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Setup

Consider a high dimensional linear regression setting,

Y = Xγ∗ + Zβ∗ + ε, (1)

where Z ∈ Rn and X ∈ Rn×p are the design matrices, p� n, ε ∈ Rn is the
error term independent of the design with E(ε) = 0 and E(εε>) = σ2εIn, and
γ∗ and β∗ are unknown model parameters.

We focus on the problem of testing single entries of the model parameter,
namely the following hypothesis:

H0 : β∗ = β0, versus H1 : β∗ 6= β0. (2)

Sparsity assumption: ‖γ∗‖0 := sγ � n and for inference procedures is such
that sγ log p/

√
n→ 0 as n→ ∞.

What happens if we apply sparsity-based methods when the underlying
model parameter is not sparse? Can we obtain misleading and spurious
results ?
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Example 1

? Assume: X = Ip, εi are i.i.d. with N (0, 1) and such that for a ∈ [−10, 10]

β∗ = 0 and γ∗ = ap−1/21p,

? We consider the “de-biasing” approach as formulated in Van de Geer et.al
(2014) Let π∗ = (β∗,γ∗>)> ∈ Rp+1 and W = (Z, X) ∈ Rn×(p+1). The
debiased estimator is then defined π̃ = π̂ + Ip+1W>(Y−Wπ̂)/n

? Wald test rejects the hypothesis whenever |π̃1| > Φ−1(1− α/2)/
√
n.

Theorem

In the above setup, we have limn→∞ P
(
|π̃1| > Φ−1(1− α/2)/

√
n
)
= F(α, a),

where F(α, a) = 2− 2Φ
[
Φ−1 (1− α

2

)
/
√
1+ a2

]
.
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Rejection Probability

Figure: Plot of the asymptotic Type I error of Wald test
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Goals of our work

? To develop sparsity-robust tests for the hypothesis (10)
We say that a test is sparsity-robust if the Type I error is asymptotically
bounded by the nominal level, regardless of whether or not γ∗ is sparse.

? Moreover, whenever the sparsity condition holds, our method is shown to
be optimal and matches existing sparsity-based methods in terms of Type
II errors.

? We show minimax optimal power in certain dense models as well.

? Our methodology is based on the idea of exploiting the implication of the
null hypothesis.
? Instead of directly estimating the parameter under testing, we test a moment
condition that is equivalent to the null hypothesis.
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A transformation

We observe that a pseudo-response V := Y− Zβ0 satisfies a linear model

V = Xγ∗ + e, e = Z(β∗ − β0) + ε.

? under H0, X is uncorrelated with the error e

? under H1, e might have correlation with X through Z.

We formally introduce a model to account for the dependence between X
and Z:

Z = Xθ∗ + u, i = 1, . . . ,n. (3)

where θ∗ ∈ Rp is sparse and u ∈ Rn is independent of X with mean zero and
variance E(uu>) = σ2uIn.
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Moment Condition

We notice that

E
[
(V− Xγ∗)>(Z− Xθ∗)

]
/n = σ2u(β

∗ − β0).

Hence, solving the inference problem (10) is equivalent to testing

H0 : E
[
(V− Xγ∗)>(Z− Xθ∗)

]
= 0, (4)

versus
H1 : E

[
(V− Xγ∗)>(Z− Xθ∗)

]
6= 0. (5)
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Self-adaptive estimation

? We define the following estimator

γ̃(σ) := argmin
γ∈Rp

‖γ‖1

s.t. ‖n−1X>(V− Xγ)‖∞ ≤ η0σ

‖V− Xγ‖∞ ≤ ‖V‖2/ log2 n
n−1V>(V− Xγ) ≥ ρnn−1‖V‖22.

(6)

for η0 = n−1/2(1.1)Φ−1(1− p−1n−1)
√
max1≤j≤p n−1∑n

i=1 x2i,j ,

ρn = 0.01/
√
log n.

? σ̂γ = argmax{σ : σ ∈ Sγ} and the set Sγ is defined as

Sγ =
{
σ ≥ √

ρn‖V‖2/
√
n : 1.5σ ≥ n−1/2‖V− Xγ̃(σ)‖2 ≥ 0.5σ

}
. (7)

→ When the estimation target fails to be sparse, the estimator is stable;
→ when the estimation target is sparse, the estimator automatically achieves consistency
→ does not require knowledge of the noise level.
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CorrT test statistic

We propose to consider the following correlation test (CorrT) statistic

Tn(β0) =
n−1/2(V− Xγ̂)>(Z− Xθ̂)

σ̂εσ̂u
, (8)

where

σ̂ε = ‖V− Xγ̂‖2/
√
n and

σ̂u = ‖Z− Xθ̂‖2/
√
n.

