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Motivation

Multiphase flow simulations
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@ Main challenge: We need to solve PDEs on dynamically changing
geometries. The geometry may undergo strong deformations.

@ Standard finite element methods efficiently solve PDEs in complex
geometries but require the mesh to conform to the interface.

@ CutFEM: avoid re-meshing. The goal is to obtain all properties we have
for standard meshed methods but allow for cut elements.
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@ The representation of the
geometry is separated from the
approximation of the PDE. The
geometry is allowed to cut
through the background mesh
in an arbitrary way.
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@ Weak enforcement of boundary
and interface conditions
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P. Hansbo, M.G. Larson, S. Zahedi, A cut finite element method for a Stokes interface problem, Appl. Numer.
Math. 85, 90 114 (2014).



CutFEM

Main characteristics

@ The representation of the
geometry is separated from the
approximation of the PDE. The
geometry is allowed to cut
through the background mesh
in an arbitrary way.

@ Weak enforcement of boundary
and interface conditions

© Stabilization terms added to
the weak formulation handle
cut elements
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The Laplace-Beltrami equation

—Aru=f onl
Weak formulation: Find u € HY(T') with [ u ds = 0 such that

/Vru -Vrv ds = / fvds  VYve HY(I)
r r

@ Us,(I): open tubular neighborhood of . For x € Us,(I):
u®(x) = u(p(x)) where p(x) is the closest point projection onto I

@ Vru = PrVu¢ is the tangential gradient, Pr =1 —n®n
e f € L2(I) with frf ds=0,0r=0recC?

@ There exist a unique weak solution v and H”||H2(r < ch||f2(r)

G. Dziuk, Finite elements for the beltrami operator on arbitrary surfaces, in Partial Differential Equations and
Calculus of Variations, S. Hildebrandt and R. Leis eds., vol 1357 of Lecture Notes in Mathematics, Springer-Verlag,
Berlin, pp. 142-155 (1988)



Background mesh and space

@ /Co p: a quasiuniform partition of the computational domain Q into
shape regular triangles for d = 2 and tetrahedra for d = 3 of
diameter h.

@ V), the space of continuous piecewise polynomials of degree p
with average zero defined on the background mesh g p.



The active mesh and the finite element space

The stabilized formulation

@ The active mesh 7j: take the restriction of the background mesh to
cut elements, i.e. the grey domain 7

@ The finite element space: V) =V, |7,
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S Example 1: The Laplace-Beltrami equation

Linear elements

Find u, € Vh1 such that

/ Vrhuh . VFth dsp + sh(uh, Vh) = / favy dsp Vv € Vhl
h Ch
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@ Diamonds: No stabilization, Circles: With stabilization

M. A. Olshanskii, A. Reusken, J. Grande, A finite element method for elliptic equations on surfaces. SIAM J.
Numer. Anal., 47(5), 3339-3358, (2009)
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g% Example 1: The Laplace-Beltrami equation

Cubic elements

Find u, € V,? such that

Vrhuh : VFth dsp + sh(uh, Vh) = / favy dsp Vv € V,?
Ch
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@ Diamonds: No stabilization, Circles: With stabilization
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The stabilization term

sn(tn, vih) = Sh.7(Un, Vi) + sur(un, va)
® snr(un vi) = Yrer, , i1 Cri (10hunllr, [OhvillF)F

o Sh)r(uh, Vh) = Zle Cr),'h’y (af,uh, 8{,vh)rh
02/ —2<~y<2i

M. G. Larson, S. Zahedi, Stabilization of Higher Order Cut Finite Element Methods on Surfaces
E. Burman, Ghost penalty, C. R. Acad. Sci. Paris, Ser. | 348 (21-22), 1217-1220 (2010)



