Thermal states in pAQFT: stability, relative entropy and entropy production

Nicola Pinamonti

Università di Genova, INFN Sez. Genova

Banff, August the 2nd, 2018

Joint work with Nicolò Drago and Federico Faldino [arXiv:1609.01124 in CMP] [arXiv:1710.09747]

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Plan of the talk

- **1** Thermal states for C^* -dynamical systems
- 2 Perturbative algebraic quantum field theory and KMS states [Fredenhagen Lindner]
- 3 Stability of KMS states for spatially compact interactions
- 4 Instabilities under the adiabatic limit and non equilibrium steady states NESS
- 5 Relative entropy and entropy production for these states.

Joint work with Nicolò Drago and Federico Faldino [arXiv:1609.01124 in CMP] [arXiv:1710.09747]

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Basic settings of quantum statistical mechanics

• Let \mathcal{A} be the C^* -algebra describing the **observables** of the theory.

- **Time evolution** (also called **dynamics**) is described by a one-parameter group of *-automorphisms $t \mapsto \alpha_t, \alpha_t : \mathcal{A} \to \mathcal{A}$.
- A C^* -algebra \mathcal{A} equipped with a continuous time evolution α_{τ} forms a C^* -dynamical system
- A state ω over \mathcal{A} is a linear functional which is positive and normalized $\omega(1) = 1$.

(日) (日) (日) (日) (日) (日) (日) (日)

C^* -dynamical systems and equilibrium states

Equilibrium states are characterized by the KMS condition

Definition (KMS states)

A state ω for A, invariant under α_t , is a (β, α_t) -KMS state if $\forall A, B \in A$ the map

 $t\mapsto\omega(A\alpha_t(B))$

can be extended to an analytic function in the strip $\Im(t) \in [0, \beta]$ and if

$$\omega(A\alpha_{i\beta}(B))=\omega(BA).$$

 β is the inverse temperature.

- Gibbs states for discrete systems are KMS states
- KMS condition is meaningful for infinitely extended systems
- KMS states are stable under perturbation of the dynamics

Araki construction of perturbed KMS states

Consider $P = P^* \in A$ the perturbation Hamiltonian.

Then the perturbed dynamics α^P is such that

$$\alpha_t^P(A) = U(t)\alpha_t(A)U(t)^*,$$

where U(t) is the cocycle generated by P

Theorem (Araki)

Let ω be an extremal (β, α) -KMS state and α^{P} the perturbed dynamics. Consider

$$\omega^{P}(A) := rac{\omega(AU(ieta))}{\omega(U(ieta))}$$

where $\omega(AU(i\beta))$ is the analytic continuation of $\omega(AU(t))$, then $\omega^{P}(A)$ is a $(\beta, \alpha^{P})-KMS$ state.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

If strong clustering holds for ω

$$\lim_{t\to\pm\infty}\omega(A\alpha_t(B))=\omega(A)\omega(B)$$

stability - return to equilibrium hold:

$$\lim_{t\to\infty}\omega(\alpha^P_t(A))=\omega^P(A)\qquad\text{and}\qquad\lim_{t\to\infty}\omega^P(\alpha_t(A))=\omega(A)$$

[Haag Kastler Trych-Pohlmeyer, Bratteli Robinson, Bratteli Robinson Kishimoto]

Aim

extend the scheme to encompass perturbatively constructed KMS states for interacting quantum field theories

Quantum field theories (PAQFT)

Real scalar fields on Minkowski space M (with signature -, +, +, +)

$$-\Box \phi + m^2 \phi + \lambda V^{(1)}(\phi) = 0, \qquad V(\phi) = \int \phi^n(x) f(x) d\mu$$

■ Observables are functionals over the field configurations \(\varphi\) ∈ \(C\) := C[∞](M; \(\mathbb{R}\)) (off-shell)

 $\mathcal{F}_{\mu c} := \{ F : \mathcal{C} \to \mathbb{C} \mid \text{smooth, compactly supported, microcausal } \}$

Examples $f \in C_0^\infty$

$$\Phi(f) := \int_{M} f(x)\varphi(x)d\mu(x), \qquad F(\varphi) = \int_{M \times M} \varphi(x)\varphi(y)f(x,y)d\mu(x)d\mu(y), \qquad \Phi^{2}(f) := \int_{M} f(x)\varphi(x)^{2}d\mu(x)$$

