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Precision Medicine

I Precision medicine
I Developing targeted treatments which leverage patient

heterogeneity
I Empirically based, scientifically rigorous, reproducible, and

generalizable (i.e., will work with future patients)
I Philosophically similar to traditional personalized medicine but

with greater empirical rigor

I Scientific tools:
I Biomedical knowledge based on current state of science
I Data (potentially integrated across many platforms)
I Knowledge driven vs. data driven approaches
I Computational, mathematical and statistical tools
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Clinical focus

We want to make the best treatment decisions based on data:
I The single-decision setting:

I A patient presents with a disease and we need to decide what
treatment (or dose) to give from a list of choices

I We want to make the best decision based on available baseline
patient-level feature data (dynamic treatment regime)

I The multi-decision setting:
I Treat patients for diseases with multiple treatment decision

times based on continually accrued patient-level data
I The best decisions take into account delayed effects

I Real time decision making in mHealth:
I A large number of decisions need to be made in real time
I Technical and practical challenges for implementing

I Decision making on social networks and other complex
environments

Michael R. Kosorok 5/ 41



Statistics and machine learning

I What are the data analytic tasks?
I Estimate dynamic treatment regimes (DTRs) a.k.a.

Individualized treatment rules (ITRs)
I Inference and prediction for DTRs
I Etiology?

I What role does statistics play?
I Estimation
I Inference: consistency, accuracy (error bounds), confidence

regions, efficiency, etc.

I How can machine learning help?
I Provide a rich set of estimation and prediction tools
I Perform certain data-drive tasks unusual for statistics: policy

learning, reinforcement learning, inverse reinforcement learning,
etc.
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Single decision setting

I Let X be the vector of patient tailoring variables, A the
choice of treatment given, and R the clinical outcome
(with larger being better).

I An obvious approach is to first estimate the Q-function

Q(x , a) = E [R |X = x ,A = a] ,

through regression of R on (X ,A), and invert to obtain

d̂(x) = argmax
a

Q̂(x , a).

I Potential issue: Why estimate all of Q̂(x , a) when focus is

on d̂(x)?
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Value function and optimal individualized treatment
rule

I Let P be the distribution of (X ,A,R), with treatments
randomized via π(A|X ), and Pd the distribution of
(X ,A,R), with treatments chosen according to d . The
value function of d (Qian & Murphy, 2011) is

V (d) = E d(R) =

∫
RdPd =

∫
R
dPd

dP
dP = E

[
I (A = d)

π(A|X )
R

]
.

I Optimal Individualized Treatment Rule:

d∗ ∈ argmax
d

V (d).

E (R |X ,A = 1) > E (R |X ,A = −1)⇒ d∗(X ) = 1

E (R |X ,A = 1) < E (R |X ,A = −1)⇒ d∗(X ) = −1
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Outcome weighted learning (OWL or O-learning)

Optimal Individualized Treatment Rule d∗

Maximize the value Minimize the risk

E

[
I (A = d(X ))

π(A|X )
R

]
E

[
I (A 6= d(X ))

π(A|X )
R

]

I For any rule d , d(X ) = sign(f (X )) for some function f .

I Empirical approximation to the risk function:

n−1
n∑

i=1

Ri

π(Ai |Xi)
I (Ai 6= sign(f (Xi))).

I Computational challenges: non-convexity and
discontinuity of 0-1 loss.
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Using a support vector machine (SVM) approach

Objective Function: Regularization Framework

min
f

{
1

n

n∑
i=1

Ri

π(Ai |Xi)
φ(Ai f (Xi)) + λn‖f ‖2

}
. (1)

I φ(u) = (1− u)+ is the hinge loss surrogate, ‖f ‖ is some
norm for f , and λn controls the penalty on f .

I A linear decision rule: f (X ) = XTβ + β0, with ‖f ‖ as the
Euclidean norm of β.

I Estimated individualized treatment rule:

d̂n = sign(f̂n(X )),

where f̂n is the solution to (1).
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Results for O-Learning

I Can use kernel trick to extend to nonparametric decision
rule (e.g., the Gaussian kernel).

I Fisher consistent, consistent, and model robust.

I Risk bounds and convergence rates similar to those
observed in SVM literature (Tsybakov, 2004).

I Excellent simulation results and data analysis of
Nefazodone-CBASP clinical trial (Keller et al., 2000).

I Promising performance overall (Y.Q. Zhao, et al., 2012).

I An example of a policy learning approach (see also B.
Zhang, et al., 2012; Athey and Wager, 2017; others).

I Opens door to a unique application of machine learning
techniques to personalized medicine.

