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Basic settings of quantum statistical mechanics

Let A be the C∗−algebra describing the observables of the theory.

Time evolution (also called dynamics) is described by a one-parameter group of
∗−automorphisms t 7→ αt , αt : A → A.

A C∗−algebra A equipped with a continuous time evolution ατ forms a
C∗−dynamical system

A state ω over A is a linear functional which is positive and normalized ω(1) = 1.



C ∗−dynamical systems and equilibrium states

Equilibrium states are characterized by the KMS condition

Definition (KMS states)

A state ω for A, invariant under αt , is a (β, αt)−KMS state if ∀A,B ∈ A the map

t 7→ ω(Aαt(B))

can be extended to an analytic function in the strip =(t) ∈ [0, β] and if

ω(Aαiβ(B)) = ω(BA).

β is the inverse temperature.

Gibbs states for discrete systems are KMS states

KMS condition is meaningful for infinitely extended systems

KMS states are stable under perturbation of the dynamics



Araki construction of perturbed KMS states

Consider P = P∗ ∈ A the perturbation Hamiltonian.

Then the perturbed dynamics αP is such that

αP
t (A) = U(t)αt(A)U(t)∗,

where U(t) is the cocycle generated by P

Theorem (Araki)

Let ω be an extremal (β, α)−KMS state and αP the perturbed dynamics. Consider

ωP(A) :=
ω(AU(iβ))

ω(U(iβ))

where ω(AU(iβ)) is the analytic continuation of ω(AU(t)), then ωP(A) is a
(β, αP)−KMS state.



Stability of KMS states for C ∗−dynamical systems

If strong clustering holds for ω

lim
t→±∞

ω(Aαt(B)) = ω(A)ω(B)

stability - return to equilibrium hold:

lim
t→∞

ω(αP
t (A)) = ωP(A) and lim

t→∞
ωP(αt(A)) = ω(A)

[Haag Kastler Trych-Pohlmeyer, Bratteli Robinson, Bratteli Robinson Kishimoto]

Aim

extend the scheme to encompass perturbatively constructed KMS states for interacting
quantum field theories



Quantum field theories (PAQFT)

Real scalar fields on Minkowski space M (with signature −,+,+,+)

−�φ+ m2φ+ λV (1)(φ) = 0, V (φ) =

∫
φn(x)f (x)dµ

Observables are functionals over the field configurations ϕ ∈ C := C∞(M;R)
(off-shell)

Fµc := {F : C → C | smooth, compactly supported, microcausal }
Examples f ∈ C∞0

Φ(f ) :=

∫
M

f (x)ϕ(x)dµ(x), F (ϕ) =

∫
M×M

ϕ(x)ϕ(y)f (x, y)dµ(x)dµ(y), Φ2(f ) :=

∫
M

f (x)ϕ(x)2dµ(x)

Local functionals are contained in Fµc

Floc :=
{
F ∈ Fµc

∣∣∣ suppF (n) ⊂ Diagn

}



Free quantum theory

Set λ = 0
Pφ := −�φ+ m2φ = 0

On Fµc acts the following product (compatible with the free dynamics):

F ?ω G := e
〈ω, δ2

δϕδϕ′ 〉 F (ϕ)G(ϕ′)
∣∣
ϕ′=ϕ

where ω is an Hadamard bidistribution:

- ω is a bisolution of the equation of motion up to smooth functions
- ω(x, y)− ω(y, x) = i∆(x, y)

- it satisfies the microlocal spectrum condition then the product of microcausal functionals is well defined.

(Fµc , ?ω) is the algebra of observable of the free theory.

[Φ(f ),Φ(h)]? := Φ(f ) ? Φ(h)− Φ(h) ? Φ(f ) = i∆(f , h), f , h ∈ D(M)

Local fields are Wick ordered wrt ω

Different ω produce isomorphic algebras



Introduction to pAQFT

Interacting fields can be treated perturbatively within the algebraic picture
[Brunetti, Dütch, Fredenhagen, Hollands, Rejzner, Wald]

Observables are formal power series in the coupling constant λ with coefficients in Fµc
namely elements of Fµc [[λ]].

To construct them explicitly, the time ordering map is needed:

T : F⊗n
loc → Fµc

On regular functionals, T is characterised by the causal factorisation property

T (A,B) = T (A) ? T (B) if A & B

where A & B if J+(supp(A)) ∩ supp(B) = ∅.

