IS STATISTICAL INFERENCE WITHOUT SPARSITY POSSIBLE IN HIGH-DIMENSIONS?

Jelena Bradic

www.jelenabradic.net Department of Mathematics University of California, San Diego jbradic@ucsd.edu

Joint work with:

Gerda Claeskens

Jianqing Fan

Yinchu Zhu

Introduction

Example-spurious results

CorrT Methodology

Linear Tests

Theoretical Properties

Numerical Experiments

Real Data

Jelena Bradic 2018 BIRS @ Banff

www.jelenabradic.net Department of Mathematics University of California, San Diego jbradic@ucsd.edu

Consider a high dimensional linear regression setting,

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\gamma}^* + \mathbf{Z}\boldsymbol{\beta}^* + \boldsymbol{\varepsilon},\tag{1}$$

where $Z \in \mathbb{R}^n$ and $X \in \mathbb{R}^{n \times p}$ are the design matrices, $p \gg n$, $\varepsilon \in \mathbb{R}^n$ is the error term independent of the design with $\mathbb{E}(\varepsilon) = 0$ and $\mathbb{E}(\varepsilon \varepsilon^\top) = \sigma_{\varepsilon}^2 \mathbb{I}_n$, and γ^* and β^* are unknown model parameters.

We focus on the problem of testing single entries of the model parameter, namely the following hypothesis:

$$H_0: \beta^* = \beta_0, \quad \text{versus} \quad H_1: \beta^* \neq \beta_0. \tag{2}$$

Sparsity assumption: $\|\gamma^*\|_0 := s_\gamma \ll n$ and for inference procedures is such that $s_\gamma \log p/\sqrt{n} \to 0$ as $n \to \infty$.

What happens if we apply sparsity-based methods when the underlying model parameter is not sparse? Can we obtain misleading and spurious results ?

EXAMPLE 1

* Assume: $X = I_p$, ε_i are i.i.d. with $\mathcal{N}(0, 1)$ and such that for $a \in [-10, 10]$

$$\beta^* = 0$$
 and $\gamma^* = ap^{-1/2}\mathbf{1}_p$,

- * We consider the "de-biasing" approach as formulated in Van de Geer et.al (2014) Let π^{*} = (β^{*}, γ^{*^T})^T ∈ ℝ^{p+1} and W = (Z, X) ∈ ℝ^{n×(p+1)}. The debiased estimator is then defined π̃ = π̂ + I_{p+1}W^T(Y Wπ̂)/n
- * Wald test rejects the hypothesis whenever $|\tilde{\pi}_1| > \Phi^{-1}(1 \alpha/2)/\sqrt{n}$.

Theorem

In the above setup, we have $\lim_{n\to\infty} P\left(|\tilde{\pi}_1| > \Phi^{-1}(1-\alpha/2)/\sqrt{n}\right) = F(\alpha, a)$, where $F(\alpha, a) = 2 - 2\Phi\left[\Phi^{-1}\left(1-\frac{\alpha}{2}\right)/\sqrt{1+a^2}\right]$. Figure: Plot of the asymptotic Type I error of Wald test

The horizontal axis denotes a and the vertical axis denotes $F(\alpha, a)$.

- * To develop sparsity-robust tests for the hypothesis (10)
 We say that a test is sparsity-robust if the Type I error is asymptotically bounded by the nominal level, regardless of whether or not γ* is sparse.
- Moreover, whenever the sparsity condition holds, our method is shown to be optimal and matches existing sparsity-based methods in terms of Type II errors.
- * We show minimax optimal power in certain dense models as well.
- * Our methodology is based on the idea of exploiting the implication of the null hypothesis.
 - * Instead of directly estimating the parameter under testing, we test a moment condition that is equivalent to the null hypothesis.

Introduction

CorrT Methodology Moment Condition Adaptive Estimation Test Statistic

Linear Tests

Theoretical Properties

Numerical Experiments

Real Data

Jelena Bradic 2018 BIRS @ Banff We observe that a pseudo-response $V := Y - Z\beta_0$ satisfies a linear model

$$V = X\gamma^* + e, \qquad e = Z(\beta^* - \beta_0) + \varepsilon.$$

- \star under H₀, X is uncorrelated with the error e
- * under H₁, **e** might have correlation with **X** through **Z**.