Optimal error estimates

An(w,v) = ap(w, v) + sp(w,v) = Ly(v)

ah(w, V) = / VrhW . Vrhv dSh
Th

Lh(v) :/r fhvh dSh
h

Theorem

Let u € HPTY() N H3(T) be the exact solution and uy, € VF the
cut finite element approximation. There are constants independent
of the mesh size h and of how the surface cuts the background
mesh such that the following error bounds hold

|u® = unlla, S Bllull ooy + B2l

lu® = unllizqr,y S PP ull oy + PPz



Error Analysis

Energy norm

@ Ap is continuous:

An(w, v) < [wlla,llvia,

o Ap satisfies the inf-sup condition:

A
Iwlia, < sup 2nw:v)
vevivioy IIvila,

@ Strang Lemma:

Ap(u®,v)—L
|u® — unlla, S [lu® = 7fue]la, + sup,cyp (o) Lol =Ll

lIvila,



Condition number estimate

Ap: the stiffness matrix associated with Ay,

(ARV, W)gn = Ap(v, w) Yv,we Vf

Theorem

There is a constant C independent of the mesh size h and of how
the surface cuts the background mesh such that the spectral
condition number r(Ap) of the stiffness matrix Ay, satisfies

maXueI@N,llﬁllRNzl(Ah u, U)gn

K(Ap) =

mlnue@/\/,”ﬁ”RN:l(Ah u, U)@N



Condition number estimate
Main steps in the proof

The equivalence between the RV norm and the mesh
dependent L2-norm ||v||;2(7;) ~ ha/2||V| g

The continuity of Ap:
An(w,v) S llwllayIvlia,, Vv, w e H(Th)

The coercivity of Ay: [[v]|5, < An(v,v) Vve VP
The inverse inequality: [|v|a, S h_3/2||VHL2(Th) vevp

The Poincaré inequality: |v|[;2(7;) < hY2||v| A, ve VP



Condition number estimate
Main steps in the proof

The equivalence between the RV norm and the mesh
dependent L2-norm ||v|[;2(7;) ~ ha/2||V| gn

@ The continuity of Ap:

Ah(Wv V) 5 ||W”AhHV”Ah7 Vv,w e Hi(ﬁ)

The coercivity of Ay: [[v]|3, < An(v,v) Vve VP

~

The inverse inequality: |[v]|a, < h=3/2||v| 2 ve VP
h ~ (771) h

The Poincaré inequality: |[v|[;2(7;) < hY2||v| veVp




P1.

P2.

P3.

P4.

P5.

Properties of the stabilization term
For v € HPTY(T) N HE(T)

e

Ive = mvells, < APVl ey

For v € HPA(1) 1 HE(T)
[vEllsy < APIVI Hpsr(ry
For v € H2(IN),

lmhvells, < Allvilier)

Forv e VP,
IVisy S B3 vli2(75)

~

Forv e VP,

IVIiz2(7y < ACIVIE, + V13
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g Time dependent surface PDE

Mathematical model

Otus + B - Vus + (divrB)us — ksdivrus = onT(t), tel
us(0,x) = u2 on (0)

where divr = tr((I — n® n)V)

@ The interface I is evolving by 3

° fr(t) fds=0 forall t>0 and we have Q
fr(t) us ds = fr(o) ulds forallt >0 o

S. Zahedi, A space-time cut finite element method with quadrature in time, Geometrically unfitted finite element
methods and applications-proceedings of the UCL Workshop 2016



Example: Deforming interface

t=0 t=1
2 2
1 TN 25 1 -
0 2 0 &
-1 \—/ 15 -1
2 -2
-2 0 2 4 6 -2 0 2
t=2
2
1 — 11
0 / ”
/ 1
-1 —
- 09
-2 0 2 4 6

@ The velocity field 3 = (@’ 0).

@ The initial surfactant concentration us = y/rp + 2.
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The active mesh

@ The timeinterval [ = [0, T], 0=ty <ty <---<ty=T, s
partitioned into time steps I, = (t,—1, ty] of length k, = t, — t5—1
forn=1,2,..., N.

