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Relativistic perturbative QFT in Minkowski spacetime

» Wightman and Green functions:
W(Bi1(z1), .- Bm(xm)) = (B1,int (z1) - - - Bm,int (zm)Q) € S'(R4”’)[[e]],

G(Bl (561)7 ey Bm(mm)) = (Ql T(Bl,int(ml), ey Bm,int(l'm))ﬂ) € SI(R47n)[[6ﬂ
(€2 — the vacuum state, By, ..., By — polynomials in the basic fields and their
derivatives, e — the coupling constant).

» Scattering operator: S = Texp (ie {d*z L(z)) € L(D)[e], D < H.
S-matrix elements: (U1]|SW3) € Cle] for ¥1, V3 € D H.

» Differential cross section:

TPy Prs Pl ph) = (2m) 3 (pr + o P = Ph — = i)
x (kinematical factor) X |Mconnected (D1, - -+ Pk D1, - - - ,pE)\Q,
where the invariant matrix element M(p1,...,pk;pl,--.,p]) is given by
(p1,-- - el SlPL, - p0)
= @2m)*(p1+. .. Ape—pi— . ..—=p) (L +iMP1,. .., Dk DL, -, 1Y)

» Interacting field operators: Bins(z) € S'(R*, L(D))[e], D < H.
» Algebra of interacting fields: an abstract algebra § over the ring C[e].

» Vacuum state: Poinacré-invariant real, normalized and positive functionals § — Cfe].



Relativistic perturbative QFT in Minkowski spacetime

Ultraviolet problem (short distance/large energy)
» Difficulties in defining the time-ordered products.

» Completely solved by renormalization techniques.

Infrared problem (large distance/small energy)

» Standard solution: Introduce some infrared regularization and show that the
regularization can be removed.

Infrared regularizations

» Green functions:
Bogoliubov, Parasiuk, Hepp: k277i

1
o ™ womire €0
1

Zimmerman, Lowenstein:

FE=mZHi0 " W omr e em?)’ 7 0-

v

Inclusive cross sections:
Yennie, Frautschi, Sura: give photons a positive mass.
Weinberg: introduce a lower bound on the photon momenta.

> S-matrix, interacting fields, Wightman and Green functions:
Bogoliubov, Epstein, Glaser: e v eg(z), where g € S(R?).

The function g is called the switching function and the above infrared regularization
is called the adiabatic cutoff.




Theory with adiabatic cutoff

> Scattering operator:

S(g) = Texp (iefd“xg(m)c(m))

0

_ l:bjn Jd4x1 codYan g(@1) - glan) T(L(@1),s s L)) (1)
» Retarded interacting field operators: 5
Bret(g; ) = (=) 5h(m)5(9)715(g; h), )
where
S(g; h) = Texp (iejd4x g(x)L(z) + in4m h(x)B(x)) . 3)

» Time-ordered products of interacting fields:

0 é Y
T(Biret(g;21); - - -, Bmret (g 2m)) = (—1)™ S S(g; h
TBiuneim) (@) = (" g g Gy SO S| @
S(g; h) = Texp (iejd4x g(x)L(z) + ifd4x 2 hj(z)Bj(zz)> . (5)
> Wightman and Green functions: .
Wi(g; Bi(z1), ..., Bm(zm)) = (2 Biret(g; 21) - - - B ret (g5 2m)Q), (6)

G(g; Bi(%1), -+, Bm(zm)) = (Q T(B1,ret(g5 1), - - s Bmyret (95 2m))2).  (7)
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|. Algebraic adiabatic limit:

construction of the algebra of interacting fields

1. Weak adiabatic limit:

construction of the Wightman and Green functions
and the vacuum state on the algebra of interacting fields

[I1. Strong adiabatic limit:

construction of the S-matrix and interacting fields




Algebraic adiabatic limit — abstract algebra of interacting fields

v

v

v

The construction of the net of local abstract algebras of interacting fields [Brunetti,
Fredenhagen (2000)].

Let §4(O) be the algebra generated by

{Bret(g;h) : Be F, he D(RY), supph c O}. (8)

For any bounded region O in the Minkowski space we set

Go = {ge D(R") : g =1 on a neighborhood of J*(0) n J~(0)}. (9)
If g,¢" € Go, then the algebras §4(O) and F,/ (O) are unitarily equivalent.
= There is a unique abstract algebra F(O) of interacting fields localized in O.

The net O — F(O) satisfies the Haag-Kastler axioms in the sense of formal power
series [Fredenhagen, Rejzner (2015)].

