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They sought it with thimbles, they sought it with care;
They pursued it with forks and hope;

They threatened its life with a railway-share;
They charmed it with smiles and soap.

From: “The Hunting of the Snark”
by

Lewis Carroll



(Gardner) Snark:
Connected, bridgeless cubic graph with chromatic index 4
Named so by Martin Gardner, 1975

Snarks became important because of the Four Colour Conjecture (now
Theorem).

Peter G. Tait, 1880: The Four Colour Conjecture is equivalent to the
statement that no snark is planar.

But: In 1880, there were no known snarks!



(Gardner) Snark:
Connected, bridgeless cubic graph with chromatic index 4
Named so by Martin Gardner, 1975

Snarks became important because of the Four Colour Conjecture (now
Theorem).

Peter G. Tait, 1880: The Four Colour Conjecture is equivalent to the
statement that no snark is planar.

But: In 1880, there were no known snarks!



(Gardner) Snark:
Connected, bridgeless cubic graph with chromatic index 4
Named so by Martin Gardner, 1975

Snarks became important because of the Four Colour Conjecture (now
Theorem).

Peter G. Tait, 1880: The Four Colour Conjecture is equivalent to the
statement that no snark is planar.

But: In 1880, there were no known snarks!



(Gardner) Snark:
Connected, bridgeless cubic graph with chromatic index 4
Named so by Martin Gardner, 1975

Snarks became important because of the Four Colour Conjecture (now
Theorem).

Peter G. Tait, 1880: The Four Colour Conjecture is equivalent to the
statement that no snark is planar.

But: In 1880, there were no known snarks!



bridge

A connected cubic graph with a bridge



bridge

Try to colour the edges with three colours...



bridge

...It doesn’t work!



The first snark discovered: The Petersen Graph

Named after Danish mathematician Julius Petersen, who presented
it in 1891 (some sources) or 1898 (other sources) as counterexample
to Tait’s claim that all cubic graphs were 3-edge colourable.

But: Alfred Bray Kempe already mentioned this graph in 1886.
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It can’t be done!



Second (and third) snarks discovered, 1946 —about 60 years later:
The Blanuša Snarks
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Fourth snark: 1948, Blanche Descartes, 210 vertices

Obtained from the Petersen graph by replacing

each vertex with a nonagon and
each edge with a graph obtained from the Petersen graph by deleting
two nonadjacent vertices.

Blanche Descartes was the collective pseudonym of R. Leonard
Brooks, Arthur Harold Stone, Cedric Smith and William Tutte.

Insert picture of Tutte next page.
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Fifth snark: 1973, Szekeres, 50 vertices



Finally, two infinite classes of snarks: 1975, Isaacs

a

c

b
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Odd number of copies ofY
Join first and last copies using an odd permutation of {a, b, c}.
This gives the Flower snarks.
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Five copies ofY:



Isaacs’dot product: Join copies of known snarks as follows:

Using copies of the Petersen graph, Isaacs constructed a new infinite
class of snarks that contains all previously known snarks.
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Isaacs’double star snark:



The Petersen graph consists of two disjoint 5-cycles, joined by five
independent edges.

Such a snark is called a permutation snark.
Permutation snarks have not been characterised — it is known there
exist others of orders 18, 26 and 34.

But for double stars, let D(n, k) denote the double star obtained from

n copies of , where the edges in the “inner ring” join every k th

copy. Then:

Theorem (Amanda Chetwynd, 1984)

The double star D(n, k) is a snark if and only if it is one of
D(3, 1), D(5, 2) (Isaacs’snark), or D(n, k), where n ≡ 0 (mod 3) and
gcd(n, k) = n/3.
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Petersen graph, the most revered graph of all:

Why do all the above-mentioned snarks either

“look like” the Petersen graph, or
are made up, one way or the other, from copies of the Petersen graph?

Tutte conjectured (1966) that every snark contains a subgraph that is
a subdivided Petersen graph.
I.e., every snark has a Petersen minor.