It can be extended to local functionals (in a non unique way, there are renormalization ambiguities)

[Epstain Glaser, Steinmann, Brunetti Fredenhagen, Hollands Wald]

The formal S−matrix of V ∈ Floc is the time ordered exponential

S(V ) := expT

(
iλ

~
V

)
The causal factorisation property of the S−matrix

S(A + B + C) = S(A + B) ? S(B)−1 ? S(B + C), if A & C



The Bogoliubov map is used to construct interacting field theories

RV (F ) :=
d

dλ
SV (λF )

∣∣∣∣
λ=0

:=
d

dλ
S(V )−1 ? S(V + λF )

∣∣∣∣
λ=0

Observables of the interacting theory FI are represented in the free algebra

RV : FI → Fµc .

We may think of FI as being generated by elements of SV (Floc) or of RV (Floc).

RV (Φ(Pf ) + λV (1)(f )) = Φ(Pf )
RV (F ) is compatible with causality thanks to the causal factorisation
property of the S−matrix

RV (A) = A if V & A

suppRV (F ) ⊂ J−(suppF ) ∩ J+(suppV )

An interacting state ω is fixed once the correlation functions among local
interacting fields are given

ωI (F1, . . . ,Fn) := ω (RV (F1) ? · · · ?RV (Fn)) , Fi ∈ Floc .

Interacting time evolution

αV
t RV (F ) := RV (αtF )



Adiabatic limits

Aim is to have interaction Lagrangians invariant under spacetime translations.

Example: we would like to treat

“V (ϕ) =

∫
ϕ(x)4dµ(x)”

however, this is not compatible with the scheme discussed above.

Insert a cutoff g
(a C∞0 function equal to 1 in the region where the observables are supported).

Eventually remove the cutoff taking the limit where g → 1. (This is called
adiabatic limit)

Vg (ϕ) =

∫
g(x)LI (x)dµ(x)

Question

Can it be done when a state is constructed?



Strategy

Thanks to the Time-slice axiom it is sufficient to define the
state on interacting observables FI (Σε) supported in some
neighborhood of a Cauchy surface:

Σε = {(t, x) ∈ M| − ε < t < ε}

(FI (Σε) is generated by RV (F ) with F local and suppF ⊂ Σε)

[Chilian Fredenhagen, Hollands Wald]

The causal factorisation property implies that

FVg

I (Σε) = W ? F
Vg′
I (Σε) ?W

−1

if supp(g − g ′) ∩ J+(Σε) = ∅ where W = SVg (Vg′−g ) is unitary and

FVg

I (Σε) = F
Vg′
I (Σε)

if supp(g − g ′) ∩ J−(Σε) = ∅
[Hollands Wald, Brunetti Fredenhagen]

Hence, select g(t, x) = χ(t)h(x) where χ is equal to 1 on J+(Σε) and it is past
compact (χ(t) = 0 for t < −2ε)

The only limit we have to care about is h→ 1 [Fredenhagen Lindner]



KMS state and the adiabatic limit

[Fredenhagen Lindner] have obtained KMS states in the adiabatic limit extending the
Araki construction to pAQFT.

It exists an unique free quasifree extremal KMS state ωβ at inverse temperature β wrt
αt .

ω̂β2 (p) =
1

2π

1

1− e−βp0
δ(p2 + m2)sign(p0)

Fix the cutoff χh in Vχh.

Analyze αV
t and compare it with αt

αV
t (SV (F )) = SV (Ft), αt(SV (F )) = SVt (Ft),

Although the generator is not at disposal, the causal factorisation property of S
implies that

αV
t (A) = UV (t) ? αt(A) ? UV (t)−1

The cocycle
UV (t) = S(V )−1 ? S(Vt)

Differentiating wrt time we get the generator

Kχ
h := RV (H(hχ̇)), H(hχ̇) =

∫
hχ̇LIdµ

Notice that support of K is before Σε



Having, K and thus UV at disposal the Araki construction can be repeated.

ωβ,V (F ) =
ωβ(F ? UV (iβ))

ωβ(UV (iβ))

ωβ,V depends on h through UV . Exploiting the decaying properties of the free
KMS state 2-pt function for large spatial separation [Fredenhagen Lindner] have
shown that the limit h→ 1 can be taken.

In this way one obtains the KMS state for the interacting theory under the
adiabatic limit.

The limiting state does not depend on χ.

The case m = 0 can be treated with the use of the thermal mass. [Drago, Hack,
np].