We formally introduce a model to account for the dependence between **X** and **Z**:

$$\mathbf{Z} = \mathbf{X}\boldsymbol{\theta}^* + \mathbf{u}, \qquad \mathbf{i} = 1, \dots, \mathbf{n}. \tag{3}$$

where $\theta^* \in \mathbb{R}^p$ is sparse and $\mathbf{u} \in \mathbb{R}^n$ is independent of **X** with mean zero and variance $\mathbb{E}(\mathbf{u}\mathbf{u}^{\top}) = \sigma_u^2 \mathbb{I}_n$.

We notice that

$$\mathbb{E}\left[(\mathbf{V}-\mathbf{X}\boldsymbol{\gamma}^*)^{\top}(\mathbf{Z}-\mathbf{X}\boldsymbol{\theta}^*)\right]/n = \sigma_{u}^{2}(\beta^*-\beta_0).$$

Hence, solving the inference problem (10) is equivalent to testing

$$H_0: \mathbb{E}\left[(\mathbf{V} - \mathbf{X} \boldsymbol{\gamma}^*)^\top (\mathbf{Z} - \mathbf{X} \boldsymbol{\theta}^*) \right] = 0, \tag{4}$$

versus

$$H_1: \mathbb{E}\left[(\mathbf{V} - \mathbf{X} \boldsymbol{\gamma}^*)^\top (\mathbf{Z} - \mathbf{X} \boldsymbol{\theta}^*) \right] \neq 0.$$
 (5)

\star We define the following estimator

$$\widetilde{\gamma}(\sigma) := \underset{\substack{\gamma \in \mathbb{R}^{p} \\ \text{s.t.}}}{\arg \min \|\gamma\|_{1}}$$

$$\text{s.t.} \quad \frac{\|n^{-1}X^{\top}(V - X\gamma)\|_{\infty} \leq \eta_{0}\sigma}{\|V - X\gamma\|_{\infty} \leq \|V\|_{2}/\log^{2}n}$$

$$n^{-1}V^{\top}(V - X\gamma) \geq \rho_{n}n^{-1}\|V\|_{2}^{2}.$$
(6)

for
$$\eta_0 = n^{-1/2} (1.1) \Phi^{-1} (1 - p^{-1} n^{-1}) \sqrt{\max_{1 \le j \le p} n^{-1} \sum_{i=1}^{n} x_{i,j}^2} \rho_n = 0.01 / \sqrt{\log n}.$$

 $\star \ \widehat{\sigma}_{\gamma} = \arg \max\{\sigma : \sigma \in S_{\gamma}\}$ and the set S_{γ} is defined as

$$\mathcal{S}_{\gamma} = \left\{ \sigma \ge \sqrt{\rho_{n}} \| \mathbf{V} \|_{2} / \sqrt{n} : \quad 1.5\sigma \ge n^{-1/2} \| \mathbf{V} - \mathbf{X} \widetilde{\gamma}(\sigma) \|_{2} \ge 0.5\sigma \right\}.$$
(7)

- \rightarrow When the estimation target fails to be sparse, the estimator is stable;
- ightarrow when the estimation target is sparse, the estimator automatically achieves consistency
- \rightarrow does not require knowledge of the noise level.

We propose to consider the following correlation test (CorrT) statistic

$$T_{n}(\beta_{0}) = \frac{n^{-1/2} (V - X \widehat{\gamma})^{\top} (Z - X \widehat{\theta})}{\widehat{\sigma}_{\varepsilon} \widehat{\sigma}_{u}}, \qquad (8)$$

where

$$\widehat{\sigma}_{\varepsilon} = \|\mathbf{V} - \mathbf{X}\widehat{\gamma}\|_2 / \sqrt{n}$$
 and
 $\widehat{\sigma}_{u} = \|\mathbf{Z} - \mathbf{X}\widehat{\boldsymbol{\theta}}\|_2 / \sqrt{n}.$

Why does this work?

