
The Heat Flow on Metric Random Walk Spaces

J.M. Mazón,
joint works with M. Solera and J. Toledo

Advanced Developments for Surface and Interface Dynamics -
Analysis and Computation. Banff, 2018

J.M. Mazón, joint works with M. Solera and J. Toledo The Heat Flow



The Heat Flow on Metric Random Walk Spaces

(i) Ergodicity

(ii) Fuctional Inequalities and Curvature
Poincare Inequality and its relation with the Isoperimetrical
Inequality and Bakry-Emery Curvature
Log-Sobolev Inequality and Its relation with concentration of
measures

(iii) Transport Inequalities and its relation with Bakry-Emery and
Ollivier-Ricci Curvature

J.M. Mazón, joint works with M. Solera and J. Toledo The Heat Flow



The Heat Flow on Metric Random Walk Spaces

(i) Ergodicity

(ii) Fuctional Inequalities and Curvature
Poincare Inequality and its relation with the Isoperimetrical
Inequality and Bakry-Emery Curvature
Log-Sobolev Inequality and Its relation with concentration of
measures

(iii) Transport Inequalities and its relation with Bakry-Emery and
Ollivier-Ricci Curvature

J.M. Mazón, joint works with M. Solera and J. Toledo The Heat Flow



The Heat Flow on Metric Random Walk Spaces

(i) Ergodicity

(ii) Fuctional Inequalities and Curvature
Poincare Inequality and its relation with the Isoperimetrical
Inequality and Bakry-Emery Curvature
Log-Sobolev Inequality and Its relation with concentration of
measures

(iii) Transport Inequalities and its relation with Bakry-Emery and
Ollivier-Ricci Curvature

J.M. Mazón, joint works with M. Solera and J. Toledo The Heat Flow



Metric random walk spaces

Let (X , d) be a Polish metric space equipped with its Borel σ-algebra.

A random walk m on X is a family of probability measures mx on X for
each x ∈ X satisfying
(i) the measures mx depend measurably on the point x ∈ X ,
(ii) each measure mx has finite first moment, i.e. for some (hence any)
z ∈ X , and for any x ∈ X one has

∫
X
d(z , y)dmx(y) < +∞.

Definition

A metric random walk space [X , d ,m] is a Polish metric space (X , d)
equipped with a random walk m.

Let [X , d ,m] be a metric random walk space. A Radon measure ν on X
is invariant for the random walk m = (mx) if

dν(x) =

∫
y∈X

dν(y)dmy (x).
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Metric random walk spaces

The measure ν is said to be reversible if moreover, the detailed balance
condition

dmx(y)dν(x) = dmy (x)dν(y)

holds true.

Example

Let (RN , d ,LN), with d the Euclidean distance and LN the Lebesgue
measure. Let J : RN → [0,+∞[ be a measurable, nonnegative and
radially symmetric function verifying

∫
RN J(z)dz = 1. In (RN , d ,LN)

we can give the following random walk, starting at x ,

mJ
x (A) :=

∫
A

J(x − y)dLN(y) ∀A ⊂ RN borelian.

Applying Fubini’s Theorem it easy to see that the Lebesgue measure
LN is an invariant and reversible measure for this random walk.
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Metric random walk spaces

Example

Let K : X × X → R be a Markov kernel on a countable space X , i.e.,

K (x , y) ≥ 0, ∀x , y ∈ X ,
∑
y∈X

K (x , y) = 1 ∀x ∈ X .

Then, for

mK
x (A) :=

∑
y∈A

K (x , y),

[X , d ,mK ] is a metric random walk for any metric d on X . Basic
Markov chain theory guarantees the existence of a unique stationary
probability measure (also called steady state) π on X , that is,∑

x∈X

π(x) = 1 and π(y) =
∑
x∈X

π(x)K (x , y) ∀y ∈ X .

We say that π is reversible for K if the following detailed balance
equation

K (x , y)π(x) = K (y , x)π(y)

holds true for every x , y ∈ X .
J.M. Mazón, joint works with M. Solera and J. Toledo The Heat Flow



Metric random walk spaces

Example

A weighted discrete graph G = (V (G ),E (G )) is a graph of vertices
V (G ) and edges E (G ) such that each edge (x , y) ∈ E (G ) (we will
write x ∼ y if (x , y) ∈ E (G )) is assigned a positive weight wxy = wyx .
We consider that wxy = 0 if (x , y) 6∈ E (G ).

A finite sequence {xk}nk=0 of vertices on a graph is called a path if
xk ∼ xk+1 for all k = 0, 1, ..., n − 1. The length of a path is defined as
the number, n, of edges in the path.