Local functionals are contained in *F*_{µc}

$$\mathcal{F}_{\mathit{loc}} := \left\{ F \in \mathcal{F}_{\mu c} \ \Big| \ \mathsf{supp} F^{(n)} \subset \mathsf{Diag}_n
ight\}$$

(日) (日) (日) (日) (日) (日) (日) (日)

Free quantum theory

$$P\phi := -\Box\phi + m^2\phi = 0$$

On \$\mathcal{F}_{\mu c}\$ acts the following product (compatible with the free dynamics):

$$F\star_{\omega} G := e^{\langle \omega, \frac{\delta^2}{\delta\varphi\delta\varphi'} \rangle} F(\varphi)G(\varphi')\big|_{\varphi'=\varphi}$$

where ω is an Hadamard bidistribution:

- ω is a bisolution of the equation of motion up to smooth functions

-
$$\omega(x, y) - \omega(y, x) = i\Delta(x, y)$$

- it satisfies the microlocal spectrum condition then the product of microcausal functionals is well defined.

• $(\mathcal{F}_{\mu c}, \star_{\omega})$ is the algebra of observable of the free theory.

$$[\Phi(f), \Phi(h)]_{\star} := \Phi(f) \star \Phi(h) - \Phi(h) \star \Phi(f) = i\Delta(f, h), \qquad f, h \in \mathcal{D}(M)$$

- Local fields are Wick ordered wrt ω
- Different ω produce isomorphic algebras

Introduction to pAQFT

 Interacting fields can be treated perturbatively within the algebraic picture [Brunetti, Dütch, Fredenhagen, Hollands, Rejzner, Wald]

Observables are **formal power series** in the coupling constant λ with coefficients in $\mathcal{F}_{\mu c}$ namely elements of $\mathcal{F}_{\mu c}[[\lambda]]$.

• To construct them explicitly, the time ordering map is needed:

$$T:\mathcal{F}_{loc}^{\otimes n}
ightarrow\mathcal{F}_{\mu c}$$

On regular functionals, T is characterised by the causal factorisation property

$$T(A,B) = T(A) \star T(B)$$
 if $A \gtrsim B$

where $A \gtrsim B$ if $J^+(\operatorname{supp}(A)) \cap \operatorname{supp}(B) = \emptyset$.

It can be extended to local functionals (in a non unique way, there are renormalization ambiguities) [Epstain Glaser, Steinmann, Brunetti Fredenhagen, Hollands Wald]

• The formal *S*-matrix of $V \in \mathcal{F}_{loc}$ is the time ordered exponential

$$S(V) := \exp_T\left(\frac{i\lambda}{\hbar}V\right)$$

The causal factorisation property of the S-matrix

$$S(A+B+C) = S(A+B) \star S(B)^{-1} \star S(B+C), \quad \text{if} \quad A \geq C$$

The Bogoliubov map is used to construct interacting field theories

$$\mathcal{R}_{V}(F) := \left. \frac{d}{d\lambda} S_{V}(\lambda F) \right|_{\lambda=0} := \left. \frac{d}{d\lambda} S(V)^{-1} \star S(V + \lambda F) \right|_{\lambda=0}$$

• Observables of the interacting theory \mathcal{F}_{I} are represented in the free algebra

$$\mathcal{R}_V:\mathcal{F}_I\to\mathcal{F}_{\mu c}.$$

We may think of \mathcal{F}_l as being generated by elements of $S_V(\mathcal{F}_{loc})$ or of $\mathcal{R}_V(\mathcal{F}_{loc})$.