We can show, without assuming sparsity of γ^* , that

$$n^{-1/2} (\mathbf{V} - \mathbf{X} \widehat{\boldsymbol{\gamma}})^{\top} (\mathbf{Z} - \mathbf{X} \widehat{\boldsymbol{\theta}}) = n^{-1/2} (\mathbf{V} - \mathbf{X} \widehat{\boldsymbol{\gamma}})^{\top} \mathbf{u} + O_{\mathsf{P}} (\sqrt{\log p} \| \widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}^* \|_1),$$

where under the null hypothesis, the first term on the right hand side has zero expectation and the second term vanishes fast enough.

Introduction

CorrT Methodology

Linear Tests

What about linear tests ?

Theoretical Properties

Numerical Experiments

Real Data

Jelena Bradic 2018 BIRS @ Banff

Department of Mathematics University of California, San Diego jbradic@ucsd.edu

Consider a high dimensional linear regression setting,

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta}^* + \boldsymbol{\varepsilon}. \tag{9}$$

We focus on the problem of testing linear combinations of the model parameter, namely the following hypothesis:

$$\mathsf{H}_0: \mathbf{a}^\top \boldsymbol{\beta}^* = \mathsf{g}_0, \quad \text{versus} \quad \mathsf{H}_1: \mathbf{a}^\top \boldsymbol{\beta}^* \neq \mathsf{g}_0. \tag{10}$$

Sparsity assumption: $\|\mathbf{a}\|_0 := ??$ and $\|\boldsymbol{\beta}^*\|_0 := ??$

Let $\Omega_X = \Sigma_X^{-1}$.

For each of the features $\textbf{x}_i \in \mathbb{R}^p$ consider the following decomposition:

 $\mathbf{x}_i = \mathbf{a}\mathbf{z}_i + \mathbf{w}_i$

with

$$z_i = \left(\frac{\mathbf{\Omega}_X \mathbf{a}}{\mathbf{a}^\top \mathbf{\Omega}_X \mathbf{a}}\right)^\top \mathbf{x}_i$$

and

$$\mathbf{w}_{i} = \left[\mathbb{I}_{p} - \frac{\mathbf{a}\mathbf{a}^{\top}\mathbf{\Omega}_{X}}{\mathbf{a}^{\top}\mathbf{\Omega}_{X}\mathbf{a}}
ight]\mathbf{x}_{i}$$

Notice that \mathbf{a}_{z_i} can be viewed as the projection of \mathbf{x}_i onto the vector \mathbf{a} – taking into account $\mathbf{\Omega}_{x_i}$ hence extracting information in \mathbf{x}_i regarding the null hypothesis.

Now, we see that the original model can be reparametrized as

 $y_i = z_i(\mathbf{a}^\top \boldsymbol{\beta}^*) + \mathbf{w}_i^\top \boldsymbol{\beta}^* + \varepsilon_i,$

which we refer to as restructured regression.

We observe that

$$\mathbb{E}[z_i(y_i - z_ig_0)] = \mathbb{E}[z_i^2(\mathbf{a}^\top \boldsymbol{\beta}^* - g_0)]$$

Hence, the original null is equivalent to the new null of the following kind

 $\mathbb{E}[z_i(y_i-z_ig_0)]=0.$

The test statistic then takes a simple form

$$\frac{n^{-1/2}\sum_{i=1}^{n} z_i(y_i - z_ig_0)}{\sqrt{n^{-1}\sum_{i=1}^{n} z_i^2(y_i - z_ig_0)^2}}$$

Remark

The novel methodology consists of two-stages. At the first stage, our procedure establishes a data-driven feature decomposition based on the structure of the null hypothesis directly. At the second stage, only "a moment condition" of the restructured regression is tested.