A graph G = (V (G ),E (G )) is called connected if, for any two vertices
x , y ∈ V , there is a path connecting x and y , that is, a path {xk}nk=0

such that x0 = x and xn = y .

If G = (V (G ),E (G )) is connected then define the graph distance
dG (x , y) between any two distinct vertices x , y as the minimum of the
lengths of the paths connecting x and y .
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Metric random walk spaces

Example

A graph G = (V (G ),E (G )) is called locally finite if each vertex has a
finite number of edges.

For each x ∈ V (G ) we define the following probability measure

mG
x =

1

dx

∑
y∼x

wxy δy with dx :=
∑
y∼x

wxy .

If G = (V (G ),E (G )) is a locally finite weighted connected graph, we
have that [V (G ), dG , (m

G
x )] is a metric random walk space.

Furthermore, the measure νG defined as

νG (A) :=
∑
x∈A

dx , A ⊂ V (G )

is an invariant and reversible measure for this random walk.
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Metric random walk spaces

Example

From a metric measure space (X , d , µ) we can obtain a metric random
walk space, with the so called ε-step random walk associated to µ, as
follows.

Assume that balls in X have finite measure and that Supp(µ) = X .
Given ε > 0, the ε-step random walk on X , starting at point x ,
consists in randomly jumping in the ball of radius ε around x , with
probability proportional to µ; namely

mµ,ε
x :=

µ B(x , ε)

µ(B(x , ε))
.

Note that µ is an invariant and reversible measure for the metric
random walk [X , d ,mµ,ε].
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Metric random walk spaces

Given a metric random walk space [X , d ,m] with invariant and reversible
measure ν for m, and given a ν-measurable set Ω ⊂ X with ν(Ω) > 0, if
we define, for x ∈ Ω,

mΩ
x (A) :=

∫
A

dmx(y) +

(∫
X\Ω

dmx(y)

)
δx(A) ∀A ⊂ Ω borelian,

we have that [Ω, d ,mΩ] is a metric random walk space and it easy to see
that ν Ω is reversible for mΩ.

J.M. Mazón, joint works with M. Solera and J. Toledo The Heat Flow



Metric random walk spaces

Given a metric random walk space [X , d ,m], geometers will think of mx

as a replacement for the notion of ball around x , and probabilists will
rather think of this data as defining a Markov chain whose transition
probability from x to y in n steps is

dm∗nx (y) :=

∫
z∈X

dmz(y)dm∗(n−1)
x (z) (1)

where m∗1x = mx .

We have

∫
y∈X

dm∗nx (y) =

∫
z∈X

(∫
y∈X

dmz(y)

)
dm∗(n−1)

x (z) =

∫
z∈X

dm∗(n−1)
x (z) = 1.

Hence, [X , d ,m∗n] is also a metric random walk space. Moreover, if ν is
invariant and reversible for m, then also ν is invariant and reversible for
m∗n.
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Ollivier-Ricci curvature

In Riemannian geometry, positive Ricci curvature is characterized by the
fact that “small balls are closer, in the 1-Wasserstein distance, than their
centers are”. In the framework of metric random walk spaces, inspired by
this, Y. Ollivier [Y. Ollivier, J. Funct. Anal. (2009)] introduces the
concept of coarse Ricci curvature changing the ball by the measures mx

Let (X , d) a Polish metric space and M+(X ) the positive Radon
measures on X . Fix µ, ν ∈M+(X ) satisfying µ(X ) = ν(X ). The
Monge-Kantorovich problem is the minimization problem

min

{∫
X×X

d(x , y) dγ(x , y) : γ ∈ Π(µ, ν)

}
,

where Π(µ, ν) := {Radon measures γ in X × X : π0#γ = µ, π1#γ = ν},
with πt(x , y) := x + t(y − x). The elements γ ∈ Π(µ, ν) are called
transport plans between µ and ν, and a minimizer γ∗ an optimal
transport plan.
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Ollivier-Ricci curvature

For 1 ≤ p <∞, the p-Wasserstein distance between µ, ν is defined as

W d
p (µ, ν) :=

(
min

{∫
X×X

d(x , y)p dγ(x , y) : γ ∈ Π(µ, ν)

}) 1
p

.

Definition

On a given metric random walk space [X , d ,m], for any two distinct
points x , y ∈ X , the Ollivier-Ricci curvature of [X , d ,m] along (x , y) is
defined as

κm(x , y) := 1− W d
1 (mx ,my )

d(x , y)
,

where

W d
1 (mx ,my ) = min

{∫
X×X

d(u, v) dγ(u, v) : γ ∈ Π(mx ,my )

}
.

The Ollivier-Ricci curvature of [X , d ,m] is defined by

κm := inf
x, y ∈ X
x 6= y

κm(x , y).

