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Timeline

March 23, 1882: Born in Erlangen, Germany

1907: Received her PhD from the Mathematical Institute of Erlangen

1908 - 1915: Worked without pay or title in Erlangen

1915: Joined the Mathematical Institute in Göttingen (in an unofficial capacity)

1919: Gained permission to lecture (without salary)

1922: Became an associate professor (without tenure)

April, 1933: Denied permission to teach by the Nazi Government

September, 1933: Accepted a professorship at Bryn Mawr College and lectured at the
IAS in Princeton

April 14, 1935: Died in Bryn Mawr from complications after surgery
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From the mouths of famous men

“Emmy Noether’s general mathematical insights were
not confined to her specialty— algebra— but affected
anyone who came in touch with her work.”

—Preface to Topologie I., by P. Alexandrov and H. Hopf

“She was superior to me in many respects.”
—Hermann Weyl

“... it is surely not much of an exaggeration to call her
the mother of modern algebra.”

—Irving Kaplansky

“Noether was the most significant creative
mathematical genius thus far produced since the higher
education of women began.

—Albert Einstein
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“Her strength lay in her ability to operate
abstractly with concepts. It was not necessary for her
to be led to new results on the leading strings of
concrete examples. She possessed a most vivid
imagination, with the aid of which she could visualize
remote connections; she constantly strove for
unification. In this, she sought out the essentials in the
known facts, brought them into order by means of
appropriate general concepts, espied the vantage point
from which the whole could best be surveyed, cleansed
the object under consideration of superfluous dross,
and thereby won through to so simple and distinct a
form that the venture into new territory could be
undertaken with the greatest prospect of success.”

—Hermann Weyl
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Mathematicians directly impacted by Noether

Rudolf Hölzer

Nikolai Chebotarev

Werner Weber

Werner Schmeidler

Fritz Seidelmann

Jakob Levitzki

Richard Courant

B. L. van der Waerden

W.W. Stepanow

Grete Hermann

Kenjiro Shoda

Chiungtze Tsen

Joichi Suetsuna

Marie Weiss

Heinrich Kapferer

Öystein Ore

Ernst Witt

Felix Klein

Ernst Fischer

Helmut Hasse

Claude Chevalley

Alexander Ostrowski

Heinz Hopf

Albert Einstein

Hermann Weyl

Edmund Laundau

Oswald Veblen

H.S. Vanidver

Andre Weil

Emil Artin

Vladimir Koř́ınek

Reinhold Baer

A.A. Albert

F.K. Schmidt

Max Deuring

Solomon Lefschetz

Wolfgang Krull

Gottfried Köthe

Richard Brauer

Arnold Scholz

Otto Schilling

Pavel Alexandrov

Robert Fricke

Olga Taussky Todd

Heinrich Grell

Teiji Takagi

Ruth Staffer

Jacques Herbrand

Max Deuring

Karl Dörges

Ann Pell Wheeler

Hans Fitting

Hans Falckenberg

David Hilbert
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Some areas impacted by her work

Wikipedia: “As one of the leading mathematicians of her time,
she developed the theoreies of rings, fields, and algebras.”

Linear Algebra

Representation Theory

Topology

Galois cohomology

Algebraic Number Theory

Class Field Theory

Algebraic Geometry

Arithmetic Geometry

Physics (through the study of differential invariants)
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Does anyone here know any Physics?

About the same time she mentioned to Seidelmann that a
team in Göttingen, to which she belonged, was carrying out
calculations of the most difficult kind for
Einstein—“although,” she chuckled, “none of us
understands what they are for.” Felix Klein says in a letter
to Hilbert, “You know that Frl. Noether is continually
advising me in my projects and that it is really through her
that I have become competent in the subject . . .” Hilbert’s
response to this letter contains this fragment, “Emmy
Noether, whom I called upon to help me with such questions
as my theorem on the conservation of energy . . .”

Excerpt from Emmy Noether, 1882 - 1935, by Auguste Dick
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Mathematical objects/results named after her

Noetherian...

... group

... ring

... module

... topological space

... variety

... scheme

... category

Noether normalization lemma (Commutative algebra)

Noether’s theorem (Physics)

Noether’s second theorem (Physics)

Lasker-Noether theorem (Generalization of the
fundamental theorem of arithmetic)

Skolem-Noether theorem (Central Simple Algebras)

Noether’s equations (Galois cohomology)

Albert-Brauer-Hasse-Noether theorem (CSA’s)
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The mother of modern algebra

Her father, Max Noether, was a well respected
mathematician in Erlangen who came from a wealthy
Jewish family. Her mother Ida Amalia Kaufmann, also
came from a wealthy Jewish family and was a traditional
mother and wife, caring for her husband who contracted
polio at an early age.