First, we pretend that $\Sigma_{\text{X}} = \mathbb{I}_{\text{p}}$ and consider

$$z_i = \left(\frac{a}{a^{\top}a}\right)^{\top} x_i, \qquad w_i = \left(\mathbb{I}_p - \frac{aa^{\top}}{a^{\top}a}\right) x_i$$

Although the decomposition $\mathbf{x}_i = \mathbf{a}zi + \mathbf{w}_i$ still holds, features z_i and \mathbf{w}_i might be highly correlated.

However, by introducing a orthogonal matrix U_a such that

$$\mathbb{I}_p - \frac{\mathbf{a}\mathbf{a}^\top}{\mathbf{a}^\top \mathbf{a}} = \mathbf{U}_a \mathbf{U}_a^\top$$

we can construct

$$\widetilde{W}=WU_{\text{a}}$$

and observe that

$$y_i = z_i(\mathbf{a}^{\top}\boldsymbol{\beta}^*) + \widetilde{\mathbf{W}}_i^{\top}\boldsymbol{\pi}_* + \epsilon_i,$$

for

$$\boldsymbol{\pi}_* = \boldsymbol{\mathsf{U}}_{\boldsymbol{\mathsf{Z}}}^\top \boldsymbol{\beta}^*.$$

Introduce a feature model

$$\mathbf{z}_{i} = \widetilde{\mathbf{W}}_{i}^{\top} \boldsymbol{\gamma}^{*} + \mathbf{u}_{i}$$

where $\boldsymbol{\gamma}^*$ is the unknown parameter and u_i are independent of $\widetilde{w}_i.$ Then, consider the moment

$$H_0: \mathbb{E}\left[(\boldsymbol{z}_i - \widetilde{\boldsymbol{w}}_i^\top \boldsymbol{\gamma}^*)^\top \left(\boldsymbol{y}_i - \boldsymbol{z}_i \boldsymbol{g}_0 - \widetilde{\boldsymbol{w}}_i^\top \boldsymbol{\pi}^* \right) \right] = 0.$$

and develop a test

$$T_{n} = \sqrt{n} \frac{(z - \widetilde{W}\widehat{\gamma}) \left(y - zg_{0} - \widetilde{W}\widehat{\pi}\right)}{\|z - \widetilde{W}\widehat{\gamma}\|_{2}\|y - zg_{0} - \widetilde{W}\widehat{\pi}\|_{2}}$$

Introduction

CorrT Methodology

Linear Tests

Theoretical Properties

Robustness to the lack of sparsity

Sparsity-adaptive property

Numerical Experiments

Real Data

Jelena Bradic 2018 BIRS @ Banff

Condition

Let $\mathbf{W} = (\mathbf{Z}, \mathbf{X})$ and $\mathbf{w}_i = (\mathbf{z}_i, \mathbf{x}_i^{\top})^{\top}$. The matrix $\mathbf{\Sigma}_W = \mathbb{E}[\mathbf{W}^{\top}\mathbf{W}]/n \in \mathbb{R}^{p \times p}$ satisfies that $\kappa_1 \leq \sigma_{\min}(\mathbf{\Sigma}_W) \leq \sigma_{\max}(\mathbf{\Sigma}_W) \leq \kappa_2$. The vectors $\mathbf{\Sigma}_W^{-1/2}\mathbf{w}_1$ are centered with sub-Gaussian norms upper bounded by κ_3 and $\mathbb{E}|\varepsilon_1|^{2+\delta} \leq \kappa_4$. Moreover, $\log p = o\left(n^{\delta/(2+\delta)} \wedge n\right)$.

 $\rightarrow\,$ For the designs, it is standard to impose well-behaved covariance matrices and sub-Gaussian properties.

Condition

$$\| \boldsymbol{\gamma}^* \|_2 \leq \kappa_5$$
 and $\mathsf{s}_{ heta} = \mathsf{o}\left(\sqrt{\mathsf{n}/\log \mathsf{n}} / \log \mathsf{p}
ight)$, where $\mathsf{s}_{ heta} = \| \boldsymbol{\theta}^* \|_0$.