The generalization to models with gauge symmetries: construction of the algebras of
interacting observables in QED [Diitsch, Fredenhagen (1999)] and non-abelian
Yang-Mills theories [Hollands (2008)].
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Weak adiabatic limit — Wightman and Green functions

Adiabatic limit

For any g € S(R™) such that g(0) = 1 we define a one-parameter family of switching

functions:
ge(x) = g(ex) for e>0. (10)
We have lime o ge(z) = 1 pointwise.
In the limit € Y\, O the interaction is turned on/off adiabatically.
Weak adiabatic limit
W(B1(1),- -, B (2m)) = M (2| Baret (96 1) - - - B ret (9¢; 2m)2), (11)
G(Bi(21), -+, Bm(zm)) = Im (@ T(Bret (963 21), -, Brmoret (ges 2m))82). - (12)

Existence of the weak adiabatic limit:
» purely massive models [Epstein, Glaser (1973)],
» QED and the massless " theory [Blanchard, Seneor (1975)],

» all models with interaction vertices of dimension 4 [Duch (2018)].
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Weak adiabatic limit — Wightman and Green functions

Properties of the Wightman functions
» Poincaré covariance,
» relativistic spectral condition:
supp W(B1(p1), - -, B (pm)) © {Z;’Ll pi=0, Vi X pje V+}7 (13)
» Hermiticity: W(B1(z1),. .., Bm(zm)) = W(BEX (zm), ..., Bf (z1)),
» local (anti)commutativity: if z and xy4+1 are spatially-separated, then

W(...,Bi(zk), Be+1(Tk+1),--.) = £ W(..., Bes1(xk+1), Be(zk), .. .). (14)
» positive definiteness condition (in models without vector fields),

» interacting field equations: e.g. in the massless p* theory it holds

0, W(...,¢(a),...) = %wp..,@?’(w),...). (15)

Properties of the Green functions
» Poincaré covariance,

> symmetry (or graded-symmetry in the presence of fermionic fields) under permutations
of the arguments,

» causality: for non-coinciding points the Green functions are expressed in terms of the
Wightman functions.
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Weak adiabatic limit — vacuum state

Algebra of interacting fields

» Retarded field Bret(g; f) in the algebraic adiabatic limit are denoted by Biet(-; f).
» Abstract algebra § of interacting fields is generated by Bret(-; f).

» An arbitrary element of § will be denoted by B(-).

States in perturbative algebraic QFT

A linear functional o : § — C[e] which satisfies the following conditions:
» normalized: o(1) =1,

» real: o(B(1)*) = o(B(")),

» positive: o(B(-)* B(+)) = 0.

A formal power series a € C[e] is non-negative iff there exists b € C[e] such that a = bb.

An example of a state: F(O) 3 B(:) — ¢ (B(+)) = (¥|B(g)¥) € C[e], where O c R* is
bounded, g € Go and ¥ € Dy. States of this type can be also defined in QED [Diitsch,
Fredenhagen (1999)] and non-abelian Yang-Mills theories [Hollands (2008)].

Definition of vacuum state (in models with gauge symmetry proof of positivity missing)
A unique linear functional o : § — C[e] such that

0(Biyret(;h1) ... Bnyet(; hn)) = W(B1(h1),..., Bn(hn)) (16)
for any polynomials Bi,..., B, and any hi,...,h, € D(R4) is a Poincaré-invariant state.
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Scattering matrix

Scattering matrix in QM in short-range potentials

S = ;\V;ILH% Ufr(_tZ)U(tQ — tl)Ufr(tl), (17)
t§—>+m
where H = Hg + eHing, Ug(t) = exp(—itHg), U(t) = exp(—itH). We also have
t2
S = w-lim Texp (—ie f dt Hi{,t(t)) , (18)
t3ro t

where Hilnt(t) = Ufr(_t)Hinthr(t)-

Scattering matrix with adiabatic cutoff in QFT
The standard definition due to Bogoliubov:

S(g) = Texp (iejd4x g(ﬂc)ﬁ(m))

D n_n

_ Z 1e

= n!

where the switching function g € S(R*). The physical scattering matrix is defined as
the adiabatic limit of S(g) if this limit exists.

fd4w1 cod'za (). g(@n) T(L(21), ..., L(z)), (19)
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Strong adiabatic limit — scattering operator and interacting fields

» Construction of the physical scattering matrix and the physical interacting fields:

SU = li\r‘r(l)S(ge)\IJ, Cret ([T = I%Cret(gs;f)ql for all Ve D. (20)

» Strong adiabatic limit exists in all purely massive theories in which one particles states
are kinematically stable [Epstein, Glaser (1976)], [Duch (in preparation)].

» Because of the infrared problem the strong adiabatic limit does not exist in the
standard sense in most theories with massless particles, e.g. in QED.

» In models with long-range interactions the evolution of the system is substantially
different from the free evolution even long after or before the collision of particles.

= The standard scattering theory is not applicable.

» Standard solution: inclusive cross section [Yennie, Frautschi, Suura (1961)],
[Weinberg (1965)].

