Stability results for non-autonomous dynamical systems

Cecilia González Tokman (Collaborators: G. Froyland, R. Murray & A. Quas)

Australian Government

Australian Research Council

New Developments in Open Dynamical Systems and Their Applications Banff International Research Station, 19 March 2018

Motivation

To develop mathematical tools –analytical and numerical– to analyse and understand transport and mixing phenomena in (non-autonomous) dynamical systems.

13/09/15

20/09/15

http://earth.nullschool.net

Transfer Operators

 Powerful analytical tool to investigate global properties of dynamical systems, by considering densities, or ensembles of trajectories.

 Linear operators encoding the global dynamics, acting on a linear (Banach, Hilbert) space X,

$$\mathcal{L}: X \to X, \quad \int f \cdot g \circ T \, dm = \int \mathcal{L} f \cdot g \, dm.$$

Transfer Operators

 Very useful for numerical analysis of dynamical systems, e.g. via Markovian models.

Numerical approximations to invariant measure of a dynamical system via transfer operators (blue) and long trajectories (red).

♦ Ulam discretisation scheme: P = {B₁,..., B_k} partition of the state space into *bins*,

$$\mathbb{E}_{\mathcal{P}}(f) = \sum_{j=1}^{k} \frac{1}{m(B_j)} \Big(\int \mathbb{1}_{B_j} f \ dm \Big) \mathbb{1}_{B_j}.$$

Transfer Operators, Quasi-compactness

- Also useful for the analytical study of transport phenomena in dynamical systems.
- ♦ L is quasi-compact if there exists 0 ≤ k < 1, called *essential* spectral radius of L, such that, outside the disc of radius k:
- The spectrum of \mathcal{L} consists of isolated eigenvalues:

$$\begin{split} 1 &= \gamma_1, \dots, \gamma_m, \quad m \leq \infty, \\ \text{such that } |\gamma_1| &\geq |\gamma_2| \geq \dots \geq |\gamma_m| > k \text{, and} \end{split}$$

• Finite-dimensional corresponding generalised eigenspaces:

Transfer Operators, Spectral Properties

♦ It is now known that for a rich class of transformations T (including piecewise smooth expanding/hyperbolic maps) and appropriate X, L is quasi-compact. Furthermore,

Transfer Operators, Spectral Properties

- ♦ It is now known that for a rich class of transformations T (including piecewise smooth expanding/hyperbolic maps) and appropriate X, L is quasi-compact. Furthermore,

Transfer Operators, Spectral Properties

- ♦ It is now known that for a rich class of transformations T (including piecewise smooth expanding/hyperbolic maps) and appropriate X, L is quasi-compact. Furthermore,

Transfer Operators, Spectral Properties

- ♦ It is now known that for a rich class of transformations T (including piecewise smooth expanding/hyperbolic maps) and appropriate X, L is quasi-compact. Furthermore,

Cecilia González Tokman (UQ)

Transfer Operators, Spectral Properties

- ♦ It is now known that for a rich class of transformations T (including piecewise smooth expanding/hyperbolic maps) and appropriate X, L is quasi-compact. Furthermore,

Cecilia González Tokman (UQ)

Transfer Operators, Spectral Properties

- It is now known that for a rich class of transformations T (including piecewise smooth expanding/hyperbolic maps) and appropriate X, L is quasi-compact. Furthermore,

Cecilia González Tokman (UQ)

Transfer Operators, Spectral Properties

- ♦ It is now known that for a rich class of transformations T (including piecewise smooth expanding/hyperbolic maps) and appropriate X, L is quasi-compact. Furthermore,

Cecilia González Tokman (UQ)

Transfer Operators, Spectral Properties

- ♦ It is now known that for a rich class of transformations T (including piecewise smooth expanding/hyperbolic maps) and appropriate X, L is quasi-compact. Furthermore,

Cecilia González Tokman (UQ)

Transfer Operators, Spectral Properties

- ♦ It is now known that for a rich class of transformations T (including piecewise smooth expanding/hyperbolic maps) and appropriate X, L is quasi-compact. Furthermore,

Cecilia González Tokman (UQ)

Transfer Operators, Spectral Properties

- It is now known that for a rich class of transformations T (including piecewise smooth expanding/hyperbolic maps) and appropriate X, L is quasi-compact. Furthermore,

