r-graph = \(r \)-uniform hypergraph

Definition

An **F-decomposition** of an \(r \)-graph \(G \) is a set of edge-disjoint copies of \(F \) covering all edges of \(G \) (also called an \((n, q, r)\)-Steiner system if \(G = K_n^{(r)} \) and \(F = K_q^{(r)} \)).

\((7, 3, 2)\)-Steiner system = triangle decomposition of \(K_7^{(2)} \)
Designs and hypergraph decompositions

\(r \)-graph = \(r \)-uniform hypergraph

Definition

An \(F \)-decomposition of an \(r \)-graph \(G \) is a set of edge-disjoint copies of \(F \) covering all edges of \(G \)
(also called an \((n, q, r)\)-Steiner system if \(G = K_n^{(r)} \) and \(F = K_q^{(r)} \)).

\((7, 3, 2)\)-Steiner system = triangle decomposition of \(K_7^{(2)} \)

A set of distinct copies of \(K_q^{(r)} \) in \(G \) such that every edge of \(G \) is covered exactly \(\lambda \) times is a \((q, r, \lambda)\)-design of \(G \)
(also called an \((n, q, r, \lambda)\)-design if \(G = K_n^{(r)} \)).
It’s the year 1853...

For which \(n \) does a triple system of order \(n \) exist?

Jakob Steiner
It’s the year 1853...

For which \(n \) does a triple system of order \(n \) exist?

Jakob Steiner

6 years earlier...

Theorem (Kirkman, 1847)

A *triple system of order* \(n \) *exists if and only if* \(n \equiv 1, 3 \mod 6 \).
Arrh! It should read Kirkman system.

Thomas Kirkman
Thomas Kirkman

Wesley Woolhouse

Julius Plücker

Arrh! It should read Kirkman system.

EXCUSE ME!
Divisibility conditions

Question
When does G have an F-decomposition?

If G has a triangle decomposition, then
(a) the number of edges of G is divisible by 3,
(b) every vertex has even degree.

Call G triangle divisible if (a) and (b) are satisfied.
Divisibility conditions

Question
When does \(G \) have an \(F \)-decomposition?

If \(G \) has a triangle decomposition, then
(a) the number of edges of \(G \) is divisible by 3,
(b) every vertex has even degree.

Call \(G \) triangle divisible if (a) and (b) are satisfied.

Theorem (Kirkman 1847)

A Steiner triple system of order \(n \) (i.e. a triangle decomposition of \(K_n \)) exists if and only if \(n \equiv 1, 3 \mod 6 \), i.e. if and only if \(K_n \) is triangle-divisible.
Divisibility conditions

Question
When does G have an F-decomposition?

If G has a triangle decomposition, then
(a) the number of edges of G is divisible by 3,
(b) every vertex has even degree.

Call G triangle divisible if (a) and (b) are satisfied.

Theorem (Kirkman 1847)
A Steiner triple system of order n (i.e. a triangle decomposition of K_n) exists if and only if $n \equiv 1, 3 \mod 6$, i.e. if and only if K_n is triangle-divisible.

Divisibility conditions can be generalised for arbitrary q, r, λ, in which case we say that G is (q, r, λ)-divisible (or $K_q^{(r)}$-divisible if $\lambda = 1$).
Previous results for graphs

Theorem (Kirkman 1847)

If K_n is triangle-divisible, then there exists a Steiner triple system, i.e. a triangle decomposition of K_n.
Theorem (Kirkman 1847)

If K_n is triangle-divisible, then there exists a Steiner triple system, i.e. a triangle decomposition of K_n.

Theorem (Wilson 1975)

For n large, every F-divisible K_n has an F-decomposition.
(n, q, r, \lambda)-design = set of distinct copies of K_q^{(r)} in K_n^{(r)} such that every edge of K_n^{(r)} is covered exactly \lambda times

Theorem (Teirlinck 1987)

For every r, there exist infinitely many nontrivial (n, r + 1, r, \lambda)-designs, where \lambda = (r + 1)!^{r+1}.

Theorem (Kuperberg, Lovett and Peled 2013+)

There exists an absolute constant C such that whenever q \geq Cr there are infinitely many nontrivial (n, q, r, \lambda)-designs (for some (large) \lambda).