I Not semiparametric efficient in finite-dimensional setting.
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O-Learning Extensions

I Multiple decision times (Zhao et al, 2015, JASA)

I Location invariance for outcome/utility (Zhou et al, 2017,
JASA)

I More than two treatment options:
I Ordinal treatment options (Chen et al, In press, Biometrics)
I Nonordinal treatments (Rashid et al, submitted)

I Censored data (Zhao et al, 2015, Biometrika; Cui et al,
2017, EJS)

I For observational data, propensity score estimation is
needed
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O-Learning and Related Extensions

I Continuous treatment options
I Chen G, Zeng D, and Kosorok MR (2016). Personalized dose

finding using outcome weighted learning (with discussion and
rejoinder). JASA 111:1509-1547.

I Consistency and error bounds are difficult, and inference is
unclear

I V-learning for (nearly) continuous time and mHealth
(Luckett et al, submitted)

I Multiple competing utilities
I Incorporating patient preferences (Butler et al, In press,

Biometrics)
I Inverse reinforcement learning to infer composite utility

(Luckett et al, submitted)
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Precision medicine in mHealth

Overall research goal:

I Develop estimation techniques (using data collected with
mobile devices) for dynamic treatment regimes (which can
be implemented as personalized mHealth interventions)

Motivating example: type 1 diabetes

I Understand type 1 diabetes (T1D) and how it is managed
(minimizing hypo- and hyperglycemia, controling weight)

I Develop tailored mHealth interventions for T1D
management
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The glucose-insulin dynamical system

A day in the life of a T1D patient:
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Figure 1: Plot of glucose, insulin, physical activity, and food intake.
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Mobile technology in T1D care

Mobile devices can be used to administer treatment and assist with
data collection in an outpatient setting, including

I Continuous glucose monitoring

I Accelerometers to track physical activity

I Insulin pumps to administer and log injections
automatically

These technologies can be incorporated using mobile phones.
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Research goals

Methodological goals:

I Estimate dynamic treatment regimes for use in mobile
health

I Infinite time horizon, minimal modeling assumptions

I Observational data with minute-by-minute observations

I Online estimation to facilitate real-time decision making

Clinical goals:

I Provide patients information on the best actions to
stabilize glucose

I Recommendations that are dynamic and personalized to
the patient
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Conceptual framework

I We use a Markov decision process (MDP) context

I One potential approach is to use infinite horizon
Q-learning (models state-value as a function of action
assuming all future actions are optimal):

I Ertefaie A (2014). Constructing dynamic treatment regimes in
infinite-horizon settings. arXiv preprint arXiv:1406.0764.

I We developed V-learning which uses a policy learning
approach (models state-value as a function of policy):

I Luckett DJ, Laber EB, Kahkoska AR, Maahs DM,
Mayer-Davis E, Kosorok MR (2016). Estimating dynamic
treatment regimes in mobile health using V-learning. arXiv
preprint arXiv:1611.03531.
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Markov decision processes (MDP’s)
Assume the data consist of n i.i.d. trajectories

(
S1,A1,S2, . . . ,ST ,AT ,ST+1

)
where St ∈ Rp, At ∈ A, and there exists a known utility function
U t = u(St+1,At ,St).

Figure 2: Graphical depiction of a Markov decision process.

Treatment regimes:

I Let B(A) be the space of distributions on A
I A policy, π, is a function π : dom St → B(A)

I π(at ; st) gives the probability of selecting at ∈ A when in
state St = st
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The state-value function

I The state-value function is

V (π, st) = E

{∑
k≥0

γkU∗(t+k)(π)
∣∣St = st

}

for a discount factor γ ∈ (0, 1)

I For a distribution, R, define the value of π,
VR(π) =

∫
V (π, s)dR(s)

I For a class of regimes, Π, the optimal regime, πopt
R ∈ Π,

satisfies
VR(πopt

R ) ≥ VR(π)

for all π ∈ Π
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An estimating equation for V (π, s)

Let µt(at ; st) = Pr(At = at |St = st) for each t ≥ 1.

Lemma
Assume strong ignorability, consistency, and positivity. Let π denote an
arbitrary regime and γ ∈ (0, 1) a discount factor. Then, provided
interchange of the sum and integration is justified, the state-value
function of π at st is

V (π, st) =
∑
k≥0

E

[
γkU t+k

{
k∏

v=0

π(Av+t ; Sv+t)

µv+t(Av+t ; Sv+t)

}∣∣∣∣St = st

]
.