→ The assumption on s_{θ} imposes sparsity in the first row of the precision matrix Σ_{w} and the rate for s_{θ} is stronger than the conditions in BCH and NL imposing $o(\sqrt{n}/\log p)$ and in VBRD imposing $o(n/\log p)$.

Theorem

Let Conditions 1 and 2 hold. Then under ${\rm H}_{\rm 0}$

$$\forall \alpha \in (0,1), \lim_{n \to \infty} \mathbb{P}\left(|\mathsf{T}_n(\beta_0)| > \Phi^{-1}(1-\alpha/2) \right) = \alpha.$$

 \rightarrow Theorem 2 formally establishes that the new CorrT test is asymptotically exact in testing $\beta^* = \beta_0$. In particular, CorrT is robust to dense γ^* in the sense that even under dense γ^* , our procedure does not generate false positive results.

We say that a procedure for testing the hypothesis (10) is sparsity-adaptive if

(i) this procedure does not require knowledge of s_{γ} ,

(ii) provides valid inference under any s_{γ} and

(iii) achieves efficiency with sparse $oldsymbol{\gamma}^*$.

We now show the third property, efficiency under sparse γ^* . To formally discuss our results, we consider testing $H_0: \beta^* = \beta_0$ versus

$$H_{1,h}: \ \beta^* = \beta_0 + h/\sqrt{n}.$$
(11)

where $h \in \mathbb{R}$ is a fixed constant.

Theorem

Let Conditions 1 and 2 hold. Suppose that $s_{\gamma} = o (n/log(p \lor n))$ and $\sigma_u/\sigma_{\varepsilon} \to \kappa_0$ for some constant $\kappa_0 > 0$. Then, under $H_{1,h}$ in (11),

$$\mathsf{P}\left(|\mathsf{T}_{\mathsf{n}}(\beta_0)| > \Phi^{-1}(1-\alpha/2)\right) \to \Psi(\alpha,\kappa_0,\mathsf{h}),$$

where $\Psi(h, \kappa_0, \alpha) = 2 - \Phi \left(\Phi^{-1}(1 - \alpha/2) + h\kappa_0 \right) - \Phi \left(\Phi^{-1}(1 - \alpha/2) - h\kappa_0 \right).$

 $\rightarrow\,$ Theorem 3 establishes the local power of CorrT. It turns out that this local power matches that of existing sparsity-based methods, such as VBRD, NL and BCH, that are shown to be efficient.

Theorem

Let Conditions 1 and 2 hold together with log p=o(n). Let $\boldsymbol{\Sigma}_X=E[\boldsymbol{x}_i\boldsymbol{x}_i^\top]\in\mathbb{R}^{(p-1)\times(p-1)}.$ Suppose that

$$\|\mathbf{\Sigma}_{\mathbf{X}} \boldsymbol{\gamma}^*\|_{\infty} \sqrt{n \log p} = o(1),$$

and with $n \to \infty$ and some $\kappa > 0$, $(\gamma^* {}^{\top} \Sigma_X \gamma^* + \sigma_{\varepsilon}^2) \sigma_u^{-2} \to \kappa$. Then, under $H_{1,h}$ in (11),

$$\lim_{\mathsf{n},\mathsf{p}\to\infty}\mathsf{P}_{\beta^*}\left(|\mathsf{T}_\mathsf{n}|>\Phi^{-1}(1-\alpha)\right)=\Psi(\mathsf{h},\kappa,\alpha),$$

where $\Psi(h, \kappa, \alpha)$ is defined in Theorem 3.

- * For n, p $\rightarrow \infty$, $\sqrt{\log p}/n = o(1)$ (i.e. $n/p \rightarrow 0$), the Type II error of the proposed CorrT test, against alternatives that are larger than $O(n^{-1/2})$, converges to zero.
- * If $\Sigma_X = \mathbb{I}_p$, the condition $\|\Sigma_X \gamma^*\|_{\infty} \sqrt{n \log p} = o(1)$ is satisfied for all γ^* for which

$$\|\boldsymbol{\gamma}^*\|_{\infty} = O(1/\sqrt{n\log p}), \|\boldsymbol{\gamma}^*\|_2 = O(\sqrt{n}/\log p);$$

* If $\max_{1 \le j \le p} \|\Sigma_{X,j}\|_1 = o(\sqrt{p/(n \log p)})$, we can consider all

$$oldsymbol{\gamma}^* = {\mathsf{c}}/{\sqrt{\mathsf{p}}}$$

with $\|c\|_{\infty} = O(1)$.