Proof “announced”by Robertson, Sanders, Seymour, and Thomas
(1999).
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sarah-marie belcastro, fascinating mathematician, educator, knitter,
dancer

Director, MathILy (serious Mathematics Infused with Levity),

an intensive residential summer program for mathematically excellent
secondary students

Works on topological aspects of snarks —by the Four Colour Theorem,

they are not embeddable in the plane, but on which surfaces ARE they
embeddable, and HOW?

Author of Textbook: Discrete Mathematics with Ducks

Co-editor of books: Making Mathematics with Needlework and
Crafting by Concepts
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Female graph theory pioneer,
University of Kwazulu-Natal, South Africa



Henda Swart, inspiring teacher

These well-known graph theorists started their careers with Henda:
Picture of Henda previous page

Ortrud Oellermann, University of Winnipeg, Canada

Wayne Goddard, Clemson University, South Carolina, USA

Mike Henning, University of Johannesburg, South Africa

David Erwin, University of Cape Town, South Africa

Jacques Verstraete, University of California, San Diego, USA

Christine Swart, University of Cape Town, South Africa



Recall — (Gardner) Snark:
Connected, bridgeless cubic graph with chromatic index 4

Rule out trivial cases

Lemma (Parity Lemma —Isaacs)
Let G be a cubic graph that has been 3-edge coloured in colours 1, 2 and
3. If an edge-cut of n edges contains ni edges of colour i , i = 1, 2, 3, then

n1 ≡ n2 ≡ n3 ≡ n (mod 2).

Bridgeless:

Parity Lemma: any cubic graph with a bridge has chromatic index 4.
So NOT a snark because of triviality.
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2-Edge Cut:

snark cubic graph

Delete the two green edges and join the graphs with two parallel edges.

This gives a 3-edge colouring of a snark.

Hence the new graph is also a snark.

So, graphs with 2-edge cuts should NOT be snarks.
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snark cubic graph

Delete the two green vertices and join the graphs with three parallel edges.

This gives a 3-edge colouring of a snark.

Hence the new graph is also a snark.

So, graphs with 3-edge cuts should NOT be snarks.
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no 3-edge cut that splits the graph into two components, each of
which contains a cycle.

Terminology: A snark should be cyclically 4-edge connected.
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Ruth Haas, mentor
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University of Hawaii at Manoa

Outstanding mentor to women in mathematics.

Received M. Gweneth Humphreys Award from the Association for
Women in Mathematics (AWM) in 2015 for her mentorship of women
in mathematics.

Estimated (in 2014) that 7% of women who received Ph.D.’s in math
from the top 100 US universities in 2013 were mentored by Ruth.

Was named an inaugural AWM Fellow in 2017

Recognizes “individuals who have demonstrated a sustained
commitment to the support and advancement of women in the
mathematical sciences.”



Ruth Haas, mentor
Insert picture of Ruth previous page

University of Hawaii at Manoa

Outstanding mentor to women in mathematics.

Received M. Gweneth Humphreys Award from the Association for
Women in Mathematics (AWM) in 2015 for her mentorship of women
in mathematics.

Estimated (in 2014) that 7% of women who received Ph.D.’s in math
from the top 100 US universities in 2013 were mentored by Ruth.

Was named an inaugural AWM Fellow in 2017

Recognizes “individuals who have demonstrated a sustained
commitment to the support and advancement of women in the
mathematical sciences.”



Ruth Haas, mentor
Insert picture of Ruth previous page

University of Hawaii at Manoa

Outstanding mentor to women in mathematics.

Received M. Gweneth Humphreys Award from the Association for
Women in Mathematics (AWM) in 2015 for her mentorship of women
in mathematics.

Estimated (in 2014) that 7% of women who received Ph.D.’s in math
from the top 100 US universities in 2013 were mentored by Ruth.

Was named an inaugural AWM Fellow in 2017

Recognizes “individuals who have demonstrated a sustained
commitment to the support and advancement of women in the
mathematical sciences.”



Ruth Haas, mentor
Insert picture of Ruth previous page

University of Hawaii at Manoa

Outstanding mentor to women in mathematics.

Received M. Gweneth Humphreys Award from the Association for
Women in Mathematics (AWM) in 2015 for her mentorship of women
in mathematics.

Estimated (in 2014) that 7% of women who received Ph.D.’s in math
from the top 100 US universities in 2013 were mentored by Ruth.