» Another solution: modified scattering matrix [Dollard (1964)], [Kulish, Faddeev
(1970)], [Morchio, Strocchi (2016)].
The rest of the talk: rigorous formulation of the modified scattering theory in

perturbative quantum electrodynamics [Duch (in preparation)].
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Quantum electrodynamics

The action:
S = jd4:c (ﬁ?f(m) + eg(w)ﬁ(m)) , (21)
L8 (@) = B@) (7 — mpp(@) — 2 (6uAs(2))(0" A" (2), (22)
L(z) = J"(2)Au(x),  J"(z) = P(a)y" (). (23)
Notation:

» H — Fock space (which is a Krein space),
» 1 — Dirac spinor field describing electrons with mass m > 0,
» A, — real vector field describing massless photons,

>

F,, = 0,A, — 0u A, — the electromagnetic field strength tensor,
» C, C - ghosts,

» @QBrst — free BRST charge.
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Modified scattering matrix

Modified scattering matrix in QM, long-range potentials (e.g. Coulomb potential)
Smod = w-lim Up(0,t2)U(t2 — t1)Up(t1,0), (24)

tq——a0

to—4o0

where H = Hy + eHing, Hp(t) = Hg + eHp int(t). We also have

t1—>—00
to—+00

Smod = w-lim Texp (+16J dt Hé’mt(t)>
1 0

to - 0
x Texp <fie J dt H{m(t)) x Texp (+ief dt H]{,’im(t)> ., (25)
t t

1 1

where Hi(t) = Ug(—t) HintUs (t) and Hp ;1 (t) = Us(—t) Hp,int Us (t).

Modified scattering matrix with adiabatic cutoff in QFT (preliminary version)

Snaals) = Texp (—ie [ a%e g()Lon (o))

x Texp <16Jdu g(:v)ﬁ(:v)) x Texp (fie J dz g(aj)ﬁi,.(l‘)> e L(D)[e] (26)

» Separation of IR and UV problem. UV problem only in defining the Bogolibov S-matrix.
» Dollard modifiers have to be defined in such a way that:

(1) they are well-defined as elements of L(D)[e] for any g € S(R*),

(2) adiabatic limit of Smoa(g) exists.
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Asymptotic interaction in QED

The standard interaction vertex:

L(z) = J"(x) Au(z), J"(z) =Py" (), (27)

where
Au(z) = jd,uo(k) (af: (k) exp(ik - ) + a, (k) exp(—ik - x)) , (28)
)= fdum (0,p)ua(o,p) exp(ip - ) + d(o,p)va(o, p) exp(—ip - x)) . (29)

o=1,2

Asymptotic interaction vertices [Kulish, Faddeev (1970)]

['out/in(n; :C) = Jgut/m(n; ZC) A#(m)a (30)

where the asymptotic currents Jout/m(n7 x) are given by
Iy (M3 7) = Jdum(p) Joutsin (M, 252) p(p). (31)

Charge density in momentum space: p(p) = 20:1,2(17*(?7 a)b(p, o) — d*(p,o)d(p, o)).
SRdTe +7)6 (x —T2).

m

Out/In part of the current of a point particle: j;‘ut/m(p;

T~ m

Charge distribution: n € S(R?), {d*zn(z) = 1.

UV-regularized current: jout/in(nvp; x) is the convolution of jout/m([), x) with 7.
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Asymptotic interaction in QED

» Let v be future directed unit time-like four-vector and ¥ be a state in the Fock space
whose wave functions belong to the Schwartz space. It holds

. 3 " _ . 3 1 .

JHm X7 (U Q)) = Tim X (U] g (3 o)), (32)
lim A (U[J*(A0)) = lim N> (U|JE (m; Ao)®). (33)
A——0 A—>—0

v

The Dollard modifiers S5y, i, (1, 9) are given by
Texp (ie Jd‘lx 9(T) i (15 2) Ap (:c)) = exp (ie j d*z g(z) I tjin (1 2) Ay (:c))

. 62 L L v
X exp <15 Jd4:rd4y g(x)g(y) gw,D[?(:r —y): ]fm in (15 2) Jout /in (13 y)) € L(D)[e]-

v

The first factor is responsible for the generation of clouds of photons which always
surround electrons/positrons.

» The second factor is the relativistic Coulomb phase.