We will write κ(x , y) instead of κm(x , y), and κ = κm, if the context
allows no confusion.
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The heat flow

Let [X , d ,m] be a metric random walk space with invariant measure ν for
m. For a function u : X → R we define its nonlocal gradient
∇u : X × X → R as

∇u(x , y) := u(y)− u(x) ∀ x , y ∈ X ,

For a function z : X × X → R, its m-divergence divmz : RN → R is
defined as

(divmz)(x) :=
1

2

∫
X

(z(x , y)− z(y , x))dmx(y).

The averaging operator on [X , d ,m] is defined as

Mmf (x) :=

∫
X

f (y)dmx(y),

and the Laplace operator as ∆m := Mm − I , i.e.,

∆mf (x) =

∫
X

f (y)dmx(y)− f (x) =

∫
X

(f (y)− f (x))dmx(y).

∆mf (x) = divm(∇f )(x)
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The heat flow

Mm and ∆m are linear operators in L2(X , ν) with domain

D(Mm) = D(∆m) = L2(X , ν) ∩ L1(X , ν).

If the invariant measure ν is reversible, the following integration by parts
formula is straightforward:∫
X

f (x)∆mg(x)dν(x) = −1

2

∫
X×X

(f (y)− f (x))(g(y)− g(x))dmx(y)dν(x)

for f , g ∈ L2(X , ν) ∩ L1(X , ν).

In L2(X , ν) we consider the symmetric form given by

Em(f , g) = −
∫
X

f (x)∆mg(x)dν(x) =
1

2

∫
X×X

∇f (x , y)∇g(x , y)dmx(y)dν(x),
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The heat flow

Theorem

Let [X , d ,m] be a metric random walk space with invariant and reversible
measure ν for m. Then, −∆m is a non-negative self-adjoint operator in
L2(X , ν) with associated closed symmetric form Em, which, moreover, is
a Markovian form.

By the above Theorem, we have that if (Tm
t )t≥0 is the strongly

continuous semigroup associated with Em, then (Tm
t )t≥0 is a positivity

preserving (i.e., Tm
t f ≥ 0 if f ≥ 0) Markovian semigroup (i.e.,

0 ≤ Tm
t f ≤ 1 ν-a.e. whenever f ∈ L2(X , ν), 0 ≤ f ≤ 1 ν-a.e.).

From now on we denote et∆m := Tm
t and we call to {et∆m : t ≥ 0} the

heat flow on the metric random walk space [X , d ,m] with invariant and
reversible measure ν for m. For every u0 ∈ L2(X , ν), u(t) := et∆mu0 is
the unique solution of the heat equation

du
dt = ∆mu(t) in (0,+∞)× X ,

u(0) = u0,
(2)
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The heat flow

in the sense that u ∈ C ([0,+∞) : L2(X , ν)) ∩ C 1((0,+∞) : L2(X , ν))
and verifies (2), or equivalently,

du

dt
(t, x) =

∫
X

(u(t)(y)− u(t)(x))dmx(y) in (0,+∞)× X ,

u(0) = u0.

Associated with Em we define the energy functional
Hm : L2(X , ν)→ [0,+∞] as

Hm(f ) =


1

2

∫
X×X

(f (x)− f (y))2dmx(y)dν(x) if f ∈ L2(X , ν) ∩ L1(X , ν).

+∞, else.

Note that for f ∈ D(Hm) = L2(X , ν) ∩ L1(X , ν), we have

Hm(f ) = −
∫
X

f (x)∆mf (x)dν(x).
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The heat flow

∂Hm = −∆m. Consequently −∆m is a maximal monotone operator in
L2(X , ν). Moreover, −∆m is completely accretive operator and then

‖et∆mu0‖Lp(X ,ν) ≤ ‖u0‖Lp(X ,ν) ∀u0 ∈ Lp(X , ν) ∩ L2(X , ν), 1 ≤ p ≤ +∞,

Theorem

Let [X , d ,m] be a metric random walk with invariant and reversible
measure ν. Let u0 ∈ L2(X , ν) ∩ L1(X , ν). Then,

et∆mu0(x) = e−t

(
u0(x) +

∞∑
n=1

∫
X

u0(y)dm∗nx (y)
tn

n!

)

= e−t
∞∑
n=0

∫
X

u0(y)dm∗nx (y)
tn

n!
,

where

∫
X

u0(y)dm∗0x (y) = u0(x).
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Infinite speed of propagation and ergodicity

The infinite speed of propagation of the heat flow (et∆m)t≥0, that is:

et∆mu0 > 0 for all t > 0 whenever 0 ≤ u0 ∈ L2(X , ν), u0 6≡ 0.