Cecilia González Tokman (UQ)

Transfer Operators, Spectral Properties

- ♦ It is now known that for a rich class of transformations T (including piecewise smooth expanding/hyperbolic maps) and appropriate X, L is quasi-compact. Furthermore,

Cecilia González Tokman (UQ)

Transfer Operators, Spectral Properties

- It is now known that for a rich class of transformations T (including piecewise smooth expanding/hyperbolic maps) and appropriate X, L is quasi-compact. Furthermore,

Cecilia González Tokman (UQ)

Transfer Operators, Spectral Properties

Dellnitz, Deuflhard, Junge and collaborators in the 1990's suggested the connection

 $f_2 \in E_2 \iff$ Almost-invariant sets.

Transfer Operators, Spectral Properties

Dellnitz, Deuflhard, Junge and collaborators in the 1990's suggested the connection

 $f_2 \in E_2 \iff$ Almost-invariant sets.

© Froyland et al. PRL 2007

Non-Autonomous Dynamical Systems: Introduction

The evolution rule,

 $T_{\omega}: D \to D, \quad \omega \in \Omega,$

is dictated by an external driving system $\sigma : \Omega \to \Omega$.

Analogy:

autonomous $\leftrightarrow \rightarrow$ picture non-autonomous $\leftrightarrow \rightarrow$ movie

- Also known as:
 - Skew products, cocycles
 - Forced, time-dependent, and random dynamical systems (RDS).

Non-Autonomous Dynamical Systems: Introduction

The evolution rule,

$$T_{\omega}: D \to D, \quad \omega \in \Omega,$$

is dictated by an external driving system $\sigma : \Omega \rightarrow \Omega$.

Analogy:

autonomous $\leftrightarrow \rightarrow$ picture

non-autonomous ····· m

Also known as:

- Skew products, cocycles
- Forced, time-dependent, and random dynamical systems (RDS).

The Driving System

 $\sigma:(\Omega,\mathbb{P})\to(\Omega,\mathbb{P})$

- Invertible;
- Probability preserving:

$$\mathbb{P}(\sigma^{-1}E) = \mathbb{P}(E)$$
 for all measurable $E \subset \Omega$;

• Ergodic:

$$E = \sigma^{-1}(E) \Rightarrow \mathbb{P}(E) = 0 \text{ or } \mathbb{P}(E) = 1.$$

- Examples
 - Autonomous system:

$$\Omega = \{\omega_0\}, \ \mathbb{P} = \delta_{\omega_0}, \ \sigma = \mathsf{Id}.$$

• Deterministic forcing:

$$\Omega=S^1, \ \mathbb{P}=\mathsf{Leb}, \ \sigma(\omega)=\omega+\alpha \pmod{1}, \alpha \not\in \mathbb{Q}.$$

Stationary noise:

$$\Omega = [-\epsilon,\epsilon]^{\mathbb{Z}}, \ \mathbb{P} = \text{product of uniform measures}, \ \sigma = \text{shift}$$

Non-Autonomous Systems

External driving system

$$\sigma:\Omega\to\Omega,$$

measure preserving transformation of $(\Omega, \mathcal{F}, \mathbb{P})$.

Several, possibly uncountably many, evolution rules

$$T_{\omega}: D \to D, \quad \omega \in \Omega.$$

Associated transfer operators,

$$\mathcal{L}_{\omega} \in L(X), \quad \omega \in \Omega.$$

Random dynamical system,

$$\mathcal{R} = (\Omega, \mathcal{F}, \mathbb{P}, \sigma, X, \mathcal{L}).$$
$$\mathcal{L}(\omega, n) = \mathcal{L}_{\omega}^{(n)} := \mathcal{L}_{\sigma^{n-1}\omega} \circ \cdots \circ \mathcal{L}_{\sigma\omega} \circ$$

L....

Multiplicative Ergodic Theorems: Introduction

Spectral type decompositions for non-autonomous dynamical systems. (Into non-linear time-varying modes, in order of decay rate.)

Autonomous

 \blacklozenge \mathcal{L} quasi-compact operator \mathbf{i} γ_i isolated eigenvalues \blacklozenge E_i (generalised) eigenspaces E_1

Non-autonomous

Multiplicative Ergodic Theorems: Introduction

Spectral type decompositions for non-autonomous dynamical systems. (Into non-linear time-varying modes, in order of decay rate.)