° ’CS,h(t) ={Ke Ko KN r(t) # 0}, Nsn,h = Utel,, UKEKs,h(t) K



The finite element space

@ On the space-time slab S¢ = I, x N¢ , we define the space
V.g,h = Pq(ln) ® V(f,h|N5",,,
@ Functions v,(t, x) in V¢, take the form
° t—th1
=2 vsil
n
=

where t € I, and vs j(x), j = 0,1,---, q are functions in V{7, |nz
and can be written as )

vsi(x) = & eilx)lnz,



The weak form

For t € I, and given up(t,_;, x) the weak formulation is to find u, € VZ,
such that

Ab(un, vi) + sp(un, vi) = Lp(va), Vvi € V3,
Here

Ap(u,v) = /(8tu, V), dt + / ap(t, u,v)dt + ([u], V(f,J,r_l,X))r,,(tn,l)
I, In

an(t,u,v) = (8- Vu,v)r, o) + ((diveB)u, v)r, ) + (ks Vru, Vrv)e,



Stabilization

o sf(un,vh) = [, sn7(Un, vh) dt + [, snr(un, va) dt

© b7 (Un, Vi) = Yrer, , 2oin RN ([OhunllF, [0hva] | F)F
o spr(un va) =P cr b (ﬁguh,ﬁ,’;vh)rh(t)

o y=2i



Space-time CutFEM

with quadrature in time

@ We employ a quadrature formula with weights wq and
quadrature points t;, ¢ = 1,...ng, in time

Nq
// an(t, ) dt = S waan(ty, ulty), v(ts))
n g=1

@ Note that this means that the assembly and the geometry
computations is only done at the quadrature points ¢,.

@ Essentially reduces the complexity of the implementation to
that of a stationary problem.

e Simpson's quadrature rule: ng =3, t{ = t,—1, tj = %

t3 =ty W =wj = %, and wj = 4k"
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Quadrature in time
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@ Exact solution: u(x,t) = e *x1x2 + x$x3

1.5

0.5+

-0.5-

-1.5

t=025

-1



FKTHE

G s # ;
W9l Example: A time dependent surface problem

Error
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@ Circles: p=1, Stars: p=2, Diamonds, p=3



£
!

ks
TH

%

o The active mesh

Bulk Coupled bulk-surface problem Interface

NN

Ken(t) ={K € Ko,n : KNQp1(t) #0} Ksn(t)={K € Ko : KNTx(t) #0}

ve=U U « M= U «

tel, KEKg h(t) te€l KEKs 4(t)

P. Hansbo, M. Larson, S. Zahedi, A cut finite element method for coupled bulk-surface problems on
time-dependent domains, Comput. Methods Appl. Mech. Engrg. 307, 96-116 (2016).
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The mean curvature vector

Given the discrete coordinate map xr, : [, 2 x — x € RY we want
to find the stabilized discrete mean curvature vector Hy, € [V,}]d
such that

(Hn, vi)r, + sn(Hn, ve) = (Vrxr,. Vi, Ve)r,

sp as before with v = 0.

P. Hansbo, M. Larson, S. Zahedi, Stabilized finite element approximation of the mean curvature vector on closed
surfaces, SIAM J. Numer. Anal. 53(4), 1806-1832 (2015).



The mean curvature vector
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g The mean curvature vector

@ Interface: piecewise polynomial surface of order p

@ Find the stabilized discrete mean curvature vector
Hy € [VP 719 such that

(Hn, vi)r,, + sn(Hn, vi) = (Vr,xr,. Vi, Ve,

L2 error

refinement



Conclusions

@ Main ideas in CutFEM for Surface PDEs:

A fixed partition of the computational domain

A finite element space defined on the background mesh

An active mesh

Restrict the finite element spaces defined on the fixed mesh to
the active mesh

o Stabilization terms

@ Space-time CutFEM with quadrature in time a convenient
method for problems on evolving domains

@ Optimal order error estimates independently of the location of
the interface

@ The condition number of the stiffness matrix is O(h~2)
independently of the location of the interface