Let [X , d ,m] be a metric random walk with invariant measure ν. For a ν
measurable set D, we set

Nm
D = {x ∈ X : m∗nx (D) = 0 ∀n ∈ N}.

Definition

A metric random walk space [X , d ,m] with invariant measure ν is
called random-walk-connected or r -connected if for any D ⊂ X with
0 < ν(D) < +∞ we have that ν(Nm

D ) = 0.

Theorem

Let [X , d ,m] be a metric random walk with invariant and reversible
measure ν. The space is r -connected if and only if for any non-null
0 ≤ u0 ∈ L2(X , ν), we have et∆mu0 > 0 ν-a.e., for all t > 0.
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Infinite speed of propagation and ergodicity

Theorem

Let [V (G ), dG , (m
G
x )] be the random walk associated whith the locally

finite weighted connected graph G = (V (G ),E (G )). Then
[V (G ), dG ,m

G ] with νG is strong r-connected, that is, Nm
D = ∅, which is

equivalent to

et∆mu0(x) > 0 for all x ∈ X, and for all t > 0 .

Example

Take ([0, 1], d) with d the euclidean distance and let C the Cantor set. Let
µ be the Cantor distribution. We denote η := L1 [0, 1] and define the
random walk

mx :=


η if x ∈ [0, 1] \ C

µ if x ∈ C

Then ν = η + µ is invariant and reversible.
m∗n

x (C) = 0 for every x ∈ (0, 1) \ C and for every n ∈ N so that
ν(Nm

C \C) ≥ ν((0, 1) \C) = 1 > 0 and therefore the space [(0, 1), d ,m] is not
r -connected. Its Ollivier-Ricci curvature is κ = −∞
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Infinite speed of propagation and ergodicity

Example

Let Ω =
(]
−∞, 0

]
∪
[

1
2 ,+∞

[)
× RN−1 and consider the metric

random walk space [Ω, d ,mJ,Ω], with d the Euclidean distance and
J(x) = 1

|B1(0)|
χ
B1(0). It is easy to see that this space with reversible

and invariant measure ν = L Ω is r -connected but (Ω, d) is not
connected. Its Ollivier-Ricci curvature is κ < 0

For Ω =
(]
−∞, 0

]
∪
[
2,+∞

[)
× RN−1, neither [Ω, d ,mJ,Ω] with

ν = L Ω is r -connected, nor (Ω, d) is connected. Its Ollivier-Ricci
curvature is κ < 0

Theorem

Let [X , d ,m] be a metric random walk space with invariant measure ν
such that ν(X ) < +∞. Assume that the Ollivier-Ricci curvature κ > 0.
Then, [X , d ,m] with ν is r -connected
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Infinite speed of propagation and ergodicity

Definition

Let [X , d ,m] be a metric random walk space with invariant
probability measure ν. A Borel set B ⊂ X is said to be invariant with
respect to the random walk m if mx(B) = 1 whenever x is in B.

The invariant probability measure ν is said to be ergodic if ν(B) = 0
or ν(B) = 1 for every invariant set B with respect to the random walk
m.

Theorem

Let [X , d ,m] be a metric random walk with invariant probability
measure ν. Then, the following assertions are equivalent:

(i) [X , d ,m] with ν is r -connected.

(ii) ν is ergodic.

Definition

Let [X , d ,m] be a metric random walk with invariant measure ν. We say that
∆m is ergodic if ∆mu = 0 implies that u is constant (being this constant 0 if ν
is not finite).
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Infinite speed of propagation and ergodicity

Theorem

Let [X , d ,m] be a metric random walk with invariant measure ν such
that ν(X ) < +∞. Then,

∆m is ergodic ⇔ [X , d ,m] is random walk connected.

we introduce the m-total variation of a function u : X → R as

TVm(u) :=
1

2

∫
X

∫
X

|u(y)− u(x)|dmx(y)dν(x).

We define the concept of m-perimeter of a ν-measurable subset E ⊂ X as

Pm(E ) := TVm(χE ) =

∫
E

∫
X\E

dmx(y)dν(x).

where the last equality is consequence of the reversibility of ν
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Infinite speed of propagation and ergodicity

In the particular case of a graph [V (G ), dG ,m
G ], the definition of

perimeter of a set E ⊂ V (G ) is given by

|∂E | :=
∑

x∈E ,y∈V\E

wxy .