Autonomous

 \blacklozenge \mathcal{L} quasi-compact operator \mathbf{i} γ_i isolated eigenvalues \blacklozenge E_i (generalised) eigenspaces E_1

Non-autonomous

R quasi-compact RDS
 λ_i Lyapunov exponents
 Y_i(ω) Oseledets spaces

Multiplicative Ergodic Theorems: Introduction

Spectral type decompositions for non-autonomous dynamical systems. (Into non-linear time-varying modes, in order of decay rate.)

Autonomous

↓ L quasi-compact operator
 ↓ γ_i isolated eigenvalues
 ♦ E_i (generalised) eigenspaces

Non-autonomous

R quasi-compact RDS
 λ_i Lyapunov exponents
 Y_i(ω) Oseledets spaces

Multiplicative Ergodic Theorems: Introduction

Spectral type decompositions for non-autonomous dynamical systems. (Into non-linear time-varying modes, in order of decay rate.)

Autonomous

↓ L quasi-compact operator
 ↓ γ_i isolated eigenvalues
 ♦ E_i (generalised) eigenspaces

Non-autonomous

R quasi-compact RDS
 λ_i Lyapunov exponents
 Y_i(ω) Oseledets spaces

 E_1

Multiplicative Ergodic Theorems: Introduction

Spectral type decompositions for non-autonomous dynamical systems. (Into non-linear time-varying modes, in order of decay rate.)

Autonomous

 \blacklozenge \mathcal{L} quasi-compact operator \mathbf{i} γ_i isolated eigenvalues \blacklozenge E_i (generalised) eigenspaces E_1

Non-autonomous

R quasi-compact RDS
 λ_i Lyapunov exponents
 Y_i(ω) Oseledets spaces

Multiplicative Ergodic Theorems: Introduction

Spectral type decompositions for non-autonomous dynamical systems. (Into non-linear time-varying modes, in order of decay rate.)

Autonomous

- *L* quasi-compact operator
 γ_i isolated eigenvalues
 E (neuronlined) simulation
- E_i (generalised) eigenspaces

$$\mathcal{L}e_i = \gamma_i e_i$$

Non-autonomous

R quasi-compact RDS
 λ_i Lyapunov exponents
 Y_i(ω) Oseledets spaces

$$Y_1(\sigma^4\omega)$$

 $Y_2(\sigma^4\omega)$

$$\mathcal{L}_{\omega}(Y_i(\omega)) = Y_i(\sigma\omega)$$
$$\frac{1}{n} \log \|\mathcal{L}_{\omega}^{(n)} y_i(\omega)\| \to \lambda_i$$

Multiplicative Ergodic Theorems: History

Oseledets splittings:

♦ For invertible (injective) operators:

- Oseledets '68, Raghunathan '79 (matrices);
- Ruelle '79 (Hilbert spaces);
- Mañé '83, Thieullen '87, Lian-Lu '10, Blumenthal '16 (Banach spaces).

(In the non-invertible case, the above show existence of Oseledets filtration.)

- For semi-invertible operators: $(\sigma \text{ invertible})$
 - Froyland–Lloyd–Quas '10 (matrices);
 - Froyland–Lloyd–Quas '13 (restricted type of operators);
 - GT–Quas '14, '15 (separable Banach spaces).

Multiplicative Ergodic Theorem: Setting

- Let $(X, \|\cdot\|)$ be a Banach space with separable dual.
- Let $\mathcal{R} = (\Omega, \mathcal{F}, \mathbb{P}, \sigma, X, \mathcal{L})$ be a random dynamical system with ergodic and invertible base σ .
- Integrability: $\log^+ \|\mathcal{L}(\omega)\| \in L^1(\mathbb{P}).$
- ♦ Strong measurability: For each f ∈ X, ω → Lωf is measurable.
 ♦ Quasi-compactness: λ* > κ*.