Comparison with other approaches

[Le Bellac, Altherr, Landsman van Weert]

Realtime formalism. A direct comparison requires a bit of work. Notice in
particular that

SV (F ) ? UV (t) = SV

(
F +

∫ t

0

αs V̇ ds

)
hence,

SV (F ) ? UV (iβ) = S̃

(
F +

∫
C

αs V̇ ds

)
where C is related to the known Keldysh contour and S̃ is the time ordered
exponential with respect to the contour C .

Matsubara method. Imaginary time formalism. Not suited to compute space
dependent correlation functions.



Stability and KMS condition

Aim

Analyze the return to equilibrium properties in these states.

We start with an h of compact spatial support.

Proposition (Clustering condition for αt)

Consider A and B two elements of FI (O), (O ⊂ Σε), it holds that

lim
t→∞

ωβ(A ? αt(B)) = ωβ(A)ωβ(B)

in the sense of formal power series in the coupling constant.

At fixed x , y , ωβ2 (x , y + te) decays as 1/t3/2 for large t. [Bros Buchholz]

The clustering condition implies the following return to equilibrium

lim
T→∞

ωβ,V (αT (A)) = lim
T→∞

ωβ(αT (A) ? UV (iβ))

ωβ(UV (iβ))
= ωβ(A)

where the limit is taken in the sense of perturbation theories.



To check if limT→∞ ω
β(αV

T (A)) = ωβ,V (A) we need the following

Proposition (Clustering condition for αV
t )

The limit,

lim
t→+∞

[
ωβ(A ? αV

t (B))− ωβ(A)ωβ(αV
t (B))

]
= 0,

for A and B in FI (O), holds in the sense of formal power series in the coupling constant
whenever the perturbation Lagrangian Vχ,h has spatial compact support.

Theorem (Stability)

If Vχ,h is a spatially compact interaction Lagrangian

lim
T→∞

ωβ(αV
T (A)) = ωβ,V (A)

where A is an element of FI (Σε).



Instabilities in the adiabatic limit - secular effects

Under the adiabatic limit, the clustering condition fails at first order

lim
t→∞

lim
h→1

(
ωβ(A ? αt(K))− ωβ(A)ωβ(K)

)
6= 0

We study the ergodic mean of ωβ ◦ αV
τ to smoothen oscillations

ωV ,+
T (A) := lim

h→1

1

T

∫ T

0

ωβ(αV
τ (A))dτ

and eventually we analyze the limit T →∞.

The clustering condition fails also in this case =⇒ no return to equilibrium is
expected to hold.

Higher orders in ωV ,+
T (A) grow polynomially in T at large time.

The expansion of limh→1 ω
β,V is free from divergences. We thus analyze

ω+(A) := lim
T→∞

lim
h→1

1

T

∫ T

0

dt ωβ,V (αt(A))



A non-equilibrium steady state for the free field theory

Consider the ergodic mean of ωβ,V with respect to the free time evolution ατ

ω+(A) := lim
T→∞

lim
h→1

1

T

∫ T

0

ωβ,V (ατ (A))dτ

which is seen as a state (defined as a formal power series) for the unperturbed theory.

Proposition

The functional ω+ defined in the sense of formal power series, is a state for the free
algebra F . Furthermore, ω+ is invariant under the free evolution αt .

Theorem

ω+ does not satisfy the KMS condition with respect to αt .

ω+ is thus a non equilibrium steady states (NESS)

Question

How far is ω+ from equilibrium?



Relative Entropy

Relative entropy can be used to measure the “distance” between two states.

Other thermodynamic quantities can be obtained from it.

In the case of a von Neumann algebra A ⊂ BH and two normal states Ψ and Φ.

The Araki relative entropy

S(Ψ,Φ) := −(Ψ, log(∆Ψ,Φ)Ψ).

where the relative modular operator is obtained as

∆Ψ,Φ := S∗S , SAΨ = A∗Φ, A ∈ A.

Problem

∆Ψ,Φ is not directly available in pAQFT



Relative entropy and perturbations in W ∗−dyn. systems

(N, αt) a W ∗−dynamical system on the Hilbert space H, αt is generated by H.

Let Ω0 ∈ H be the GNS vector of the KMS state at inverse temperature β wrt αt .