Then we have that

|∂E | = PmG (E ) for all E ⊂ V (G ). (3)

Theorem

Let [X , d ,m] be a metric random walk with invariant and reversible
measure ν and assume that ν(X ) < +∞. The following facts are
equivalent:

1 ∆m is ergodic;

2 ∆mχD = 0 implies χD is constant;

3 Pm(D) > 0 for every set D such that 0 < ν(D) < 1;

J.M. Mazón, joint works with M. Solera and J. Toledo The Heat Flow



Infinite speed of propagation and ergodicity

In the particular case of a graph [V (G ), dG ,m
G ], the definition of

perimeter of a set E ⊂ V (G ) is given by

|∂E | :=
∑

x∈E ,y∈V\E

wxy .

Then we have that

|∂E | = PmG (E ) for all E ⊂ V (G ). (3)

Theorem

Let [X , d ,m] be a metric random walk with invariant and reversible
measure ν and assume that ν(X ) < +∞. The following facts are
equivalent:

1 ∆m is ergodic;

2 ∆mχD = 0 implies χD is constant;

3 Pm(D) > 0 for every set D such that 0 < ν(D) < 1;

J.M. Mazón, joint works with M. Solera and J. Toledo The Heat Flow



Infinite speed of propagation and ergodicity

In the particular case of a graph [V (G ), dG ,m
G ], the definition of

perimeter of a set E ⊂ V (G ) is given by

|∂E | :=
∑

x∈E ,y∈V\E

wxy .

Then we have that

|∂E | = PmG (E ) for all E ⊂ V (G ). (3)

Theorem

Let [X , d ,m] be a metric random walk with invariant and reversible
measure ν and assume that ν(X ) < +∞. The following facts are
equivalent:

1 ∆m is ergodic;

2 ∆mχD = 0 implies χD is constant;

3 Pm(D) > 0 for every set D such that 0 < ν(D) < 1;

J.M. Mazón, joint works with M. Solera and J. Toledo The Heat Flow



Functional inequalities and curvature

Let [X , d ,m] be a metric random walk space with invariant and reversible
measure ν In this section we will assume that ν is a probability.

We denote the mean value of f ∈ L1(X , ν) (or the expected value of f )
by

ν(f ) = Eν(f ) =

∫
X

f (x)dν(x).

And, for f ∈ L2(X , ν), we denote its variance by

Varν(f ) :=

∫
X

(f (x)− ν(f ))2dν(x) =
1

2

∫
X×X

(f (x)− f (y))2dν(y)dν(x).

Definition

The spectral gap of −∆m is defined as

gap(−∆m) := inf

{
Hm(f )

Varν(f )
: f ∈ D(Hm), Varν(f ) 6= 0

}

= inf

{
Hm(f )

‖f ‖2
2

: f ∈ D(Hm), ‖f ‖2 6= 0,

∫
X

fdν = 0

}
.
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Functional inequalities and curvature

Definition

We say that (m, ν) satisfies a Poincaré inequality if there exists λ > 0
such that

λVarν(f ) ≤ Hm(f ) for all f ∈ L2(X , ν),

or equivalently,

λ‖f ‖2
L2(X ,ν) ≤ Hm(f ) for all f ∈ L2(X , ν) with ν(f ) = 0.

Note that when gap(−∆m) > 0, (m, ν) satisfies a Poincaré inequality
with λ = gap(−∆m),

gap(−∆m)Varν(f ) ≤ Hm(f ) for all f ∈ L2(X , ν),

being the spectral gap the best constant in the Poincaré inequality.
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Functional inequalities and curvature

Example

Let V (G ) = {x3, x4, x5 . . . , xn . . .} be a weighted linear graph with

wx3n,x3n+1 =
1

n3
, wx3n+1,x3n+2 =

1

n2
, wx3n+2,x3n+3 =

1

n3
.

((mx), ν) does not satisfy a Poincaré inequality for any λ > 0.

Remark

Let [X , d ,m] be a metric random walk space with invariant and reversible
probability measure ν. Y. Ollivier, under the assumption that∫ ∫ ∫

d(y , z)2dmx(y)dmx(z)dν(x) < +∞,

proves that if the Ollivier-Ricci curvature κm > 0 and the space is ergodic,
then (m, ν) satisfies the Poincaré inequality

κmVarν(f ) ≤ Hm(f ) for all f ∈ L2(X , ν),

and, consequently, κm ≤ gap(−∆m).
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Remark

Let [X , d ,m] be a metric random walk space with invariant and reversible
probability measure ν. Y. Ollivier, under the assumption that∫ ∫ ∫

d(y , z)2dmx(y)dmx(z)dν(x) < +∞,

proves that if the Ollivier-Ricci curvature κm > 0 and the space is ergodic,
then (m, ν) satisfies the Poincaré inequality
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Functional inequalities and curvature

Observe that the Poincaré inequality, given only for characteristic
functions, implies that there exists λ > 0 such that