 Minimax testing of one coordinate (not the whole parameter) in dense high-dimensional testing is possible!

Theorem

Let Conditions 1 and 2 hold together with log p=o(n). Let $\mathbf{\Sigma}_X=E[\mathbf{x}_i\mathbf{x}_i^\top]\in\mathbb{R}^{(p-1)\times(p-1)}.$ Suppose that

$$oldsymbol{\gamma}^* = oldsymbol{\pi}^* + oldsymbol{\mu}^*$$

for π^* and μ^* satisfying $\|\pi^*\|_0 = o(\sqrt{n}/\log p)$, $(\mu^{*\top}\Sigma_X\mu^* + \sigma_{\varepsilon}^2)\sigma_u^{-2} \to \kappa$ and $\|\Sigma_X\mu^*\|_{\infty}\sqrt{n\log p} = o(1)$ for some $\kappa > 0$ as $n \to \infty$. Then, under $H_{1,h}$ in (11),

$$\lim_{h,p\to\infty}\mathsf{P}_{\beta^*}\left(|\mathsf{T}_{\mathsf{n}}|>\Phi^{-1}(1-\alpha)\right)=\Psi(\mathsf{h},\kappa,\alpha),$$

where $\Psi(h, \kappa, \alpha)$ is defined in Theorem 3.

Introduction

CorrT Methodology

Linear Tests

Theoretical Properties

Numerical Experiments

Real Data

Jelena Bradic 2018 BIRS @ Banff

Setting

LTD Light-tailed design: N(0, $\Sigma_{(\rho)}$) with the (i, j) entry of $\Sigma_{(\rho)}$ being $\rho^{|i-j|}$.

HTD Heavy-tailed design: each row of W is generated as $\Sigma_{(\rho)}^{1/2}$ U, where $U \in \mathbb{R}^n$ contains i.i.d random variables of Student's t-distribution with 3 degrees of freedom normalized to have variance one. (the third moment does not exist.)

The error term $\varepsilon \in \mathbb{R}^n$ contains i.i.d random variables from either N(0, 1) (light-tailed error, or LTE) or Student's t-distribution with 6 degrees of freedom normalized to have variance one (heavy-tailed error, or HTE).

We set

$$\pi_j^* = \begin{cases} 2/\sqrt{n} & 2 \le j \le 4\\ 0 & j > \max\{s, 4\}\\ U(0, 4)/\sqrt{n} & \text{otherwise.} \end{cases}$$

We test the hypothesis

$$H_0: \pi_3^* = 2/\sqrt{n} + h.$$

Table: Size properties (h = 0)