Consider a perturbation P which is a self-adjoint element of N. Let Ω1 ∈ H be
the GNS vector of the Araki KMS state over Ω0. It holds that

Ω1 =
1

N
UΩ0, U = e

β
2
He−

β
2

(H+P), N2 = (Ω0,U
∗UΩ0).

The relative modular operator between Ω1 and Ω0 is

∆Ω1Ω0 = N2e−βH

The relative entropy [Bratteli Robinson]

S(Ω1,Ω0) = β(Ω1,HΩ1)− log(N2) = −β(Ω1,PΩ1)− log(N2).



Relative entropy for perturbatively constructed KMS states

In pAQFT we do not have the relative modular operator at disposal.

But if h is of compact support we have the generator K , hence we can define the
relative entropy by analogy

S(ωβ,V , ωβ) := −ωβ,V (βK)− log(ωβ(U(iβ)))

In the same manner we get

S(ωβ,V1 , ω
β,V3 ) := −ωβ,V1 (βK1) + ω

β,V1 (βK3)− log(ωβ (U1(iβ))) + log(ωβ (U3(iβ)))

S(ωβ,V1 ◦ αV2
t , ω

β,V3 ) := S(ωβ,V1 , ω
β,V3 ) + ω

β,V1 (α
V2
t (βK3 − βK2))− ωβ,V1 (βK3 − βK2)



Properties Relative Entropy

Proposition

The generalized relative entropy S(ωβ,V1 ◦ αV2
t , ω

β,V3 ) satisfies the following properties:

a) (Quadratic quantity) it is at least of second order both in Ki and in λ.

b) (Positivity) it is positive in the sense of formal power series for every t.

c) (Convexity) it is convex in V1, V2 and V3 in the sense of formal power series.

d) (Continuity) it is continuous in Vi in the sense of formal power series with respect
to the topology of Fµc .



Adiabatic limits

From Haag’s Theorem it is expected that under the adiabatic limit the relative entropy
diverges

S(ωβ,V1 , ωβ) = −ωβ,V1 (βK1)− log(ωβ(U1(iβ)))

Let Vi for i ∈ {1, 2, 3} be three interaction potentials with a common spatial cutoff h,
the relative entropy per unit volume is

s(ωβ,V1 ◦ αt , ω
β,V3 ) := lim

h→1

1

I (h)
S(ωβ,V1 ◦ αt , ω

β,V3 )

where I (h) is the integral of the cutoff function over the volume R3

I (h) :=

∫
R3

h(x)dx

Proposition

The relative entropy per unit volume s(ωβ,V1 ◦ αt , ω
β,V3 ) is

finite

positive



Entropy production and its property in pAQFT

s(ω+, ωβ,V ) =??

ω
+(A) := lim

T→∞
lim
h→1

1

T

∫ T

0
ω
β,V (ατ (A))dτ

In the case of C∗−dynamical systems, S(ω+, ωβ,V ), diverges hence entropy production
is used to test how far is a NESS from equilibrium.
[Ojima and collaborators, Ruelle, Jaksic Pillet]

Let η be a state invariant under αV1
t . The entropy production in the state η ◦ αt of αt

relative to αV3
t (or to ωβ,V3 ) is defined as

EV3 (η ◦ αs) :=
d

dt
η
(
αV1
−tαt(β(K3))

)∣∣∣∣
t=s

.

It has been also used in another context in [Hack Verch]

Proposition

Consider Vi for i ∈ {1, 3} two perturbation potentials with spatially compact supports
then

S(ωβ,V1 ◦ αt , ω
β,V3 ) = S(ωβ,V1 , ωβ,V3 ) +

∫ t

0

EV3 (ωβ,V1 ◦ αs) ds



NESS and entropy production

For the NESS the entropy production per unit volume wrt ωβ,V

eV (ω+) := lim
t→∞

lim
h→1

1

t

1

I (h)

∫ t

0

ds EV (ωβ,V ◦ αs)

Theorem

The NESS ω+ discussed above has vanishing entropy production per unit volume wrt
ωβ,V .

NESS with vanishing entropy production are interpreted to be thermodynamically simple.

This means that s(ω+, ωβ,V ) is finite. Hence we can say that ω+ is not so far from
being a KMS state.



Conclusion

Summary
Equilibrium states in perturbative algebraic quantum field theory.

Return to equilibrium for interaction Lagrangian compact in space.

Failure of the return to equilibrium in the adiabatic limit.

Relative entropy and entropy production among these states can be computed.



Conclusion

Thanks a lot for your attention
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