λ ν(D)
(
1− ν(D)

)
≤ Pm(D) for all ν−mesasurable sets D,

which implies the following isoperimetric inequality :

min
{
ν(D), 1− ν(D)

}
≤ 2

λ
Pm(D); (4)

In a weighted graph G = (V (G ),E (G )) the Cheeger constant is defined
as

hG := inf
D⊂V (G)

|∂D|
min{νG (D), νG (V (G ) \ D)}

. (5)

The following relation between the Cheeger constant and the first
positive eigenvalue λ1(G ) of the graph Laplacian ∆mG is wel-known:

h2
G

2
≤ λ1(G ) ≤ 2hG . (6)
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Functional inequalities and curvature

Let [X , d ,m] be a metric random walk space with invariant and reversible
probability measure ν. We define its Cheeger constant as

hm(X ) := inf

{
Pm(D)

min{ν(D), ν(X \ D)}
: D ⊂ X , 0 < ν(D) < 1

}
,

A. Szlam and X. Bresson The Total Variation and Cheeger Cuts, 2010.

Recall that, given a function u : X → R, we say that µ ∈ R is a median
of u with respect to a measure ν if

ν({x ∈ X : u(x) < µ}) ≤ 1

2
ν(X ), ν({x ∈ X : u(x) > µ}) ≤ 1

2
ν(X ).

Theorem

If [X , d ,m] is a metric random walk space with invariant and reversible
probability measure ν, then

hm(X ) = inf {TVm(u) : ‖u‖1 = 1, 0 ∈ medν(u)} .
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Functional inequalities and curvature

Theorem

Let [X , d ,m] be a metric random walk space with invariant and reversible
probability measure ν. The following Cheeger inequality holds

h2
m

2
≤ gap(−∆m) ≤ 2hm.

Theorem

Let [X , d ,m] be a metric random walk space with invariant and reversible
probability measure ν. The following statements are equivalent:

1 (m, ν) satisfies a Poincaré inequality,

2 gap(−∆m) > 0,

3 (m, ν) satisfies an isoperimetric inequality,

4 hm(X ) > 0.
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Functional inequalities and curvature

Theorem

The following statements are equivalent:

(i) There exists λ > 0 such that

λVarν(f ) ≤ Hm(f ) for all f ∈ L2(X , ν).

(ii) For every f ∈ L2(X , ν)

‖et∆m f − ν(f )‖L2(X ,ν) ≤ e−λt‖f − ν(f )‖L2(X ,ν) for all t ≥ 0.

Theorem

Let [X , d ,m] be a metric random walk space with invariant-reversible
probability measure ν. Assume that ∆m is ergodic. Then

gap(−∆m) = sup
{
λ ≥ 0 : λHm(f ) ≤

∫
X

(−∆mf )2dν ∀f ∈ L2(X , ν)
}
.

(7)
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Functional inequalities and curvature

Let [X , d ,m] be a metric random walk space with invariant-reversible
probability measure ν. For µ� ν with dµ

dν = f , we will write µ = f ν.
Let 0 ≤ µ ∈M(X ), µ� ν, we define the relative entropy of µ with
respect to ν by

Entν(µ) :=


∫
X

f log fdν − ν(f ) log
(
ν(f )

)
if µ = f ν, f ≥ 0, f log f ∈ L1(X , ν),

+∞, otherwise,

For 0 ≤ u0 ∈ L2(X , ν) let u(t) = et∆mu0. Then, , we have

d

dt
Entν(u(t)) =

∫
X

∆mu(t)(log u(t) + 1)dν =

∫
X

∆mu(t) log u(t)dν.

Hence,
d

dt
Entν(u(t)) = −Em(u(t), log u(t)).

Fm(f ) = −Em(f , log f ) = −
∫
X

log f ∆mfdν.
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Functional inequalities and curvature

We have that the time-derivative of the entropy along the heat flow
verifies

d

dt
Entν(et∆mu0) = −Fm(et∆mu0). (8)

We call Fm the modified Fisher information, which, due to (8),
corresponds to the entropy production funtional of the heat flow
(et∆m)t≥0.

The Fisher-Donsker-Varadhan information of a probability measure µ on
X with respect to ν is defined by

Iν(µ) :=

 2Hm(
√
f ) if µ = f ν, f ≥ 0,

+∞, otherwise.