 $\lambda^*(\mathcal{R}) := \lim_{n \to \infty} \frac{1}{n} \log \|\mathcal{L}_{\omega}^{(n)}\|$ maximal Lyapunov exponent (analog of the *spectral radius*); $\kappa^*(\mathcal{R}) := \lim_{n \to \infty} \frac{1}{n} \log \operatorname{ic}(\mathcal{L}_{\omega}^{(n)})$

index of compactness (analog of the *essential spectral radius*)

$$\mathsf{ic}(\mathcal{L}) := \inf \left\{ r > 0 : \frac{\mathcal{L}(B_X) \text{ can be covered with}}{\mathsf{finitely many balls of radius } r} \right\}$$

Multiplicative Ergodic Theorem

Theorem (Semi-invertible Oseledets theorem [GT-Quas '14])

${\mathcal R}$ has an Oseledets splitting:

There are at most countably many exceptional Lyapunov exponents, $\lambda_1 > \lambda_2 > \ldots > \lambda_l > \kappa^*$; and there exists a unique measurable and equivariant splitting of X,

$$X = V(\omega) \oplus igoplus_{j=1}^l Y_j(\omega), \ \textit{defined for } \mathbb{P} \ \textit{a.e.} \ \omega \in \Omega$$

with $V(\omega)$ closed and $Y_j(\omega)$ finite dimensional, such that:

For every
$$v \in Y_j(\omega) \setminus \{0\}$$
, $\lim_{n \to \infty} n^{-1} \log \|\mathcal{L}_{\omega}^{(n)}v\| = \lambda_j$.

For every $v \in V(\omega)$, $\lim_{n\to\infty} n^{-1} \log \|\mathcal{L}_{\omega}^{(n)}v\| \leq \kappa^*$.

Approximation and Identification of Coherent Structures

The Oseledets spaces $Y_j(\omega)$ can be approximated using a singular value decomposition (SVD) type construction. [Froyland–Santitisadeekorn–Monahan '10, GT–Quas '15]

Stability?

Question

How does **spectral data** from transfer operators (Lyapunov exponents, Oseledets splitting) **change** when the dynamical system is perturbed?

- Relevant perturbations:
 - Model errors.
 - Noise.
 - Numerical approximations: Ulam and Fourier-based methods.
- Early work, autonomous setting:
 - Keller–Liverani '99:

Stability of spectral data for quasi-compact operators (isolated eigenvalues and corresponding eigenspaces).

Stability for non-autonomous systems

Setting: Perturbations

Initial system:

$$\mathcal{R} = (\Omega, \mathbb{P}, \sigma, X, \mathcal{L}).$$

• Perturbations:

$$\mathcal{R}_k = (\Omega, \mathbb{P}, \sigma, X, \mathcal{L}_k), \quad \mathcal{L}_k$$
 'close to' \mathcal{L} .

Previous positive stability results, closest to our setting:

- Ledrappier-Young '91, Ochs '99;
- Baladi-Kondah-Schmitt '96, Bogenschütz '00.
- Warning! Negative stability results:
 - Bochi '02, Bochi-Viana '05.

(I) Stability of random absolutely continuous invariant measures for piecewise expanding interval maps

Setting: Lasota-Yorke Maps

 Let LY be the set of non-singular, finite-branched, piecewise monotonic and piecewise smooth interval maps,

$$T: I \to I.$$

- For each $T \in LY$,
 - $\mu(T) := \operatorname{essinf}_{x \in I} |T'(x)|$
 - N(T):= number of branches of T

Setting: Random Lasota–Yorke Maps

• $\sigma: \Omega \circlearrowleft$ ergodic, invertible \mathbb{P} -preserving transformation.

A good random Lasota–Yorke map T is a function

$$\mathcal{T}: \Omega \to LY,$$

 $\omega \mapsto T_{\omega}, \text{ such that}$

- $(\omega, x) \mapsto T_{\omega}(x)$ is measurable.
- Expansion: $\lim_{K\to\infty} \int_{\Omega} \log \min(\mu(T_{\omega}), K) d\mathbb{P} > 0.$
- Number of branches: $\log^+(N(T_{\omega})/\mu(T_{\omega})) \in L^1(\mathbb{P}).$
- Distortion: $\log^+(\operatorname{var}(1/|T'_{\omega}|)) \in L^1(\mathbb{P}).$

Definition

A random acim for $\mathcal{R} = (\Omega, \mathbb{P}, \sigma, BV, \mathcal{L})$ is a non-negative measurable function $F : \Omega \times I \to \mathbb{R}$, with $f_{\omega} := F(\omega, \cdot) \in BV$, such that $||f_{\omega}||_1 = 1$ and for every $\omega \in \Omega$, $\mathcal{L}_{\omega} f_{\omega} = f_{\sigma\omega}$.