Emmy studied under Paul Gordon, a friend of her father’s,
who influenced her early work in the theory of invariants.

While her thesis was successfully published in a well
respected journal, she found the subject distasteful and
referred to her thesis as “crap”.

In 1911 she began a fruitful correspondence with Ernst
Fischer, who inspired her to move from the computational,
algorithmic approach, to a more abstract approach
characteristic of Hilbert.
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The Göttingen Period

In 1915 she moved to Göttingen to work with Klein and
Hilbert, who attempted to establish a lectureship for her,
but were unsuccessful. During this time she would lecture
under Hilbert’s name.

In 1919 she was finally granted a lectureship position and
could teach under her own name, although she received no
salary.

While her lecture style was controversial and not to
everyone’s taste, she garnered a large audience, and had
many devoted students with whom she would talk
mathematics endlessly, often on long walks or at her home.

During this time her methods and ideas became more
formalized, and visitors came from around the world to
learn the “Noether method” and bring it back to their
universities.
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The Noether School
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The good, the bad, and the ugly

In 1932 she and Emil Artin received the
Ackermann–Teubner Memorial Award, and later that year
she gave a plenary address in the ICM in Zürick.

She still never achieved Full Professor status and was not
fully accepted by the mathematical community, even
though she was revered by those who knew her.

In 1933, Hitler became Chancellor, and Noether was kicked
out of her profession along with her many other Jewish
colleagues.

With the help of Einstein and Weyl, she was able to get a
position at Bryn Mawr, although they originally wanted to
bring her to Princeton.

She died two years later, shortly after undergoing surgery.
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She still never achieved Full Professor status and was not
fully accepted by the mathematical community, even
though she was revered by those who knew her.

In 1933, Hitler became Chancellor, and Noether was kicked
out of her profession along with her many other Jewish
colleagues.

With the help of Einstein and Weyl, she was able to get a
position at Bryn Mawr, although they originally wanted to
bring her to Princeton.

She died two years later, shortly after undergoing surgery.

12 / 21



The good, the bad, and the ugly

In 1932 she and Emil Artin received the
Ackermann–Teubner Memorial Award, and later that year
she gave a plenary address in the ICM in Zürick.
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Influence on Princeton

In February 1934, Emmy Noether also began to
give weekly lectures in nearby Princeton—not, as she
wrote, at the “men’s university where nothing female is
admitted,” but at the Flexner Institute which had only
shortly before been established in 1930. . . . Her own
influence in determining the mathematical activity at
Princeton is indicated in a letter to H. Hasse of March
6, 1934, “I have started with representation modules,
groups with operators . . .; Princeton will receive its
first algebraic treatment this winter, and a thorough
one at that.”
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Abstraction and Axiomatization

In 1921 Noether published the paper Idealtheorie in
Ringbereichen, in which the terms “ring” and “ideal” were first
defined, and in which she uses the ascending chain condition to
unify certain arguments under a common theme.

To understand Noether’s brand of abstraction, we will do some
Commutative Algebra 101.

A ring is a set R equipped with two binary operations + and ×
satisfying

R is an abelian group under addition

R is associative with respect to multiplication and contains
a multiplicative identity, 1

Multiplication is distributive with respect to addition
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Commutative Rings

A ring is commutative if the multiplication operation is
commutative.

A commutative ring is called an integral domain
if ab = 0 implies a = 0 or b = 0.

One should think of integral domains as generalizations of the
integers, Z: We can add, subtract, and multiply in any order,
we cannot necessarily divide and stay within the set, and two
nonzero elements can’t multiply to be zero.

The fundamental theorem of arithmetic states that any positive
n ∈ Z can be decomposed uniquely into a product of (positive)
prime powers:

n = pe1
1 pe2

2 · · · p
er
r ,

pi distinct primes, ei ≥ 1.

15 / 21



Commutative Rings

A ring is commutative if the multiplication operation is
commutative. A commutative ring is called an integral domain
if ab = 0 implies a = 0 or b = 0.

One should think of integral domains as generalizations of the
integers, Z: We can add, subtract, and multiply in any order,
we cannot necessarily divide and stay within the set, and two
nonzero elements can’t multiply to be zero.

The fundamental theorem of arithmetic states that any positive
n ∈ Z can be decomposed uniquely into a product of (positive)
prime powers:

n = pe1
1 pe2

2 · · · p
er
r ,

pi distinct primes, ei ≥ 1.

15 / 21



Commutative Rings

A ring is commutative if the multiplication operation is
commutative. A commutative ring is called an integral domain
if ab = 0 implies a = 0 or b = 0.