Why does this work ?

We can show, without assuming sparsity of γ∗, that

n−1/2(V− Xγ̂)>(Z− Xθ̂) = n−1/2 (V− Xγ̂)> u+ OP(
√
log p‖θ̂ − θ∗‖1),

where under the null hypothesis, the first term on the right hand side has
zero expectation and the second term vanishes fast enough.
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Linear Testing

Consider a high dimensional linear regression setting,

Y = Xβ∗ + ε. (9)

We focus on the problem of testing linear combinations of the model
parameter, namely the following hypothesis:

H0 : a>β∗ = g0, versus H1 : a>β∗ 6= g0. (10)

Sparsity assumption: ‖a‖0 :=?? and ‖β∗‖0 :=??
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Prior knowledge of ΣX

Let ΩX = Σ−1
X .

For each of the features xi ∈ Rp consider the following decomposition:

xi = azi + wi
with

zi =
(

ΩXa
a>ΩXa

)>

xi

and
wi =

[
Ip −

aa>ΩX

a>ΩXa

]
xi

Notice that azi can be viewed as the projection of xi onto the vector a –
taking into account ΩX, hence extracting information in xi regarding the null
hypothesis.

Now, we see that the original model can be reparametrized as

yi = zi(a>β∗) + w>
i β

∗ + εi,

which we refer to as restructured regression. 11



Moment Condition and the Test

We observe that
E[zi(yi − zig0)] = E[z2i (a>β∗ − g0)]

Hence, the original null is equivalent to the new null of the following kind

E[zi(yi − zig0)] = 0.

The test statistic then takes a simple form
n−1/2∑n

i=1 zi(yi − zig0)√
n−1

∑n
i=1 z2i (yi − zig0)2

Remark

The novel methodology consists of two-stages. At the first stage, our
procedure establishes a data-driven feature decomposition based on the
structure of the null hypothesis directly. At the second stage, only “a
moment condition” of the restructured regression is tested.
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What if ΣX is unknown

First, we pretend that ΣX = Ip and consider

zi =
( a
a>a

)>
xi, wi =

(
Ip −

aa>

a>a

)
xi

Although the decomposition xi = azi+wi still holds, features zi and wi might
be highly correlated.

However, by introducing a orthogonal matrix Ua such that

Ip −
aa>

a>a = UaU>
a

we can construct
W̃ = WUa

and observe that
yi = zi(a>β∗) + w̃>

i π∗ + εi,

for
π∗ = U>

z β
∗.
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Test

Introduce a feature model
zi = w̃>

i γ
∗ + ui

where γ∗ is the unknown parameter and ui are independent of w̃i.

Then, consider the moment

H0 : E
[
(zi − w̃>

i γ
∗)>

(
yi − zig0 − w̃>

i π
∗
)]

= 0.

and develop a test

Tn =
√
n

(z− W̃γ̂)
(
y− zg0 − W̃π̂

)
‖z− W̃γ̂‖2‖y− zg0 − W̃π̂‖2
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Assumptions

Condition

Let W = (Z, X) and wi = (zi, x>i )>. The matrix ΣW = E[W>W]/n ∈ Rp×p

satisfies that κ1 ≤ σmin(ΣW) ≤ σmax(ΣW) ≤ κ2. The vectors Σ−1/2
W w1 are

centered with sub-Gaussian norms upper bounded by κ3 and E|ε1|2+δ ≤ κ4.
Moreover, log p = o

(
nδ/(2+δ) ∧ n

)
.

→ For the designs, it is standard to impose well-behaved covariance matrices and
sub-Gaussian properties.

Condition

‖γ∗‖2 ≤ κ5 and sθ = o
(√

n/ log n/ log p
)
, where sθ = ‖θ∗‖0.

→ The assumption on sθ imposes sparsity in the first row of the precision matrix ΣW and
the rate for sθ is stronger than the conditions in BCH and NL imposing o(

√
n/ log p) and

in VBRD imposing o(n/ log p).
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obustness to the lack of sparsity

Theorem

Let Conditions 1 and 2 hold. Then under H0

∀α ∈ (0, 1), lim
n→∞

P
(
|Tn(β0)| > Φ−1(1− α/2)

)
= α.

→ Theorem 2 formally establishes that the new CorrT test is asymptotically exact in testing
β∗ = β0 . In particular, CorrT is robust to dense γ∗ in the sense that even under dense
γ∗ , our procedure does not generate false positive results.
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Sparsity-adaptive property

We say that a procedure for testing the hypothesis (10) is sparsity-adaptive if

(i) this procedure does not require knowledge of sγ ,

(ii) provides valid inference under any sγ and

(iii) achieves efficiency with sparse γ∗.