Theorem (Buzzi '99)

Definition

A random acim for $\mathcal{R} = (\Omega, \mathbb{P}, \sigma, BV, \mathcal{L})$ is a non-negative measurable function $F : \Omega \times I \to \mathbb{R}$, with $f_{\omega} := F(\omega, \cdot) \in BV$, such that $||f_{\omega}||_1 = 1$ and for every $\omega \in \Omega$, $\mathcal{L}_{\omega} f_{\omega} = f_{\sigma\omega}$.

Theorem (Buzzi '99)

Definition

A random acim for $\mathcal{R} = (\Omega, \mathbb{P}, \sigma, BV, \mathcal{L})$ is a non-negative measurable function $F : \Omega \times I \to \mathbb{R}$, with $f_{\omega} := F(\omega, \cdot) \in BV$, such that $||f_{\omega}||_1 = 1$ and for every $\omega \in \Omega$, $\mathcal{L}_{\omega} f_{\omega} = f_{\sigma\omega}$.

Theorem (Buzzi '99)

Definition

A random acim for $\mathcal{R} = (\Omega, \mathbb{P}, \sigma, BV, \mathcal{L})$ is a non-negative measurable function $F : \Omega \times I \to \mathbb{R}$, with $f_{\omega} := F(\omega, \cdot) \in BV$, such that $||f_{\omega}||_1 = 1$ and for every $\omega \in \Omega$, $\mathcal{L}_{\omega} f_{\omega} = f_{\sigma\omega}$.

Theorem (Buzzi '99)

Definition

A random acim for $\mathcal{R} = (\Omega, \mathbb{P}, \sigma, BV, \mathcal{L})$ is a non-negative measurable function $F : \Omega \times I \to \mathbb{R}$, with $f_{\omega} := F(\omega, \cdot) \in BV$, such that $||f_{\omega}||_1 = 1$ and for every $\omega \in \Omega$, $\mathcal{L}_{\omega} f_{\omega} = f_{\sigma\omega}$.

Theorem (Buzzi '99)

Perturbations: the Ulam Scheme

Ulam discretisations

$$\mathcal{L}_{k,\omega} = \mathbb{E}_k \circ \mathcal{L}_\omega$$

 \mathbb{E}_k is the conditional expectation with respect to the uniform partition of I into k intervals $\mathcal{P}_k = \{B_1, \ldots, B_k\}$,

$$\mathbb{E}_{k}(f) = \sum_{j=1}^{k} \frac{1}{m(B_{j})} \Big(\int \mathbb{1}_{B_{j}} f \, dm \Big) \mathbb{1}_{B_{j}},$$

• Very effective numerical approximation scheme.

Perturbations: Convolutions

Convolutions

$$\mathcal{L}_{k,\omega}f(x) = Q_k * \mathcal{L}_{\omega}f(x) = \int Q_k(y)\mathcal{L}_{\omega}f(x-y)dy$$

 $\{Q_k\}_{k\in\mathbb{N}}$ are densities on $\mathbb{S}^1,$ with $Q_k\to\delta_0$ weakly.

• Uniform densities: Model of iid noise (on average)

$$Q_k = \frac{1}{2\epsilon_k} \mathbb{1}_{[-\epsilon_k, \epsilon_k]}.$$

• Fejér kernels: Cesàro average of partial sums of Fourier series

$$Q_k(x) = \frac{\sin(\pi kx)^2}{k\sin(\pi x)^2}.$$

Stability Theorem Application: Static Perturbations

Static perturbations

Each T_{ω} is perturbed to a nearby map $T_{k,\omega}$, $\mathcal{L}_{k,\omega}$ is the transfer operator of $T_{k,\omega}$.