» Because in general the asymptotic outgoing and incoming currents are not conserved
(if the total charge is nonzero) the above expression is not formally gauge invariant.
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Dollard modifiers and modified S-matrix with adiabatic cutoff

Definition of modified S-matrix with adiabatic cutoff

Smod(n,V,9) = R(n,v,g) Siu(n,9) S(g) S5 (n.9) R(n,v,9)" " € L(D)[e] (34)

where S(g) is the Bogoliubov S-matrix, S5, s, (1, g) are the Dollard modifiers and

R(n.v.g) = exp ( [t o) st x)Am)) . (35)

The modified S-matrix with adiabatic cutoff Smoa(n, v, g)
> is well defined as an element of L(D)[e],

» is formally gauge invariant,

> depends on:

» v — unit future-directed timelike four-vector — determines charge sector,
» n e S(R*) — charge distribution — determines cloud of photons in state b*(p, o),
» g € S(R*) — switching function — infrared regularization.
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Modified S matrix in QED

Domain in Fock space

D = spanc{ [[dpn o) i) () o)

h(ﬁl,.4.,ﬁn,k:?,l%l,...,k?ml%m)b*(pl)...b*(pn)a*(kl)...a*(km)Q}, (36)

where h € S(R®" x (R x §%)™) and h vanishes if the momenta of charged particles are
close to each other.

Conjecture: existence of adiabatic limit of modified S-matrix in QED

There exists a renormalization scheme such that for all ¥, ¥’ € D, all € S(R*), such
that {d*zn(z) = 1, and all four-velocities v the limit

(¥1Su0a (1, V)W) = L (¥]Suoa(n, v, 9V (37)

exists in each order of perturbation theory and defines the physical S-matrix
Smod (7, V) € L(D,D#)[[e]]. It holds

Smod(n',v) =V (1',1,v)Smoa(n, V)V (0,7, v), (38)
[@BRST; Smod (1, V)] = 0. (39)

There is explicit formula for the intertwiners V(n',n, v).
In sectors with zero total charge Smod (7, V) is v-independent.
Conjecture holds true in the first and the second order of perturbation theory.

16/19




Modified interacting fields in QED

Modified retarded interacting fields with adiabatic cutoff

Bret,mod(1,V, g5 1) = R(n,v,9) S5 (0. 9) " Bret(g:h) S5 (1, 9) R(n, v, 9) ™" (40)

where B is a polynomial in the basic fields and their derivatives, h € S(R*), Bec(g; h) is
the Bogoliubov retarded field and S{7 (7, v, g) is the incoming Dollard modifier.

Conjecture: existence of adiabatic limit of modified interacting fields in QED

There exists a renormalization scheme such that for all ¥, ¥’ € D, all n € S(R*), such
that {d*zn(z) = 1, and all four-velocities v the limit

(| Bret,moa(n, vi R)V') = lim (¥|Bret,moa (1, v, ge; h)U') (41)

exists in each order of the perturbation theory and defines the interacting retarded field
Biet,mod (1, v; h) € L(D, D#)[[e]]. It holds

Bret,mod(n/7 V3 h) = V(W’7 7]7 V)BTeLmOd(?’L V; h)v(n7 77/7 V)' (42)
Moreover, if Byet(+;h) is in the kernel of the interacting BRST differential, then

[@BRsT, Bret,mod(n, v; h)] = 0. (43)

. u v — " . .
Conjecture holds true for Aret’mod, Fret’mod, Yret,mod, wlet’mod, Jret,mod in the first order
of perturbation theory.
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Physical interpretation

> Non-zero asymptotic flux of the electric field in sectors with nonzero electric charge.

v VY — ¥Vt

ret,mod () ~ GQW +0(e%) as |#] - o (44)

The long-range tail of F]ret moq coincides with the electromagnetic field of a particle of
charge eQ) moving with the four-velocity v. = v determines the sector.

» LSZ limit of the electromagnetic field
LSZ = 21Jduo ff] (n,v,k)exp(ik - ) — h.c.) + 0(e?), (45)

where a7 (n,v, k) = aff (k) — eJu(n, v, k).
Operators e/ (k, s) aff(n, v, k), s = 1,2 are responsible for creation and annihilation
of physical photons (up to possible higher order corrections).

States b™*(p, o)Q contain irremovable clouds of photons.

» Modified S-matrix and modified retarded fields are covariant with respect to the
following representation of the translation group Upoa (7, v;a) = V(1,ma,v)U(a)
which is not unitarily equivalent to the standard Fock representation.

> Joint spectrum of the energy-momentum operators contains
> a unique vacuum state €2,
» one-particle massless states e (k, s) a;: (1, v, k)Q
» but no one-particle massive states = electrons/positrons are infraparticles.



Summary

Method of adiabatic switching of the interaction can be used to construct perturbatively
physically relevant objects in QFT:

» Construction of the Wightman and Green functions in all models with interaction
vertices of dimension 4. pAQFT framework: Definition of the vacuum state.

» Construction of the scattering operator and the interacting fields in models with only
massive fields.

> Definition of the matrix elements of the modified scattering operator and modified
interacting fields in QED. Proof of the existence of the adiabatic limit in low orders
of the perturbation theory.
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