Question: What about decompositions, i.e. case \lambda = 1?
Relaxation: aim for an ‘approximate decomposition’
(i.e. an almost perfect packing of edge disjoint $K_{q(r)}$)

Conjecture (Erdős and Hanani, 1963)

There exists a $K_{q(r)}$-packing in $K_n^{(r)}$ covering all but $o(n^r)$ of the edges of $K_n^{(r)}$ (as $n \to \infty$).
The Rödl nibble

Relaxation: aim for an ‘approximate decomposition’ (i.e. an almost perfect packing of edge disjoint $K_q^{(r)}$)

Conjecture (Erdős and Hanani, 1963)

There exists a $K_q^{(r)}$-packing in $K_n^{(r)}$ covering all but $o(n^r)$ of the edges of $K_n^{(r)}$ (as $n \to \infty$).

Theorem (Rödl, 1985)

The conjecture is true.

Proof: ‘Rödl nibble’ or ‘semirandom method’ (also very important ingredient in our proof)
Theorem (Keevash 2014+)

For any fixed q, r, λ, there exist (n, q, r, λ)-designs. More precisely, if $n \gg q, \lambda$ and $K_n^{(r)}$ is (q, r, λ)-divisible, then there exists an (n, q, r, λ)-design.

- can actually replace $K_n^{(r)}$ by any dense quasirandom r-graph
- proof is based on algebraic and probabilistic arguments.

We generalize this beyond the quasi-random setting, using combinatorial and probabilistic arguments.
from now on restrict to case $\lambda = 1$, results also extend to $\lambda > 1$

$\delta_{r-1}(G) = \text{minimum degree of an } (r-1)\text{-tuple of vertices}$

Theorem (Glock, Kühn, Lo, Osthus 2016+)

For all $q > r \geq 2$, there exists an $n_0 \in \mathbb{N}$ such that the following holds for all $n \geq n_0$. Let

$$c_{q,r}^\diamond := \frac{r!}{3 \cdot 14^r q^{2r}}.$$

If G is an n-vertex r-graph with $\delta_{r-1}(G) \geq (1 - c_{q,r}^\diamond)n$, then G has a $K_q^{(r)}$-decomposition whenever it is $K_q^{(r)}$-divisible.
The decomposition threshold

Previous result leads to notion of decomposition threshold $\delta_{q,r}$:

Definition

Let $\delta_{q,r}$ be the smallest $\delta \in [0,1]$ satisfying the following:
for all large enough n, every $K_q^{(r)}$-divisible r-graph G on n vertices
with $\delta(G) \geq (\delta + o(1))n$ has a $K_q^{(r)}$-decomposition.

- Keevash $\Rightarrow \delta_{q,r} < 1$
- GKLO $\Rightarrow \delta_{q,r} \leq 1 - c_{q,r}^\circ \approx 1 - q^{-2r}$.
- Lower bound construction:
 $\delta_{q,r} \geq 1 - c_rq^{-r+1}\log q \approx 1 - q^{-r+1}$.

graph case $r = 2$ has received much attention – see later.
Main result: supercomplexes

Previous result follows from our main result on designs in ‘supercomplexes’.

Theorem (Glock, Kühn, Lo, Osthus 2016+)

\[
\text{If } n \gg q, \lambda \text{ and } G \text{ is a } (q, r, \lambda)\text{-divisible supercomplex on } n \text{ vertices,}
\]

\[
\text{then } G \text{ has a } (q, r, \lambda)\text{-design.}
\]

(+ generalisation to dense quasirandom r-graphs)

The conditions of being a supercomplex depend mainly on the distribution of \(q \)-cliques, which should be ‘random-like’.
Main result: supercomplexes

Previous result follows from our main result on designs in ‘supercomplexes’.

Theorem (Glock, Kühn, Lo, Osthus 2016+)

If $n \gg q, \lambda$ and G is a (q, r, λ)-divisible supercomplex on n vertices, then G has a (q, r, λ)-design.

(+ generalisation to dense quasirandom r-graphs)

The conditions of being a supercomplex depend mainly on the distribution of q-cliques, which should be ‘random-like’.

Examples of supercomplexes

- complete r-graphs
- quasirandom r-graphs, in particular ‘typical’ r-graphs
- k-partite graphs where $k \geq q + 6$
Existence of F-designs for arbitrary F

so far: considered designs/decompositions into cliques

What about decompositions into arbitrary hypergraphs F?