We now show the third property, efficiency under sparse γ∗. To formally
discuss our results, we consider testing H0 : β∗ = β0 versus

H1,h : β∗ = β0 + h/
√
n. (11)

where h ∈ R is a fixed constant.
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Sparsity-adaptive property

Theorem

Let Conditions 1 and 2 hold. Suppose that sγ = o (n/ log(p ∨ n)) and
σu/σε → κ0 for some constant κ0 > 0. Then, under H1,h in (11),

P
(
|Tn(β0)| > Φ−1(1− α/2)

)
→ Ψ(α, κ0,h),

where Ψ(h, κ0, α) = 2− Φ
(
Φ−1(1− α/2) + hκ0

)
− Φ

(
Φ−1(1− α/2)− hκ0

)
.

→ Theorem 3 establishes the local power of CorrT. It turns out that this local power matches
that of existing sparsity-based methods, such as VBRD, NL and BCH, that are shown to be
efficient.
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Extremely Dense Models

Theorem

Let Conditions 1 and 2 hold together with log p = o(n). Let
ΣX = E[xix>i ] ∈ R(p−1)×(p−1). Suppose that

‖ΣXγ
∗‖∞

√
n log p = o(1),

and with n→ ∞ and some κ > 0, (γ∗>ΣXγ
∗ + σ2ε)σ

−2
u → κ. Then, under

H1,h in (11),
lim

n,p→∞
Pβ∗

(
|Tn| > Φ−1(1− α)

)
= Ψ(h, κ, α),

where Ψ(h, κ, α) is defined in Theorem 3.
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Extremely Dense Models

? For n,p→ ∞,
√
log p/n = o(1) (i.e. n/p→ 0), the Type II error of the

proposed CorrT test, against alternatives that are larger than O(n−1/2),
converges to zero.

? If ΣX = Ip, the condition ‖ΣXγ
∗‖∞

√
n log p = o(1) is satisfied for all γ∗

for which

‖γ∗‖∞ = o(1/
√
n log p), ‖γ∗‖2 = O(

√
n/ log p);

? If max1≤j≤p ‖ΣX,j‖1 = o(
√
p/(n log p)), we can consider all

γ∗ = c/
√
p

with ‖c‖∞ = O(1).

? Minimax testing of one coordinate (not the whole parameter) in dense
high-dimensional testing is possible!
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Dense + Sparse Models

Theorem

Let Conditions 1 and 2 hold together with log p = o(n). Let
ΣX = E[xix>i ] ∈ R(p−1)×(p−1). Suppose that

γ∗ = π∗ + µ∗

for π∗ and µ∗ satisfying ‖π∗‖0 = o(
√
n/ log p), (µ∗>ΣXµ

∗ +σ2ε)σ
−2
u → κ and

‖ΣXµ
∗‖∞

√
n log p = o(1) for some κ > 0 as n→ ∞. Then, under H1,h in (11),

lim
n,p→∞

Pβ∗

(
|Tn| > Φ−1(1− α)

)
= Ψ(h, κ, α),

where Ψ(h, κ, α) is defined in Theorem 3.
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Setting

LTD Light-tailed design: N(0,Σ(ρ)) with the (i, j) entry of Σ(ρ) being ρ|i−j|.
HTD Heavy-tailed design: each row of W is generated as Σ1/2

(ρ)U, where U ∈ Rn

contains i.i.d random variables of Student’s t-distribution with 3 degrees
of freedom normalized to have variance one. (the third moment does not
exist.)
The error term ε ∈ Rn contains i.i.d random variables from either N(0, 1)
(light-tailed error, or LTE) or Student’s t-distribution with 6 degrees of
freedom normalized to have variance one (heavy-tailed error, or HTE).

We set

π∗
j =


2/
√
n 2 ≤ j ≤ 4

0 j > max{s, 4}
U(0, 4)/

√
n otherwise.