This result will form the basis of an estimating equation for
V (π, s).
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An estimating equation for V (π, s) (continued)

From Lemma 3.1, it follows that

0 = E
[
π(At ; St)

µt(At ; St)

{
Ut + γV (π,St+1)− V (π,St)

}
ψ(St)

]
,

for any function ψ (an importance-weighted version of the Bellman
equation). An estimating equation for V (π, s) is

Λn(π, θπ) =
1

n

n∑
i=1

Ti∑
t=1

π(At
i ; St

i )

µt(At
i ; St

i )

{
Ut
i + γV (π,St+1

i ; θπ)− V (π,St
i ; θ

π)
}
∇θπV (π,St

i ; θ
π),

where V (π,S; θπ) is a parametric model for the state-value
function.
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V-learning

Given an estimate θ̂πn , an estimate of the value of π under R is

V̂n,R(π) =
∫
V
(
π, s; θ̂πn

)
dR(s) and an estimate of the optimal

policy is π̂n = arg maxπ∈Π V̂n,R(π). Start with an initial policy, π,
and repeat until convergence:

1. Estimate θ̂πn

2. Evaluate V̂n,R(π) =
∫
V
(
π, s; θ̂πn

)
dR(s)

3. Take a step to maximize V̂n,R(π) over a class of policies
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Summary for V-Learning

I Features of V-learning include

I Flexibility in choosing a model for V (π, s; θπ)

I Online estimation, randomized decision rules

I Flexibility in specifying reference distribution

I Parametric value estimates

I A tailored treatment regime delivered through mobile
devices may help to reduce hypo- and hyperglycemia in
T1D patients
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Asymptotic Inference

I We obtain uniform asymptotic normality for key
parameters and predictions

I Main technical tools:
I Donsker theorem for β-mixing stationary processes based on

bracketing entropy (Dedecker and Louhichi, 2002)
I New bracketing entropy preservation results for products of

function classes

I Issue: Need Donsker theorems for non-stationary
processes for certain types of online V-learning
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Precision medicine revisited

I Patients can exhibit significant heterogeneity in response
to treatment

I Outcomes can be improved by tailoring treatment to
individuals

I Standard components:

I An outcome to optimize

I A set of treatment options

I A set of tailoring variables

I The goal is to estimate a decision rule for treatment to
optimize the outcome in a population

I How do we handle the case where there are multiple
outcomes?
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Motivating example: bipolar disorder

I The Systematic Treatment Enhancement Program for
Bipolar Disorder Standard Care Pathway (STEP-BD SCP)

I Characterized by episodes of depression and mania

I Anti-depressants can be used to treat depressive episodes

I Anti-depressants may induce manic episodes

I An example of precision medicine: determine which
patients will benefit from anti-depressants

I Clinical decision making needs to balance the trade-off
between depression and mania
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Notation

I X ∈ X ⊆ Rp are tailoring variables

I A ∈ {−1, 1} is treatment

I Y and Z are two real-valued outcomes with higher values
preferable

I QY (x, a) = E {Y |X = x,A = a} is the mean of Y given
X and A, with RY (x) = QY (x, 1)− QY (x,−1)

I dopt
Y (x) = argmaxa∈{−1,1}QY (x, a) = sign(RY (x)) is the

decision to maximize Y

I QZ , RZ and dopt
Z are defined similarly
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Utility functions

I If both Y and Z are relevant, neither dopt
Y nor dopt

Z may
be acceptable

I Define the composite outcome U = u(Y ,Z ) for a utility
function, u

I Define QU(x, a) = E {U |X = x,A = a}, RU(x) =
QU(x, 1)− QU(x,−1), and

dopt
U (x) = argmaxa∈{−1,1}QU(x, a) = sign(RU(x))

I Assume u(Y ,Z ;ω) = ωY + (1− ω)Z ; we will refer to
Qω, Rω, and dopt

ω

I For a broad class of utility functions, dopt
U is equivalent to

dopt
ω for some ω ∈ [0, 1] (Butler et al., 2017)
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Pseudo-likelihood estimation of utility functions

I Assume there exists a true utility function defined by ω0

such that observed decisions were made with the intent of
maximizing U = u(Y ,Z ;ω0)

I Assume that

Pr
{
A = dopt

ω0
(X)
}

= expit(Xᵀβ0)

for some β0 ∈ Rp

I The likelihood for (ω, β) is

Ln(ω, β) ∝
n∏

i=1

exp [Xᵀi β1 {Ai = dopt
ω (Xi)}]

1 + exp (Xᵀi β)
,

which can be used to estimate the true utility function
and the probability that any patient would be treated
optimally in standard practice
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Pseudo-likelihood estimation (continued)
I The likelihood for (ω, β) depends on the unknown

function dopt
ω

I Let Q̂Y ,n and Q̂Z ,n be estimators for QY and QZ , etc.
I For any ω ∈ [0, 1], let