F-decomposition = decomposition of edge set of G into copies of F
Existence of F-designs for arbitrary F

so far: considered designs/decompositions into cliques
What about decompositions into arbitrary hypergraphs F?

F-decomposition = decomposition of edge set of G into copies of F

Theorem (Glock, Kühn, Lo, Osthus 2017$^+$)

Suppose F is an r-graph and suppose that $K_n^{(r)}$ is F-divisible, where $n \gg |F|$. Then $K_n^{(r)}$ has an F-decomposition. (generalisation to dense quasirandom r-graphs)

• answers question of Keevash
• graph case $r = 2$ is due to Wilson
• can replace $K_n^{(r)}$ by any dense quasirandom r-graph G
• can prove design version with $\lambda > 1$
• effective minimum degree version if F is ‘weakly regular’
Special case:

Theorem (Glock, Kühn, Lo, Osthus 2017⁺)

Suppose G is a large quasi-random graph and F is fixed with
(i) $e(F)$ divides $e(G)$;
(ii) $\text{hcf}\{\text{degrees of } F\}$ divides $\text{hcf}\{\text{degrees of } G\}$.

Then G has an F-decomposition.

Theorem (Archdeacon)

If graph G has a decomposition into K_4's, K_5's and K_6's, then G has a self-dual embedding.

Corollary (Glock, Kühn, Lo, Osthus 2017⁺)

Almost every graph has a self-dual embedding.
Proof sketch: Absorption

Suppose we seek a $K^{(r)}_q$-decomposition of an r-graph G

iterative absorption approach

Split up the absorbing process into many steps which gradually make leftover smaller and smaller.

\Rightarrow final leftover L has bounded size and lies within prescribed set X

\Rightarrow only boundedly many possibilities H_1, \ldots, H_s for leftover L
Proof sketch: Absorption

Suppose we seek a $K_q^{(r)}$-decomposition of an r-graph G

iterative absorption approach

Split up the absorbing process into many steps which gradually make leftover smaller and smaller.

⇒ final leftover L has bounded size and lies within prescribed set X
⇒ only boundedly many possibilities H_1, \ldots, H_s for leftover L
⇒ suffices to find an ‘exclusive absorber’ A_i for each H_i, i.e.
• $A_i \cup H_i$ has a $K_q^{(r)}$-decomposition
• A_i has a $K_q^{(r)}$-decomposition
Recall:
An exclusive absorber A for a potential leftover graph H satisfies
- $A \cup H$ has a $K_q^{(r)}$-decomposition
- A has a $K_q^{(r)}$-decomposition
We construct exclusive absorbers out of ‘transformers’.
Ignore divisibility.

Definition

An r-graph T is an (H_1, H_2)-transformer if both $H_1 \cup T$ and $T \cup H_2$ have $K_q^{(r)}$-decompositions.

Aim: transform leftover H_1 step by step into r-graph which is trivially decomposable
General Idea:

- construct absorber as concatenation of transformers
- show that each H can be transformed into ‘canonical graph’ C which only depends on $e(H)$
- by transitivity this implies that each H can be transformed into a disjoint union J of $K_q^{(r)}$, which is trivially decomposable
Conjecture (Nash-Williams 1970)

Every large K_3-divisible graph G on n vertices with $\delta(G) \geq 3n/4$ has a K_3-decomposition.

Extremal example: blow up each vertex of C_4 to a K_m (m odd and divisible by 3).

Each triangle has at least one edge in one of the four cliques but less than a third of the edges lie inside the cliques.
Open question: the decomposition threshold for graphs

Conjecture (Nash-Williams 1970)
Every large K_3-divisible graph G on n vertices with $\delta(G) \geq 3n/4$ has a K_3-decomposition.

- true if $\delta(G) \geq (0.9 + o(1))n$ (Barber, Kühn, Lo, Osthus & Dross)
- showing that $\frac{3n}{4}$ guarantees ‘fractional decomposition’ or approx. decomposition would suffice
- conjectured threshold for K_q-decompositions: $\frac{qn}{q+1}$, partial results by Barber, Glock, Kühn, Lo, Montgomery, Osthus
- similar questions in partite setting, partial results by BKLMOT (applications to completions of partially filled latin squares)