- Modelling errors
- Model iid additive noise:

 $\Xi = [-1,1]^{\mathbb{Z}},$ equipped with the product of uniform measures, s left shift on $\Xi.$

Set $\bar{\Omega} = \Omega \times \Xi$, $\bar{\sigma} = \sigma \times s$ and for $(\omega, \xi) \in \bar{\Omega}$,

$$T_{k,(\omega,\xi)}(x) = T_{\omega}(x) + \epsilon_k \xi_0.$$

Stability Theorem for Random Acims

Theorem (Froyland–GT–Quas '14 & Froyland–GT–Murray '17)

- Let \mathcal{R} be a covering good random Lasota–Yorke map.
- Let $\{\mathcal{R}_k\}$ be either
 - The sequence of Ulam discretisations, corresponding to uniform partitions \mathcal{P}_k (*), or
 - A sequence of random perturbations by convolution with Q_k , with $Q_k \rightarrow \delta_0$ weakly.
 - A sequence of static perturbations of size $\epsilon_k \rightarrow 0$.

Then, for each sufficiently large k, \mathcal{R}_k has a unique random acim. Let $\{F_k\}_{k\in\mathbb{N}}$ be the sequence of random acims for \mathcal{R}_k . Then, $\lim_{k\to\infty} F_k = F$ fibrewise in $|\cdot|_1$. (That is, for \mathbb{P} -a.e. $\omega \in \Omega$, $\lim_{k\to\infty} |f_\omega - f_{k,\omega}|_1 = 0$.)

Comments on the Proof

- Convergence is established in a strong sense.
- Previous stability results deal with small perturbations of an autonomous expanding system. (Baladi, Kondah, Schmidt, Bogenschütz)
- The proof combines ergodic theoretical tools with *classical* functional analysis tools for autonomous systems (Buzzi, Blank, Keller, Liverani), including quantitative control on the skeleton of *(random) periodic turning points.*

Stability: Numerical Example

 \blacklozenge σ : \mathbb{S}^1 \circlearrowright be a rigid rotation by angle $lpha = 1/\sqrt{2}$

 $T_{\omega}(x) = \begin{cases} 3(x-\omega) - 2.9(x-\omega)(x-\omega - \frac{1}{3}), & \omega \le x < \omega + \frac{1}{3}; \\ -3(x-\omega) + 1 - 2.9(x-\omega - \frac{1}{3})(x-\omega - \frac{2}{3}), & \omega + \frac{1}{3} \le x < \omega + \frac{2}{3}; \\ \frac{7}{3}(x-\omega - \frac{2}{3}) + 2\omega/9, & \omega + \frac{4}{3} \le x < \omega + 1 \end{cases}$

Cecilia González Tokman (UQ)

Stability: Numerical Example

(II) Stability of Oseledets splittings in an infinite dimensional (Hilbert space) setting

Cecilia González Tokman (UQ) Stability results for non-autonomous dynamical systems

Stochastic Stability of Oseledets Splittings: Setting

- igstarrow H separable Hilbert space, with basis e_1, e_2, \dots
- Hilbert–Schmidt and strong Hilbert–Schmidt norms, for $A \in H$:

$$\|A\|_{\mathsf{HS}}^{2} := \sum_{i,j} \langle Ae_{i}, e_{j} \rangle^{2}, \quad \|A\|_{\mathsf{SHS}}^{2} := \sum_{i,j} 2^{2^{(i+j)}} \langle Ae_{i}, e_{j} \rangle^{2}.$$

 $\mathsf{SHS} := \{A \in H : \|A\|_{\mathsf{SHS}} < \infty\} \subset \mathsf{HS} \subset K(H).$

Hilbert space cocycle: (Ω, ℙ, σ, SHS, A), with σ ergodic, ℙ-preserving and invertible;
 A: Ω → SHS, with log-integrable norm;

$$A_{\omega}^{(n)} := A(\sigma^{n-1}\omega)A(\sigma^{n-2}\omega)\cdots A(\omega).$$

Stochastic Stability of Oseledets Splittings: Setting

Lyapunov exponents (with multiplicity): $\infty > \mu_1 > \mu_2 > \ldots > \mu_n > \cdots > -\infty.$ \blacklozenge $d_1, d_2, \ldots, d_p, \ldots$ the corresponding multiplicities; • $D_0 := 0$, $D_i := d_1 + \ldots + d_i$. so that $\mu_i = \mu_{i'}$ if $D_{i-1} < j, j' < D_i$. The notions of singular vectors and singular values apply to compact operators, as in the finite-dimensional case. For $A \in K(H)$, let $s_1(A) \ge s_2(A) \ge \ldots$ be the singular values (with multiplicity). The maximal logarithmic rate of k-dimensional volume growth is given by

$$\Xi_k(A) := \log(s_1(A) \cdots s_k(A)).$$

Perturbations

$$\blacklozenge \ \bar{\Omega} := \Omega \times \mathsf{SHS}^{\mathbb{Z}},$$

- $\bar{\sigma} := \sigma \times s$, where s is the shift on SHS^Z.
- $\overline{\mathbb{P}} := \mathbb{P} \times \gamma^{\mathbb{Z}}$ where γ is the multi-variate normal distribution on SHS with centred, normal (i, j)th entry with standard deviation $3^{-(i+j)}$, and independent entries.