	LTD + LTE, $ ho = 0$			LTD + LTE, $\rho = -\frac{1}{2}$			HTD + HTE, $ ho = 0$		
	CorrT	Debias	Score	CorrT	Debias	Score	CorrT	Debias	Score
s = 1	0.03	0.05	0.04	0.05	0.04	0.05	0.06	0.04	0.02
s = 3	0.06	0.05	0.05	0.06	0.06	0.05	0.05	0.11	0.03
s = 5	0.09	0.09	0.09	0.07	0.11	0.10	0.07	0.04	0.04
s = 10	0.01	0.03	0.03	0.03	0.05	0.03	0.06	0.05	0.03
s = 20	0.08	0.12	0.11	0.03	0.06	0.06	0.03	0.12	0.04
s = 50	0.07	0.16	0.17	0.04	0.10	0.12	0.02	0.09	0.09
s = 100	0.05	0.29	0.28	0.01	0.15	0.14	0.05	0.20	0.21
s = n	0.04	0.35	0.33	0.04	0.27	0.27	0.04	0.38	0.38
s = p	0.07	0.54	0.52	0.04	0.39	0.40	0.05	0.57	0.53
	LTD + HTE, $ ho=0$		LTD + HTE, $ ho = -rac{1}{2}$			HTD + LTE, $ ho=0$			
	CorrT	Debias	Score	CorrT	Debias	Score	CorrT	Debias	Score
s = 1	0.03	0.05	0.04	0.04	0.04	0.02	0.06	0.05	0.05
s = 3	0.06	0.05	0.05	0.11	0.06	0.06	0.03	0.07	0.04
s = 5	0.09	0.09	0.09	0.05	0.06	0.05	0.06	0.11	0.07
s = 10	0.01	0.03	0.03	0.03	0.04	0.03	0.09	0.11	0.10
s = 20	0.08	0.12	0.11	0.06	0.11	0.10	0.05	0.13	0.06
s = 50	0.07	0.16	0.17	0.07	0.16	0.15	0.06	0.19	0.14
s = 100	0.05	0.29	0.28	0.05	0.33	0.26	0.05	0.24	0.22
s = n	0.04	0.35	0.33	0.05	0.43	0.41	0.05	0.40	0.31
s — n	0.07	0.54	0.52	0.06	0.51	0.50	0.06	0.53	0.51

Power curves

Figure: Light-tailed errors

Introduction

CorrT Methodology

Linear Tests

Theoretical Properties

Numerical Experiments

Real Data

Jelena Bradic 2018 BIRS @ Banff

- * Genome-wide gene expression profiling was performed using micro RNA from biopsies from 114 pre-treated patients with HER2+ breast cancer.
- * The complete data contains gene expression values of about 20000 genes located on different chromosomes.
- BRCA1 is a human tumor suppressor gene that is normally expressed in the cells of breast and other tissue, where they help repair damaged DNA.
- * Research suggests that the BRCA1 proteins regulate the activity of other genes including tumor suppressors and regulators of the cell division cycle.
- * Moreover, it is believed that BRCA1 may regulate pathways that remove the damages in DNA introduced by the certain drugs.
- Thus, understanding associations between BRCA1 and other genes provides a potentially important tool for tailoring chemotherapy in cancer treatment.

Gene	Biological association	Test Statistic				
		CorrT	Debias	Score		
IGF2R ¹	breast cancer tumor suppressor	-4.692	-4.285	-4.445		
Nmi ²	endogenously associated with BRCA1	-4.239	-2.956	-2.669		
RBBP4 ³	breast cancer	-4.186	-3.314	-2.806		
NPM1 ⁴	breast cancer	-3.027	-2.112	-1.601		
NARS2 ⁵	breast cancer	-4.163	-5.000	-4.983		
B3GALNT1	lung cancer	1.151	2.082	2.065		
C3orf62	lung cancer	-1.274	-2.143	-2.139		
LTB	lung cancer	-0.131	-2.107	-2.143		
TNFAIP1	lung cancer	1.231	2.181	2.118		
CCPG1	prostate cancer	-1.597	-2.154	-2.251		
LRRIQ3	colorectal cancer	-1.025	-2.480	-2.240		
LOC100507537	bladder cancer	-0.137	-1.966	-1.135		
ELOVL4	ataxia	-1.354	-2.152	-2.136		

¹sensitivity marker for radiation, chemotherapy, and endocrine therapy

²interactive binding protein

³retinoblastoma binding protein, a chromatin modeling factor

⁴blocks breast cancer cells

⁵partial or complete loss of

- * Study the equity risk premia during different states from 1980-2014. of the economy
- The response is the excess return of the U.S stock market observed at time t, covariates are a large number of macroeconomic variables observed at time t – 1 (McCracken, M. W. and Ng, S. (2015)) and st denotes the NBER recession indicator; st = 1 means that the economy is in recession at time t.
- * Are risk premia in recessions higher than in expansions with the magnitude of difference that is economically meaningful?

Thank you for your attention!