Q̂ω,n(x, a) = ωQ̂Y ,n(x, a) + (1− ω)Q̂Z ,n(x, a),

R̂ω,n(x) = ωR̂Y ,n(x) + (1− ω)R̂Z ,n(x), and

d̂ω,n(x) = argmaxa∈{−1,1}Q̂ω,n(x, a) = sign(R̂ω,n(x))

I We can replace dopt
ω with d̂ω,n to obtain the

pseudo-likelihood

L̂n(ω, β) ∝
n∏

i=1

exp
[
Xᵀi β1

{
Ai = d̂ω,n(Xi)

}]
1 + exp (Xᵀi β)
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Patient-specific utility functions

I Let θ ∈ Rd and assume

u(Y ,Z ; X, θ) = m(X; θ)Y + {1−m(X; θ)}Z ,

where m 7→ (0, 1) is continuously differentiable in θ

I Define d̂θ,n analogously to d̂ω,n, etc.

I The pseudo-likelihood is

L̂n(θ, β) ∝
n∏

i=1

exp
[
Xᵀi β1

{
Ai = d̂θ,n(Xi)

}]
1 + exp (Xᵀi β)
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Asymptotic Inference

We need some basic assumptions and definitions, including:

I
√
n
[
R̂Y ,n(x)− RY (x)

]
= φT

Y (x)n−1/2
∑n

i=1 ψiY + oP(1),

where oP(1) is uniform over x, the i.i.d. influence
functions ψiY ∈ Rq1 , and φY are basis functions

I
√
n
[
R̂Z ,n(x)− RZ (x)

]
= φT

Z (x)n−1/2
∑n

i=1 ψiZ + oP(1),

similarly, and ψiZ ∈ Rq2

I Pβ(x) = expit(xTβ), ψiA = Xi(Ai − Pβ0(Xi)) and
I0 = P

[
XXTPβ0(X)(1− Pβ0(X))

]
, where P is the

expectation over X

I D̂θ,n(x) = m(x; θ)R̂Y ,n(x) + (1−m(x; θ))R̂Z ,n(x)

I Dθ(x) = m(x; θ)RY (x) + (1−m(x; θ))RZ (x)

I The density of Dθ0(X) at zero is 0 < f0 <∞.
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Asymptotic Inference
Assumptions and definitions, continued:

I Assume

Σ0 = E

 ψ1Y

ψ1Z

ψ1A

⊗2

=

 ΣYY ΣYZ ΣYA

ΣT
YZ ΣZZ ΣZA

ΣT
YA ΣT

ZA ΣAA


is positive definite (note that ΣAA = I0)

I Let aY (x) = m(x; θ0)RY (x)φY (x), aZ (x) =
(1−m(x; θ0))RZ (x)φZ (x), b(x) =
(RY (x)− RZ (x))ṁθ0(x), and c(x) = x (2Pβ0(x)− 1),
where ṁθ = ∂m/(∂θ)

I For any zY ∈ Rq1 , zZ ∈ Rq2 , u ∈ Rd , define the function
(zY , zZ , u) 7→ k0(zy , zZ , u) =

P
[
c(X)

∣∣aY (X)T zY + aZ (X)T zZ + b(X)Tu
∣∣ |Dθ0(X) = 0

]
f0
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Asymptotic Inference

Theorem
Under regularity conditions, the pseudo-likelihood maximizers β̂n
and θ̂n satisfy

√
n

(
β̂n − β0

θ̂n − θ0

)
 

(
I−1
0 [ZA − k0(ZY ,ZZ ,U)]

U

)
=

(
B
U

)
,

where U = argminu β
T
0 k0(ZY ,ZZ , u), and ZY

ZZ

ZA

 ∼ N(0,Σ0).

A certain semiparametric bootstrap is also consistent in probability.
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Asymptotic Inference

Main technical tools:

I The Argmax theorem

I The following for the bootstrap:

Theorem
Let H be compact with respect to a metric d and F ⊂ C [H] be
compact with respect to ‖ · ‖H . For each f ∈ F , let
u(f ) = argmaxu∈H f (u), where we arbitrarily choose a value if
nonunique. Suppose also that there exists an F1 ⊂ F such that
each f ∈ F1 has a unique maximum. Then

lim
δ↓0

sup
f ∈F1

sup
g∈F :‖f−g‖H<δ

d(u(f ), u(g)) = 0.
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Overall Conclusions and Future Work

I This is an exciting time for precision medicine at the
confluence of machine learning and statistics.

I There are numerous open questions.

I Inference can be challenging and nonstandard.

I Consistency, or zero order inference, is often an important
first step.

I This work is part of the emergence of a new (or renewed)
discipline focused on data driven decision making and
precision medicine and has many connections in many
quantitative and nonquantitative disciplines.
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