• For $\epsilon > 0$, define the new cocycle $A^{\epsilon} \colon \overline{\Omega} \to \mathsf{SHS}$, with generator

$$A^{\epsilon}(\omega, (\Delta_n)_{n \in \mathbb{Z}}) = A(\omega) + \epsilon \Delta_0, \quad (\Delta_n \sim \gamma).$$

• Goal: compare splittings of $\mathcal{R} = (\Omega, \mathbb{P}, \sigma, A)$ and $\mathcal{R}_{\epsilon} = (\bar{\Omega}, \bar{\mathbb{P}}, \bar{\sigma}, A^{\epsilon})$, as $\epsilon \to 0$.

Stochastic Stability of Oseledets Splittings

Theorem (Froyland–GT–Quas, to appear)

(i) Convergence of Lyapunov exponents:

Let the Lyapunov exponents of the perturbed matrix cocycle $(\bar{\Omega}, \bar{P}, \bar{\sigma}, A^{\epsilon})$ be

 $\mu_1^{\epsilon} \ge \mu_2^{\epsilon} \ge \ldots \ge \mu_d^{\epsilon},$

with multiplicity. Then μ_i^ϵ → μ_i for each i as ϵ → 0.
(ii) Convergence in probability of Oseledets spaces: Let N = (μ_i - δ, μ_i + δ), with μ_i > -∞ and μ_j ∉ N if μ_j ≠ μ_i. Let ϵ₀ be such that for each ϵ ≤ ϵ₀, μ_i^ϵ ∈ N for each D_{i-1} < j ≤ D_i.

For $\epsilon < \epsilon_0$, let $Y_i^{\epsilon}(\bar{\omega})$ denote the sum of the Oseledets spaces of A^{ϵ} having exponents in \mathcal{N} .

Then $Y_i^{\epsilon}(\bar{\omega})$ converges in probability to $Y_i(\omega)$ as $\epsilon \to 0$. (Convergence in the Grassmannian of H.)

Strategy of the Proof: Stability of Lyapunov Exponents

Goal: obtain a lower bound for the sum of the k top perturbed Lyapunov exponents (maximal logarithmic growth rate of k-volumes).

- For $\epsilon > 0$, define a block length, $N \sim |\log \epsilon|$.
- ♦ For large n, estimate the top exponents of the product A^{ϵ(nN)}, a perturbed block of length nN.
- ♦ Replace the (sub-additive) logarithmic k-volume growth, Ξ_k(·) by a related approximately super-additive quantity,

$$\tilde{\Xi}_k(A) = \mathbb{E}\Xi_k(\Pi_k \Delta A \Delta' \Pi_k),$$

where Π_k is the orthogonal projection onto $\langle e_1, \ldots, e_k \rangle$, and $\Delta, \Delta' \sim \gamma$ are independent.

 ♦ Use this super-additivity to split A^{ϵ(nN)} into good super-blocks (of length a multiple of N) and bad blocks (of length N − 2):

$$\Xi_k(A^{\epsilon_{\bar{\omega}}^{(nN)}})\gtrsim\tilde{\Xi}_k(A^{\epsilon_{\bar{\omega}}^{(nN)}})\gtrsim\sum\tilde{\Xi}_k(\mathsf{blocks}).$$

Strategy of the Proof: Stability of Lyapunov Exponents

- ♦ Show Ξ_k(G^ϵ) ≳ Ξ_k(G), where G represents a good super-block and G^ϵ its perturbed version.
- Show $\mathbb{E}\tilde{\Xi}_k(B^{\epsilon}) \gtrsim \tilde{\Xi}_k(B)$ where B is a bad block and B^{ϵ} is its perturbed version.
- Show $\tilde{\Xi}_k(B) \gtrsim \Xi_k(B)$ and $\tilde{\Xi}_k(G^{\epsilon}) \gtrsim \Xi_k(G^{\epsilon})$.
- ♦ Re-assemble the pieces using sub-additivity of Ξ_k and account for the errors.