- $\mathcal{R}_V(\Phi(Pf) + \lambda V^{(1)}(f)) = \Phi(Pf)$
- *R_V(F)* is compatible with causality thanks to the causal factorisation property of the *S*-matrix

$$\mathcal{R}_V(A) = A$$
 if $V \gtrsim A$

•
$$supp\mathcal{R}_V(F) \subset J^-(suppF) \cap J^+(suppV)$$

An interacting state ω is fixed once the correlation functions among local interacting fields are given

$$\omega'(F_1,\ldots,F_n):=\omega\left(\mathcal{R}_V(F_1)\star\cdots\star\mathcal{R}_V(F_n)\right),\qquad F_i\in\mathcal{F}_{loc}.$$

Interacting time evolution

$$\alpha_t^{\mathsf{V}}\mathcal{R}_{\mathsf{V}}(\mathsf{F}) := \mathcal{R}_{\mathsf{V}}(\alpha_t \mathsf{F})$$

Aim is to have interaction Lagrangians invariant under spacetime translations.

Example: we would like to treat

$$``V(\varphi) = \int \varphi(x)^4 d\mu(x)''$$

however, this is not compatible with the scheme discussed above.

- Insert a **cutoff** g (a C_0^{∞} function equal to 1 in the region where the observables are supported).
- Eventually remove the cutoff taking the limit where $g \rightarrow 1$. (This is called adiabatic limit)

$$V_g(\varphi) = \int g(x) \mathcal{L}_I(x) d\mu(x)$$

Question

Can it be done when a state is constructed?

Strategy

Thanks to the Time-slice axiom it is sufficient to define the state on interacting observables *F_l*(Σ_ε) supported in some neighborhood of a Cauchy surface:

$$\Sigma_{\epsilon} = \{ (t, \mathbf{x}) \in M | -\epsilon < t < \epsilon \}$$

 $(\mathcal{F}_{l}(\Sigma_{\epsilon}) \text{ is generated by } \mathcal{R}_{V}(F) \text{ with } F \text{ local and supp} F \subset \Sigma_{\epsilon})$ [Chilian Fredenhagen, Hollands Wald]

The causal factorisation property implies that

$$\mathcal{F}_{I}^{V_{g}}(\Sigma_{\epsilon}) = W \star \mathcal{F}_{I}^{V_{g'}}(\Sigma_{\epsilon}) \star W^{-1}$$

if supp $(g - g') \cap J^+(\Sigma_{\epsilon}) = \emptyset$ where $W = S_{V_g}(V_{g'-g})$ is unitary and $\mathcal{F}_I^{V_g}(\Sigma_{\epsilon}) = \mathcal{F}_I^{V_{g'}}(\Sigma_{\epsilon})$

if supp $(g - g') \cap J^{-}(\Sigma_{\epsilon}) = \emptyset$ [Hollands Wald, Brunetti Fredenhagen]

Hence, select g(t, x) = χ(t)h(x) where χ is equal to 1 on J⁺(Σ_ε) and it is past compact (χ(t) = 0 for t < -2ε)</p>

KMS state and the adiabatic limit

[Fredenhagen Lindner] have obtained KMS states in the adiabatic limit extending the Araki construction to pAQFT.

It exists an unique free quasifree extremal KMS state ω^{β} at inverse temperature β wrt α_t .

$$\widehat{\omega_2^{eta}}(p) = rac{1}{2\pi} rac{1}{1-e^{-eta p_0}} \delta(p^2+m^2) \mathrm{sign}(p_0)$$

Fix the cutoff χh in $V_{\chi h}$.

Analyze α_t^V and compare it with α_t

$$\alpha_t^V(S_V(F)) = S_V(F_t), \qquad \alpha_t(S_V(F)) = S_{V_t}(F_t),$$

 Although the generator is not at disposal, the causal factorisation property of S implies that

$$\alpha_t^V(A) = U_V(t) \star \alpha_t(A) \star U_V(t)^{-1}$$

The cocycle

$$U_V(t) = S(V)^{-1} \star S(V_t)$$

Differentiating wrt time we get the generator

$$\mathcal{K}_h^{\chi} := \mathcal{R}_V(\mathcal{H}(h\dot{\chi})), \qquad \mathcal{H}(h\dot{\chi}) = \int h\dot{\chi}\mathcal{L}_I d\mu$$

Notice that support of K is before Σ_ε

• Having, K and thus U_V at disposal the Araki construction can be repeated.

$$\omega^{\beta,V}(F) = \frac{\omega^{\beta}(F \star U_V(i\beta))}{\omega^{\beta}(U_V(i\beta))}$$

- $\omega^{\beta,V}$ depends on *h* through U_V . Exploiting the decaying properties of the free KMS state 2-pt function for large spatial separation [*Fredenhagen Lindner*] have shown that the limit $h \to 1$ can be taken.
- In this way one obtains the KMS state for the interacting theory under the adiabatic limit.
- The limiting state does not depend on χ .
- The case m = 0 can be treated with the use of the thermal mass. [Drago, Hack, np].