We test the hypothesis
H0 : π∗

3 = 2/
√
n+ h.
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Table: Size properties (h = 0)

LTD + LTE, ρ = 0 LTD + LTE, ρ = − 1
2 HTD + HTE, ρ = 0

CorrT Debias Score CorrT Debias Score CorrT Debias Score
s = 1 0.03 0.05 0.04 0.05 0.04 0.05 0.06 0.04 0.02
s = 3 0.06 0.05 0.05 0.06 0.06 0.05 0.05 0.11 0.03
s = 5 0.09 0.09 0.09 0.07 0.11 0.10 0.07 0.04 0.04
s = 10 0.01 0.03 0.03 0.03 0.05 0.03 0.06 0.05 0.03
s = 20 0.08 0.12 0.11 0.03 0.06 0.06 0.03 0.12 0.04
s = 50 0.07 0.16 0.17 0.04 0.10 0.12 0.02 0.09 0.09
s = 100 0.05 0.29 0.28 0.01 0.15 0.14 0.05 0.20 0.21
s = n 0.04 0.35 0.33 0.04 0.27 0.27 0.04 0.38 0.38
s = p 0.07 0.54 0.52 0.04 0.39 0.40 0.05 0.57 0.53

LTD + HTE, ρ = 0 LTD + HTE, ρ = − 1
2 HTD + LTE, ρ = 0

CorrT Debias Score CorrT Debias Score CorrT Debias Score
s = 1 0.03 0.05 0.04 0.04 0.04 0.02 0.06 0.05 0.05
s = 3 0.06 0.05 0.05 0.11 0.06 0.06 0.03 0.07 0.04
s = 5 0.09 0.09 0.09 0.05 0.06 0.05 0.06 0.11 0.07
s = 10 0.01 0.03 0.03 0.03 0.04 0.03 0.09 0.11 0.10
s = 20 0.08 0.12 0.11 0.06 0.11 0.10 0.05 0.13 0.06
s = 50 0.07 0.16 0.17 0.07 0.16 0.15 0.06 0.19 0.14
s = 100 0.05 0.29 0.28 0.05 0.33 0.26 0.05 0.24 0.22
s = n 0.04 0.35 0.33 0.05 0.43 0.41 0.05 0.40 0.31
s = p 0.07 0.54 0.52 0.06 0.51 0.50 0.06 0.53 0.51
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Power curves

Figure: Light-tailed errors
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transNOAH breast cancer dataset

? Genome-wide gene expression profiling was performed using micro RNA
from biopsies from 114 pre-treated patients with HER2+ breast cancer.

? The complete data contains gene expression values of about 20000 genes
located on different chromosomes.

? BRCA1 is a human tumor suppressor gene that is normally expressed in
the cells of breast and other tissue, where they help repair damaged DNA.

? Research suggests that the BRCA1 proteins regulate the activity of other
genes including tumor suppressors and regulators of the cell division
cycle.

? Moreover, it is believed that BRCA1 may regulate pathways that remove the
damages in DNA introduced by the certain drugs.

? Thus, understanding associations between BRCA1 and other genes
provides a potentially important tool for tailoring chemotherapy in cancer
treatment.
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Gene Biological association Test Statistic
CorrT Debias Score

IGF2R
1

breast cancer tumor suppressor -4.692 -4.285 -4.445
Nmi

2
endogenously associated with BRCA1 -4.239 -2.956 -2.669

RBBP4
3

breast cancer -4.186 -3.314 -2.806
NPM1

4
breast cancer -3.027 -2.112 -1.601

NARS2
5

breast cancer -4.163 -5.000 -4.983
B3GALNT1 lung cancer 1.151 2.082 2.065
C3orf62 lung cancer -1.274 -2.143 -2.139
LTB lung cancer -0.131 -2.107 -2.143
TNFAIP1 lung cancer 1.231 2.181 2.118
CCPG1 prostate cancer -1.597 -2.154 -2.251
LRRIQ3 colorectal cancer -1.025 -2.480 -2.240
LOC100507537 bladder cancer -0.137 -1.966 -1.135
ELOVL4 ataxia -1.354 -2.152 -2.136

1sensitivity marker for radiation, chemotherapy, and endocrine therapy
2interactive binding protein
3retinoblastoma binding protein, a chromatin modeling factor
4blocks breast cancer cells
5partial or complete loss of
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Equity Risk Premia

? Study the equity risk premia during different states from 1980-2014. of the
economy

? The response is the excess return of the U.S stock market observed at
time t, covariates are a large number of macroeconomic variables
observed at time t− 1 (McCracken, M. W. and Ng, S. (2015)) and st denotes
the NBER recession indicator; st = 1 means that the economy is in
recession at time t.

? Are risk premia in recessions higher than in expansions with the
magnitude of difference that is economically meaningful?
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Equity Risk Premia
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Thank you for your attention!

29


	Introduction
	Example-spurious results

	CorrT Methodology
	Moment Condition
	Adaptive Estimation
	Test Statistic

	Linear Tests
	What about linear tests ?

	Theoretical Properties
	Robustness to the lack of sparsity
	Sparsity-adaptive property

	Numerical Experiments
	Real Data