Strategy of the Proof: Stability of Oseledets Spaces

• Assume
$$\mu_k > 0 > \mu_{k+1}$$
. Let $\delta_0 < 1$, $E_k^{\epsilon}(\bar{\omega}) = \oplus_{j=1}^k Y_j^{\epsilon}(\bar{\omega})$ and

$$U_{\epsilon} = \left\{ \bar{\omega} \colon \angle \left(E_k^{\epsilon}(\bar{\omega}), E_k(\omega) \right) > 2\delta_0 \right\}, \quad W_{\epsilon} = \bar{\sigma}^{-N} U_{\epsilon} \cap \bar{G}.$$

To show: $\forall 0 < \eta < 1$ and small $\epsilon > 0$, $\overline{\mathbb{P}}(W_{\epsilon}) < \eta$.

- (Convergence of $Y_k^{\epsilon}(\bar{\omega})$ to $Y_k^0(\omega)$ then follows from the identity $Y_k^{\epsilon}(\bar{\omega}) = E_k^{\epsilon}(\bar{\omega}) \cap F_{k-1}^{\epsilon}(\bar{\omega})$ and duality.)
- $\label{eq:constraint} \begin{array}{l} \blacklozenge \mbox{ If } \bar{\omega} \in \bar{G} \mbox{, and } \ensuremath{ } \angle (E_k^\epsilon(\bar{\sigma}^N\bar{\omega}), E_k(\sigma^N\omega)) > 2\delta \mbox{, then } \\ \ensuremath{ } \bot (E_k^\epsilon(\bar{\omega}), F_k(A_\omega^{(N)})) < 4\delta^{-1}e^{-(\mu_k \tau)N}. \end{array} \end{array}$
- If ϵ is sufficiently small so that $4\delta^{-1} + 2 < e^{k\tau N}$, $\bar{\omega} \in \bar{G}$ and $\perp (E_k^{\epsilon}(\bar{\omega}), F_k(A_{\omega}^{(N)})) < 4\delta^{-1}e^{-(\mu_k \tau)N}$, we have

$$\Xi_k(A^{\epsilon_{\bar{\omega}}^{(N)}}|_{E_k^{\epsilon}(\bar{\omega})}) \le (\mu_1 + \ldots + \mu_{k-1} + 2k\tau)N.$$

Strategy of the Proof: Stability of Oseledets Spaces

$$\mu_{1}^{\epsilon} + \dots + \mu_{k}^{\epsilon} = \lim_{n \to \infty} \frac{1}{n} \int \Xi_{k} (A^{\epsilon}{}^{(n)}_{\bar{\omega}}|_{E_{k}^{\epsilon}(\bar{\omega})}) d\bar{\mathbb{P}}(\bar{\omega})$$

$$\leq \frac{1}{N} \int_{W_{\epsilon}} \Xi_{k} (A^{\epsilon}{}^{(N)}_{\bar{\omega}}|_{E_{k}^{\epsilon}(\bar{\omega})}) d\bar{\mathbb{P}}(\bar{\omega}) + \frac{1}{N} \int_{W_{\epsilon}^{c}} \Xi_{k} (A^{\epsilon}{}^{(N)}_{\bar{\omega}}) d\bar{\mathbb{P}}(\bar{\omega})$$

$$\leq (\mu_{1} + \dots + \mu_{k-1} + 2k\tau) \bar{\mathbb{P}}(W_{\epsilon}) + (\mu_{1} + \dots + \mu_{k}) \bar{\mathbb{P}}(W_{\epsilon}^{c}) + 2\tau$$

Hence,

$$\mu_k \overline{\mathbb{P}}(W_{\epsilon}) \le (\mu_1 + \ldots + \mu_k) - (\mu_1^{\epsilon} + \ldots + \mu_k^{\epsilon}) + 4k\tau.$$

In particular, using convergence of the Lyapunov exponents, for sufficiently small ϵ , we have $\overline{\mathbb{P}}(W_{\epsilon}) \leq 5k\tau/\mu_k < \eta$.