In the continuous setting,we have that Iν(f ν) = Fm(f ),
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Functional inequalities and curvature

Definition

We say that (m, ν) satisfies a logarithmic-Sobolev inequality if there
exists λ > 0 such that

λEntν(f ) ≤ Hm(
√
f ) for all f ∈ L1(X , ν)+, (9)

or, equivalently,

λEntν(f ) ≤ 1

2
Iν (f ν) for all f ∈ L1(X , ν)+.

We denote

LS(m, ν) := inf

{
Hm(
√
f )

Entν(f )
: 0 6= Entν(f ) < +∞

}

= inf

{
Hm(f )

Entν(f 2)
: 0 6= Entν(f 2) < +∞

}
.
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Functional inequalities and curvature

Definition

We say that (m, ν) satisfies a modified logarithmic-Sobolev inequality if
there exists λ > 0 such that

λEntν(f ) ≤ Fm(f ) for all f ∈ D(Fm). (10)

We denote

MLS(m, ν) := inf

{
Fm(f )

Entν(f )
: 0 6= Entν(f ) < +∞

}
.

Theorem

The following statements are equivalent:

(i) There exists λ > 0 such that

λEntν(f ) ≤ Fm(f ) for all f ∈ D(Fm). (11)

(ii) For every 0 ≤ f ∈ L2(X , ν)

Entν(et∆m f ) ≤ Entν(f ) e−λt ∀t ≥ 0. (12)
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Functional inequalities and curvature

Theorem

Let [X , d ,m] be a metric random walk with invariant-reversible
probability measure ν, and assume that the constants LS(m, ν),
MLS(m, ν) and gap(−∆m) are positive. Then

2LS(m, ν) ≤ 1

2
MLS(m, ν) ≤ gap(−∆m).

Corollary

Let [X , d ,m] be a metric random walk space with invariant-reversible
probability measure ν. If there is a λ > 0 satisfying the logarithmic-Sobolev
inequality

λEntν(f ) ≤ Hm(
√
f ) for all f ∈ L1(X , ν)+,

then, for every f ∈ L2(X , ν), we have

Entν(et∆m f ) ≤ Entν(f ) e−4λt for all t ≥ 0,

and
‖et∆m f − ν(f )‖L2(X ,ν) ≤ ‖f − ν(f )‖L2(X ,ν)e

−λt
2 for all t ≥ 0.
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Functional inequalities and curvature

To study the Bakry-Émery curvature condition in our context note that
Em admits a Carré du champ Γ defined by

Γ(f , g)(x) =
1

2

(
∆m(fg)(x)−f (x)∆mg(x)−g(x)∆mf (x)

)
for f , g ∈ L2(X , ν).

According to Bakry and Émery , we define the Ricci curvature
operator Γ2 by iterating Γ:

Γ2(f , g) =
1

2

(
∆mΓ(f , g)− Γ(f ,∆mg)− Γ(∆mf , g)

)
,

which is well defined for f , g ∈ L2(X , ν).
We write, for f ∈ L2(X , ν),

Γ(f ) := Γ(f , f ) =
1

2
∆m(f 2)− f ∆mf

and

Γ2(f ) := Γ2(f , f ) =
1

2
∆mΓ(f )− Γ(f ,∆mf ).
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Functional inequalities and curvature

Definition

The operator ∆m satisfies the Bakry-Émery curvature condition
BE (K , n) for n ∈ (1,+∞) and K ∈ R if

Γ2(f ) ≥ 1

n
(∆mf )2 + KΓ(f ) ∀ f ∈ L2(X , ν).

The constant n is called the dimension of the operator ∆m, and K is
called the lower bound of the Ricci curvature of the operator ∆m. If
there exists K ∈ R such that

Γ2(f ) ≥ KΓ(f ) ∀ f ∈ L2(X , ν),

then it is said that the operator ∆m satisfies the Bakry-Émery
curvature condition BE (K ,∞).
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Functional inequalities and curvature

Integrating the Bakry-Émery curvature condition BE (K , n) we have∫
X

Γ2(f ) dν ≥ 1

n

∫
X

(∆mf )2 dν + K

∫
X

Γ(f ) dν.

Now, this inequality can be rewritten as∫
X

(∆mf )2 dν ≥ 1

n

∫
X

(∆mf )2 dν + KHm(f ),

or, equivalently, as

K
n

n − 1
Hm(f ) ≤

∫
X

(∆mf )2 dν. (13)

Similarly, integrating the Bakry-Émery curvature condition BE (K ,∞) we
have

KHm(f ) ≤
∫
X

(∆mf )2 dν. (14)

We call the inequalities (13) and (14) the integrated Bakry-Émery
curvature conditions.

J.M. Mazón, joint works with M. Solera and J. Toledo The Heat Flow



Functional inequalities and curvature

Theorem

Let [X , d ,m] be a metric random walk with invariant-reversible probability
measure ν. Assume that ∆m is ergodic. Then,

(1) ∆m satisfies an integrated Bakry-Émery curvature condition BE(K , n)
with K > 0 if and only if a Poincaré inequality with constant K n

n−1
is

satisfied.