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

[Le Bellac, Altherr, Landsman van Weert]

 Realtime formalism. A direct comparison requires a bit of work. Notice in particular that

$$S_V(F) \star U_V(t) = S_V\left(F + \int_0^t \alpha_s \dot{V} ds\right)$$

hence,

$$S_V(F) \star U_V(i\beta) = \tilde{S}\left(F + \int_C \alpha_s \dot{V} ds\right)$$

where C is related to the known Keldysh contour and \tilde{S} is the time ordered exponential with respect to the contour C.

 Matsubara method. Imaginary time formalism. Not suited to compute space dependent correlation functions.

Stability and KMS condition

Aim

Analyze the return to equilibrium properties in these states.

We start with an h of compact spatial support.

Proposition (Clustering condition for α_t)

Consider A and B two elements of $\mathcal{F}_{l}(\mathcal{O})$, $(\mathcal{O} \subset \Sigma_{\epsilon})$, it holds that

$$\lim_{t\to\infty}\omega^{\beta}(A\star\alpha_t(B))=\omega^{\beta}(A)\omega^{\beta}(B)$$

in the sense of formal power series in the coupling constant.

At fixed x, y, $\omega_2^{\beta}(x, y + te)$ decays as $1/t^{3/2}$ for large t. [Bros Buchholz]

The clustering condition implies the following return to equilibrium

$$\lim_{T \to \infty} \omega^{\beta, V}(\alpha_T(A)) = \lim_{T \to \infty} \frac{\omega^{\beta}(\alpha_T(A) \star U_V(i\beta))}{\omega^{\beta}(U_V(i\beta))} = \omega^{\beta}(A)$$

where the limit is taken in the sense of perturbation theories.

To check if $\lim_{T\to\infty} \omega^{\beta}(\alpha_T^V(A)) = \omega^{\beta,V}(A)$ we need the following

Proposition (Clustering condition for α_t^V)

The limit,

$$\lim_{t\to+\infty}\left[\omega^{\beta}(A\star\alpha_{t}^{V}(B))-\omega^{\beta}(A)\omega^{\beta}(\alpha_{t}^{V}(B))\right]=0,$$

for A and B in $\mathcal{F}_{l}(\mathcal{O})$, holds in the sense of formal power series in the coupling constant whenever the perturbation Lagrangian $V_{\chi,h}$ has spatial compact support.

Theorem (Stability)

If $V_{\chi,h}$ is a spatially compact interaction Lagrangian

$$\lim_{T\to\infty}\omega^{\beta}(\alpha^{V}_{T}(A))=\omega^{\beta,V}(A)$$

where A is an element of $\mathcal{F}_{l}(\Sigma_{\epsilon})$.

Instabilities in the adiabatic limit - secular effects

Under the adiabatic limit, the clustering condition fails at first order

$$\lim_{t\to\infty}\lim_{h\to 1}\left(\omega^{\beta}(A\star\alpha_t(K))-\omega^{\beta}(A)\omega^{\beta}(K)\right)\neq 0$$

• We study the ergodic mean of $\omega^{\beta} \circ \alpha_{\tau}^{V}$ to smoothen oscillations

$$\omega_T^{V,+}(A) := \lim_{h \to 1} \frac{1}{T} \int_0^T \omega^\beta(\alpha_\tau^V(A)) d\tau$$

and eventually we analyze the limit $T \to \infty$.