One should think of integral domains as generalizations of the
integers, Z: We can add, subtract, and multiply in any order,
we cannot necessarily divide and stay within the set, and two
nonzero elements can’t multiply to be zero.

The fundamental theorem of arithmetic states that any positive
n ∈ Z can be decomposed uniquely into a product of (positive)
prime powers:

n = pe1
1 pe2

2 · · · p
er
r ,

pi distinct primes, ei ≥ 1.

15 / 21



Commutative Rings

A ring is commutative if the multiplication operation is
commutative. A commutative ring is called an integral domain
if ab = 0 implies a = 0 or b = 0.

One should think of integral domains as generalizations of the
integers, Z: We can add, subtract, and multiply in any order,
we cannot necessarily divide and stay within the set, and two
nonzero elements can’t multiply to be zero.

The fundamental theorem of arithmetic states that any positive
n ∈ Z can be decomposed uniquely into a product of (positive)
prime powers:

n = pe1
1 pe2

2 · · · p
er
r ,

pi distinct primes, ei ≥ 1.

15 / 21



Proving the fundamental theorem of arithmetic

The proof of the FTA comes down to two crucial steps:

1 Show that n can be factored into a finite number of
irreducible elements,

2 Show that this factorization is unique.

While this may seem obvious, it is exactly this type of
abstraction into key principles that Noether is well known for.
The question at the heart of the matter is “What’s special
about Z that allows both of these to hold?”

Without getting into the nitty gritty of how these are proved
for the integers, I instead want to show you how the first
condition can be generalized.

The second condition is also related to work of Noether, and
has to do with the difference between being “irreducible” and
being “prime.”
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Ideals and Principal Ideals

Let R be a commutative ring. An ideal I of R is a subset of R
which is a subgroup under addition and such that for every
a ∈ I and r ∈ R we have that ra ∈ I.

A simple example: R = Z, I = {. . . ,−4,−2, 0, 2, 4, . . .}

This is a somewhat silly example, and that’s because the
definition of an ideal was cooked up to generalize these types of
sets. It is literally the set 2Z where you take every element of Z
and multiply by 2, so of course it’s an ideal!

In general, define aR = {ar : r ∈ R} for any a ∈ R. This is the
principal ideal generated by a.
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Ascending Chain Conditions

A partially ordered set P is said to satisfy the ascending chain
condition (ACC) if every strictly ascending sequence of elements
eventually terminates.

Suppose your poset is the set of principal ideals of a ring R,
where the ordering is inclusion, i.e. I1 ≤ I2 if and only if I1 ⊆ I2.

Theorem

Let R be an integral domain. Then factorization terminates in
R if and only if R satisfies the ascending chain condition for
principal ideals.
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Proof Sketch

Note that aR ⊆ bR if and only if b | a (b divides a)

Suppose factorization does not terminate for some element
a1 ∈ R.

Then a1 factors properly as a1 = a2b2, and factorization
does not terminate for one of a2 or b2 (otherwise it would
terminate for a1). Say factorization fails to terminate for
a2, and so on.

Then we get an infinite sequence of (nontrivial) divisibility
conditions,

· · · | a3 | a2 | a1
hence an infinite strictly ascending chain of principal ideals

a1R ⊂ a2R ⊂ a3R ⊂ · · ·

(The other direction is proven similarly)
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The big takeaway here is that while divisibility is a condition on
elements, the ACC is a condition on ideals. In particular, it can
hold for more general ideals, not just principal ones (in Z every
ideal is principal).

For example, if R = Z[x1, . . . , xn], the ring of polynomials in n
variables with integer coefficients, then not every ideal is
principal. However, Hilbert proved that every ideal is finitely
generated and Noether was able to reframe that argument in
terms of an ACC.

It turns out that the ACC is so intrinsic to finiteness arguments
that we care about, that we now call things Noetherian when
they satisfy a suitable ACC/DCC. For example, a Noetherian
ring is one in which every ideal has a finite basis (is finitely
generated), and a Noetherian topological space is one in which
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Summary and Remarks

Emmy Noether had a gift for abstracting, not for the sake
of abstraction, but in order to get to the core of the
matter, allowing for vast generalizations.

She was incredibly generous, not only with her time, but
also with her math. She could have far more publications
in her name, but she often was happy to let others publish
her results (often with some sort of dedication to her).

Her mathematics and her mere presence touched countless
mathematicians during a crucial period in the development
of modern algebra.

Even if her name is not attached to a result in algebra
during that time, her ideas certainly were. In fact, van der
Waerden, who wrote arguably the first modern algebra
book, was essentially writing up a treatment of what he
learned from her lectures.
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