(2) ∆m satisfies an integrated Bakry-Émery curvature condition BE(K ,∞)
with K > 0 if and only if a Poincaré inequality with constant K is satisfied.

Therefore, if ∆m satisfies the Bakry-Émery curvature condition BE(K , n) with
K > 0, we have

gap(−∆m) ≥ K
n

n − 1
. (15)

In the case that ∆m satisfies the Bakry-Émery curvature condition BE(K ,∞)
with K > 0, we have

gap(−∆m) ≥ K . (16)
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Functional inequalities and curvature

Example

Consider the non weighted linear graph G with vertices
V (G ) = {a, b, c} (that is, the positive weights are wa,b = wb,c = 1)
We have that this graph Laplacian satisfies

BE

(
1− 2

n
, n

)
for any n > 1,

being K = 1− 2
n the best constant for a fixed n > 1.

Now, gap(−∆) = 1, therefore we have that ∆ satisfies the integrated
Bakry-Émery curvature condition BE (K , n) with K = 1− 1

n > 1− 2
n

Theorem

Let [X , d ,m] be a metric random walk space with invariant-reversible
probability measure ν, assume that ν(X ) < +∞ and let Tt = et∆m be
the heat semigroup. Then, ∆m satisfies the Bakry-Émery curvature
condition BE (K ,∞) with K > 0 if, and only if,

Γ(Tt f ) ≤ e−2KtTt(Γ(f )) ∀ t ≥ 0, ∀ f ∈ L2(X , ν).
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Concentration of measures

Let (X , d , ν) be a metric measure space with ν(X ) < +∞. For simplicity
we assume that ν is a probability measure. We introduce the
concentration function

α(X ,d,ν)(r) := sup

{
1− ν(Ar ), A ⊂ X , ν(A) ≥ 1

2

}
,

where Ar := {x ∈ X : d(x ,A) < r}. We say that ν has normal
concentration on (X , d) if there exist C , c > 0 such that, for every r > 0,

α(X ,d,ν)(r) ≤ C exp(−cr2).

For x ∈ X we define

Θ(x) :=
1

2

(
W d

2 (δx ,mx)
)2

=
1

2

∫
X

d(x , y)2dmx(y),

and
Θm := supessx∈XΘ(x).

Since Θ(x) ≤ 1
2 (diam(supp(mx))2

, if diam(X ) is finite, we have
Θm ≤ 1

2 (diam(X ))2.
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Concentration of measures

Theorem

Let [X , d ,m] be a metric random walk space with invariant-reversible
probability measure ν and assume that Θm is finite. If (m, ν) satisfies the
logarithmic-Sobolev inequality

β Entν(f 2) ≤ Hm(f ) for all 0 ≤ f ∈ D(Hm), β > 0, (17)

then

α(X ,d,ν)(r) ≤ exp

(
− βr2

16Θm

)
. (18)
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Transport inequalities

Theorem

Let [X , d ,m] be a metric random walk space with invariant-reversible
probability measure ν and assume that Θm is finite. If ∆m satisfies the
Bakry-Émery curvature condition BE (K ,∞) with K > 0, then ν satisfies
the transport-information inequality

W d
1 (µ, ν) ≤

√
Θm

K

√
Iν(µ), for all probability measures µ� ν.
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Transport inequalities

Theorem

Let [X , d ,m] be a metric random walk space with invariant-reversible
probability measure ν and assume that Θm is finite. Then the
transport-information inequality

W d
1 (µ, ν) ≤ 1

K

√
Iν(µ), for all probability measures µ� ν,

implies the transport-entropy inequality

W d
1 (µ, ν) ≤

√√
2Θm

K
Entν (µ), for all probability measures µ� ν.
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Transport inequalities

Example

Let Ω = [−1, 0] ∪ [2, 3] and consider the metric random walk space
[Ω, d ,mJ,Ω], with d the Euclidean distance in R and J(x) = 1

2
χ

[−1,1] .

An invariant and reversible probability measure for mJ,Ω is
ν := 1

2L
1 Ω. ν satisfies a transport-entropy inequality. However, ν

does not satisfy a transport-information inequality, since if ν satisfies
a transport-information inequality, then ν must be ergodic. Now it is
easy to see that [Ω, d ,mJ,Ω] is not r -connected and then, ν is not
ergodic.

Theorem

Let [X , d ,m] be a metric random walk space with invariant-reversible
probability measure ν. If κm > 0, then the following
transport-information inequality holds

W d
1 (µ, ν)2 ≤ 1

κm
Iν(µ).
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