- The clustering condition fails also in this case ⇒ no return to equilibrium is expected to hold.
- Higher orders in $\omega_T^{V,+}(A)$ grow polynomially in T at large time.
- The expansion of $\lim_{h\to 1} \omega^{\beta, V}$ is free from divergences. We thus analyze

$$\omega^+(A) := \lim_{T \to \infty} \lim_{h \to 1} \frac{1}{T} \int_0^T dt \, \omega^{\beta, V}(\alpha_t(A))$$

A non-equilibrium steady state for the free field theory

Consider the ergodic mean of $\omega^{\beta,V}$ with respect to the free time evolution α_τ

$$\omega^+(\mathcal{A}) := \lim_{T o \infty} \lim_{h o 1} rac{1}{T} \int_0^T \omega^{eta,V}(lpha_ au(\mathcal{A})) \mathrm{d} au$$

which is seen as a state (defined as a formal power series) for the unperturbed theory.

Proposition

The functional ω^+ defined in the sense of formal power series, is a state for the free algebra \mathcal{F} . Furthermore, ω^+ is invariant under the free evolution α_t .

Theorem

 ω^+ does not satisfy the KMS condition with respect to α_t .

 ω^+ is thus a non equilibrium steady states (NESS)

Question

How far is ω^+ from equilibrium?

- **Relative entropy** can be used to measure the "distance" between two states.
- Other thermodynamic quantities can be obtained from it.

In the case of a von Neumann algebra $\mathfrak{A}\subset\mathfrak{BH}$ and two normal states Ψ and $\Phi.$

The Araki relative entropy

$$\mathcal{S}(\Psi,\Phi):=-(\Psi, \mathsf{log}(\Delta_{\Psi,\Phi})\Psi).$$

where the relative modular operator is obtained as

$$\Delta_{\Psi,\Phi} := S^*S, \qquad SA\Psi = A^*\Phi, \qquad A \in \mathfrak{A}.$$

Problem

 $\Delta_{\Psi,\Phi}$ is not directly available in pAQFT

Relative entropy and perturbations in W^* -dyn. systems

- (\mathfrak{N}, α_t) a W^* -dynamical system on the Hilbert space \mathfrak{H}, α_t is generated by H.
- Let $\Omega_0 \in \mathfrak{H}$ be the GNS vector of the KMS state at inverse temperature β wrt α_t .
- Consider a perturbation P which is a self-adjoint element of 𝔅. Let Ω₁ ∈ 𝔅 be the GNS vector of the Araki KMS state over Ω₀. It holds that

$$\Omega_1 = \frac{1}{N} U \Omega_0, \qquad U = e^{\frac{\beta}{2}H} e^{-\frac{\beta}{2}(H+P)}, \qquad N^2 = (\Omega_0, U^* U \Omega_0).$$

The relative modular operator between Ω₁ and Ω₀ is

$$\Delta_{\Omega_1\Omega_0} = N^2 e^{-\beta H}$$

The relative entropy [Bratteli Robinson]

$$\mathcal{S}(\Omega_1,\Omega_0)=eta(\Omega_1,H\Omega_1)-\mathsf{log}(\mathsf{N}^2)=-eta(\Omega_1,\mathsf{P}\Omega_1)-\mathsf{log}(\mathsf{N}^2)$$

Relative entropy for perturbatively constructed KMS states

- In pAQFT we do not have the relative modular operator at disposal.
- But if h is of compact support we have the generator K, hence we can define the relative entropy by analogy

$$\mathcal{S}(\omega^{eta,V},\omega^{eta}):=-\omega^{eta,V}(eta \mathcal{K})-\log(\omega^{eta}(\mathcal{U}(ieta)))$$

In the same manner we get

$$\begin{split} \mathcal{S}(\omega^{\beta,V_1},\omega^{\beta,V_3}) &:= -\omega^{\beta,V_1}(\beta\kappa_1) + \omega^{\beta,V_1}(\beta\kappa_3) - \log(\omega^{\beta}(U_1(i\beta))) + \log(\omega^{\beta}(U_3(i\beta))) \\ \mathcal{S}(\omega^{\beta,V_1} \circ \alpha_t^{V_2},\omega^{\beta,V_3}) &:= \mathcal{S}(\omega^{\beta,V_1},\omega^{\beta,V_3}) + \omega^{\beta,V_1}(\alpha_t^{V_2}(\beta\kappa_3 - \beta\kappa_2)) - \omega^{\beta,V_1}(\beta\kappa_3 - \beta\kappa_2)) \end{split}$$

Proposition

The generalized relative entropy $S(\omega^{\beta,V_1} \circ \alpha_t^{V_2}, \omega^{\beta,V_3})$ satisfies the following properties:

- a) (Quadratic quantity) it is at least of second order both in K_i and in λ .
- b) (Positivity) it is positive in the sense of formal power series for every t.
- c) (Convexity) it is convex in V_1 , V_2 and V_3 in the sense of formal power series.
- d) (Continuity) it is continuous in V_i in the sense of formal power series with respect to the topology of $\mathcal{F}_{\mu c}$.

