
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Decomposition of covariance

log Λi (u) = z(u)Tβi + Yi (u) + Ui (u)

Proportions of covariance due to common factors:

PVi (h) =
Cov[Yi (u),Yi (u + h)]

Cov[log Λi (u), log Λi (u + h)]
=

∑q
l=1 α

2
ilcl(h)∑q

l=1 α
2
ilcl(h) + σ2i ci (h)

20 / 36



Application
9 abundant species from Barro Colorado Island plot.

Covariates regarding topography, soil nutrients,...

One species Psychotria (2640 trees):

Psycho
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Cross-validation
CV (q) Q(q)
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36 αil and 4 correlation scale parameters for fields El . Total 40
parameters for 36 cross gij functions, i < j .

1.1 parameter for each cross pair correlation function.
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Estimated correlations at zero lag (with bootstrap
confidence intervals)

log Λi (u) = z(u)Tβi + Yi (u) + Ui (u)
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Most species positively
correlated. Species 1
(Psychotria) is exception.
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Proportions of variances at lag zero due to common fields
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Clustering of species
Based on similarity of vectors (αi1, . . . , αiq) and (αj1, . . . , αjq).
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Psychotria: distinct mode of seed dispersal (bird)

Protium p., Protium t., Tetragastris: the members of the
Burseraceae family.
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Challenges:

I only considered 9 species

I stability of estimation (numerical minimization)

I interpretability of model

Wishes:

I fast and stable computation.

I encourage sparse results.
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Estimation of αil

Focus on parameters αil , i = 1, . . . , p, l = 1, . . . , q.

Fixing all other parameters, object function is of the form∑
i ,j

‖yij − xijβij‖2

where yij L× 1 ‘response vector’ and xij L× q ‘design matrix’.

yijk = log ĝij(tk) (xij)kl = c(tk ;φl) βijl = αilαjl

One challenge: non-linear least-squares problem.

Another challenge: high-dimensional α - would be nice to use
regularization to promote sparsity and stability of least squares
solution.
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Regularized least squares

Introduce elastic net penalty∑
i ,j

‖yij − xijβij‖2 + λpξ(α)

where
pξ(α) =

∑
il

[
(1− ξ)α2

il + ξ|αil |
]

Efficient algorithms available for regularized linear models but our
problem is non-linear.
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Block updates

Consider iterative procedure where αm is value after m iterations.

Now update ith row αi · = (αi1, . . . , αiq) keeping other rows fixed:
minimize

Qi (αi ·) = 2

p∑
j=1
j 6=i

‖yij − x̃mij αi ·‖2 + ‖yii − xiiα
2
i ·‖2 + λpξ(αi ·)

Here we rewrote

‖yij − xijβ
m
ij ‖2 = ‖yij − xijDiag(αm

j · )α
m
i · ‖2 = ‖yij − x̃mij α

m
i · ‖2

Note except for ‘ii ’ term Qi (αi ·) looks exactly like regularized least
squares !
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Approximate block update

Consider modified criterion

Q̃i (αi ·) = 2

p∑
j=1
j 6=i

‖yij − x̃mij αi ·‖2 + 2‖yii − x̃mii αi ·‖2 + λpξ(αi ·)

where
x̃mii = xiiDiag(αm

i · )

Minimizing Q̃i (αi ·) standard regularized least squares problem (e.g.
glmnet).
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Does it work ?

Gradients of Qi (αi ·) and Q̃i (αi ·) coincide.

In simulation studies method works well - although increase in least
criterion may be observed in first few iterations.

Wish: more convincing argument that approximate block updates
are doing the right thing.

Issue: log ĝij is biased estimate of log gij (due to kernel smoothing
and log transformation)

One more wish: ‘unbiased’ response and design matrix:
EYij = xijβij
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Variational approach

Variational point process identity (Jeff) specialized to the isotropic
case:

E


6=∑

u∈Xi ,v∈Xj

e(u, v)h(‖v − u‖)(log gij)
′(‖v − u‖)

 =

−E


6=∑

u∈Xi ,v∈Xj

e(u, v)h′(‖v − u‖)

 ,

where

e(u, v) =
1[u ∈W , v ∈W ]

ρi (u)ρj(v)|W ∩Wv−u|

and h is continously differentiable with compact support.
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In our case,

log gij(t) = c(t)βTij c(t) = [c(t;φ1), . . . , c(t;φq)] βijl = αilαjl

Let
h(t) = h0(t)c′(t)

where h0 compact support and let

A =

6=∑
u,v∈X∩W

e(u, v)h0(‖v − u‖)c′(‖v − u‖){c′(‖v − u‖)}>

b = −
6=∑

u,v∈X∩W
e(u, v)

{
h′0(‖v − u‖)c′(‖v − u‖) + h0(‖v − u‖)c′′(‖v − u‖)

}

A is q × q and b is q × 1.
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Then from variational equation we obtain unbiased estimating
function

Aβij − b.

That is,
E[Aβij ] = Eb

In terms of αil , procedure can be recast as a least squares problem

‖b− Aβij‖2 βijl = αilαjl

and we can introduce regularization as before.
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Further open problems

I validity of using approximate block updates

I choice of λ and ξ (cross validation, BIC,...)

I Inference for proportions of variances, correlations...
(bootstrap ?)

I choice of function h0 in variational equation
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