Was named an inaugural AWM Fellow in 2017

Recognizes “individuals who have demonstrated a sustained
commitment to the support and advancement of women in the
mathematical sciences.”



Ruth Haas, mentor
Insert picture of Ruth previous page

University of Hawaii at Manoa

Outstanding mentor to women in mathematics.

Received M. Gweneth Humphreys Award from the Association for
Women in Mathematics (AWM) in 2015 for her mentorship of women
in mathematics.

Estimated (in 2014) that 7% of women who received Ph.D.’s in math
from the top 100 US universities in 2013 were mentored by Ruth.

Was named an inaugural AWM Fellow in 2017

Recognizes “individuals who have demonstrated a sustained
commitment to the support and advancement of women in the
mathematical sciences.”



Ruth Haas, mentor
Insert picture of Ruth previous page

University of Hawaii at Manoa

Outstanding mentor to women in mathematics.

Received M. Gweneth Humphreys Award from the Association for
Women in Mathematics (AWM) in 2015 for her mentorship of women
in mathematics.

Estimated (in 2014) that 7% of women who received Ph.D.’s in math
from the top 100 US universities in 2013 were mentored by Ruth.

Was named an inaugural AWM Fellow in 2017

Recognizes “individuals who have demonstrated a sustained
commitment to the support and advancement of women in the
mathematical sciences.”



Triangles:

If a snark has a triangle, squeeze ∆ to • to get a smaller snark.

Hence we want snarks to be triangle-free.
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If the new graph is 3-edge colourable, then the original one is, too.

Hence a snark with a 4-cycle can easily be obtained from a smaller snark.
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(Strong) Snark:

Cyclically 4-edge connected
cubic graph
with girth at least 5 (i.e. no cycles of length less than 5)
and chromatic index 4

Good Question:

Why are other operations, such as Isaacs’dot product, to make larger
snarks from smaller ones, allowed?
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University of Waterloo, Canada

Canadian Mathematical Society’s Krieger—Nelson Prize in
recognition of an outstanding woman in mathematics, 2006

Waterloo Faculty of Mathematics Award for Distinction in
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Amanda Chetwynd and Robin Wilson (1981) listed all eight
(strong) snarks on 30 or fewer vertices known at the time.

Brinkmann, Goedgebeur, Hägglund & Markström (2013) generated
all snarks up to 36 vertices.

Order 10 18 20 22 24 26 28 30
# snarks 1 2 6 20 38 82 2900 28 399

Order 32 34 36
# snarks 293 059 3 833 587 60 167 732
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Importance of Snarks

A cycle double cover (CDC) of a graph G is a multiset of cycles such
that each edge of G lies in exactly two cycles.

Conjecture (The Cycle Double Cover Conjecture, or CDCC)
Every bridgeless graph has a cycle double cover.

One of the most long-standing open problems in graph theory.

Conjecture (Strong Cycle Double Cover Conjecture, or SCDCC)
Let G be a bridgeless graph. Then for every cycle C in G there is a CDC
that contains C.

A minimum counterexample to either conjecture, if it exists, is a
snark.

Hence it is suffi cient to prove the CDCC/SCDCC for snarks.
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A CDC D is a k-CDC if the cycles of D can be coloured by k colours in
such a way that no pair of cycles with a common edge has the same colour.

Conjecture
Every bridgeless cubic graph has a 5-CDC.

An orientable CDC is a CDC where we can orient the cycles such that for
every edge e, the two cycles that cover e have different orientations.

Conjecture
Every bridgeless graph has an orientable 5-CDC.

A minimum counterexample to either of these conjectures, if it exists,
is a snark.
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Importance of Snarks

Let

ω(v) denote the set of edges in the graph G which are incident to
the vertex v ,

T (G ) = {ω(v) : v ∈ V (G )}
P denote the Petersen graph.

For cubic graphs G and H, an H-colouring of G is a mapping from E (G )
to E (H) such that T (G ) is mapped to T (H).

Conjecture (The Petersen colouring conjecture)
Every bridgeless cubic graph has a P-colouring.

A minimal counterexample must be a weak snark.
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Illustration by
Henry Holiday
(1839-1927) for
“The Hunting of
the Snark”
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