Adiabatic limits

From Haag's Theorem it is expected that under the adiabatic limit the relative entropy diverges

$$\mathcal{S}(\omega^{eta,V_1},\omega^{eta})=-\omega^{eta,V_1}(eta extsf{K}_1)-\log(\omega^{eta}(U_1(ieta)))$$

Let V_i for $i \in \{1, 2, 3\}$ be three interaction potentials with a common spatial cutoff h, the relative entropy per unit volume is

$$s(\omega^{\beta,V_1} \circ \alpha_t, \omega^{\beta,V_3}) := \lim_{h \to 1} \frac{1}{I(h)} \ \mathcal{S}(\omega^{\beta,V_1} \circ \alpha_t, \omega^{\beta,V_3})$$

where I(h) is the integral of the cutoff function over the volume \mathbb{R}^3

$$I(h) := \int_{\mathbb{R}^3} h(\mathbf{x}) d\mathbf{x}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Proposition

The relative entropy per unit volume $s(\omega^{\beta,V_1} \circ \alpha_t, \omega^{\beta,V_3})$ is

- finite
- positive

Entropy production and its property in pAQFT

$$s(\omega^{+}, \omega^{\beta, V}) = ??$$
$$\omega^{+}(A) := \lim_{T \to \infty} \lim_{h \to 1} \frac{1}{T} \int_{0}^{T} \omega^{\beta, V}(\alpha_{\tau}(A)) \mathrm{d}\tau$$

In the case of C^* -dynamical systems, $S(\omega^+, \omega^{\beta, V})$, diverges hence entropy production is used to test how far is a NESS from equilibrium.

[Ojima and collaborators, Ruelle, Jaksic Pillet]

Let η be a state invariant under $\alpha_t^{V_1}$. The entropy production in the state $\eta \circ \alpha_t$ of α_t relative to $\alpha_t^{V_3}$ (or to ω^{β,V_3}) is defined as

$$\mathcal{E}^{V_3}(\eta \circ \alpha_s) := \left. \frac{d}{dt} \eta \left(\alpha_{-t}^{V_1} \alpha_t(\beta(K_3)) \right) \right|_{t=s}$$

It has been also used in another context in [Hack Verch]

Proposition

Consider V_i for $i \in \{1,3\}$ two perturbation potentials with spatially compact supports then

$$\mathcal{S}(\omega^{eta,V_1}\circlpha_t,\omega^{eta,V_3})=\mathcal{S}(\omega^{eta,V_1},\omega^{eta,V_3})+\int_0^\iota\mathcal{E}^{V_3}(\omega^{eta,V_1}\circlpha_s)~ds$$

For the NESS the entropy production per unit volume wrt $\omega^{\beta,V}$

$$e^V(\omega^+) := \lim_{t o \infty} \lim_{h o 1} rac{1}{t} rac{1}{I(h)} \int_0^t ds \ \mathcal{E}^V(\omega^{eta,V} \circ lpha_s)$$

Theorem

The NESS ω^+ discussed above has vanishing entropy production per unit volume wrt $\omega^{\beta,V}.$

NESS with vanishing entropy production are interpreted to be thermodynamically simple.

(日) (日) (日) (日) (日) (日) (日) (日)

This means that $s(\omega^+, \omega^{\beta, V})$ is finite. Hence we can say that ω^+ is not so far from being a KMS state.

Summary

- Equilibrium states in perturbative algebraic quantum field theory.
- Return to equilibrium for interaction Lagrangian compact in space.
- Failure of the return to equilibrium in the adiabatic limit.
- Relative entropy and entropy production among these states can be computed.

Thanks a lot for your attention

<□ > < @ > < E > < E > E のQ @