On the Effectiveness of k-Opt for Euclidean TSP

Vincent Cohen-Addad Claire Mathieu

Sorbonne Université and CNRS Université Paris-Diderot and CNRS

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

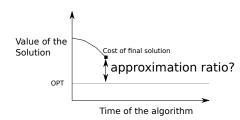
BIRS TSP workshop Sep.23-28

Local Search Algorithm

 $L \leftarrow$ Arbitrary feasible solution While $\exists L' \text{ s.t } L' \in$ Local Neighborhood (L) and cost(L') < cost(L) $L \leftarrow L'$ Output L

Why Local Search?

- Easy to implement
- Easy to run in parallel
- Competitive results in practice



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Practical Success of Local Search Heuristics for TSP

- Good competitor for the DIMACS TSP challenge of early 2000s according to the report by D. Johnson et al.. In particular for Euclidean inputs.
- Best known alg. (Arora and Mitchell approach) were considered too slow for the quality of their output.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Practical Success of Local Search Heuristics for TSP

- Good competitor for the DIMACS TSP challenge of early 2000s according to the report by D. Johnson et al.. In particular for Euclidean inputs.
- Best known alg. (Arora and Mitchell approach) were considered too slow for the quality of their output.

 2-OPT is O(1)-approx. for random inputs and converges in polynomial time [Englert, Roeglin, Voecking '07]

Local Search for Geometric Optimization

Previous Work: $(1+\varepsilon)$ -Approximation

[N. Mustafa & S. Ray '09]: Hitting Set Problem

[T. Chan & S. Har-Peled '09]: Independent Set for Pseudo-Disks

[E. Krohn & M. Gibson & G. Kanade & K. Varadarajan '14]: Terrain Guarding

[C.-A., Klein, Mathieu '16 Friggstad, Rezapour, Salavatipour'16] **Clustering problems**.

etc.

Neighborhood size depends on ε .

This Talk:

Traveling Salesman Problem

Our Results

Random inputs

Local search achieves a $(1+\varepsilon)$ approximation for random inputs in $\mathbb{R}^{\mathcal{O}(1)}.$

Worst-case

There exist inputs and initial solutions such that local search may output a solution of cost at least 20PT.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Algorithm $L \leftarrow \text{Arbitrary feasible solution}$ While $\exists L' \text{ s.t. } L \text{ and } L' \text{ differ by } \mathcal{O}(1/\varepsilon^2) \text{ edges and } \operatorname{cost}(L') < \operatorname{cost}(L)$ $L \leftarrow L'$ Output L

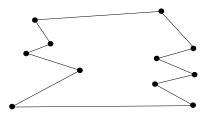


Figure: A step of the Local Search Algorithm

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Algorithm $L \leftarrow \text{Arbitrary feasible solution}$ While $\exists L' \text{ s.t. } L \text{ and } L' \text{ differ by } \mathcal{O}(1/\varepsilon^2) \text{ edges and } \operatorname{cost}(L') < \operatorname{cost}(L)$ $L \leftarrow L'$ Output L

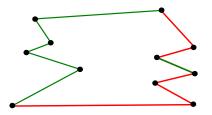


Figure: A step of the Local Search Algorithm

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Algorithm $L \leftarrow \text{Arbitrary feasible solution}$ While $\exists L' \text{ s.t. } L \text{ and } L' \text{ differ by } \mathcal{O}(1/\varepsilon^2) \text{ edges and } \operatorname{cost}(L') < \operatorname{cost}(L)$ $L \leftarrow L'$ Output L

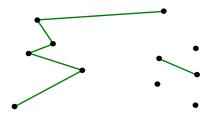


Figure: A step of the Local Search Algorithm

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Algorithm $L \leftarrow \text{Arbitrary feasible solution}$ While $\exists L' \text{ s.t. } L \text{ and } L' \text{ differ by } \mathcal{O}(1/\varepsilon^2) \text{ edges and } \text{cost}(L') < \text{cost}(L)$ $L \leftarrow L'$ Output L

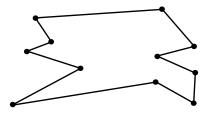


Figure: A step of the Local Search Algorithm

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Theorem for today

Local search w/ neighborhood size $O(1/\varepsilon^2)$ outputs a $(1+\varepsilon)$ approx for inputs consisting of points sampled uniformly in $[0, 1]^2$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Sketch.

Intuition for the analysis: Divide the plane into regions such that

- each region contains few points;
- sum of perimeters of regions is short.

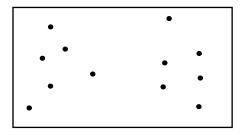
This breaks the plane into independent subproblems that are

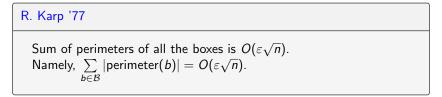
- $1. \ \mbox{solved optimally by the algorithm; and}$
- 2. whose solutions are cheap to combine.

Defining a Recursive Dissection

Assume points are in $[0, 1]^2$.

Split the box using horizontal or vertical lines and splitting into two equal size sub-boxes. Stop when the box has less than $1/\varepsilon^2$ points.

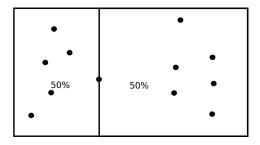


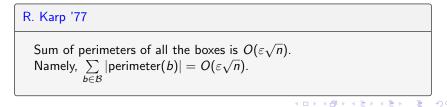


Defining a Recursive Dissection

Assume points are in $[0, 1]^2$.

Split the box using horizontal or vertical lines and splitting into two equal size sub-boxes. Stop when the box has less than $1/\varepsilon^2$ points.

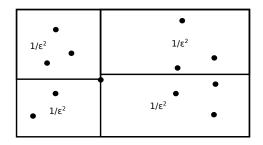


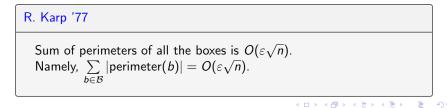


Defining a Recursive Dissection

Assume points are in $[0, 1]^2$.

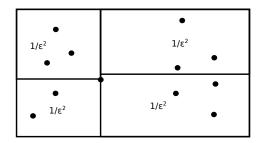
Split the box using horizontal or vertical lines and splitting into two equal size sub-boxes. Stop when the box has less than $1/\varepsilon^2$ points.





A Partition into Boxes

At the end: Each box contains at most $1/\varepsilon^2$ input points.

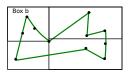


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Analysis

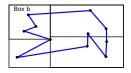
Each box has at most $1/\varepsilon^2$ points.

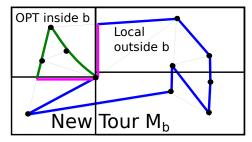
Optimal solution:

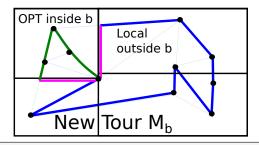


Mixed solution for box *b*:

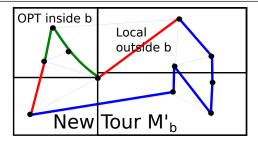
Locally optimal solution:







Can *glue* the optimal tour within the box to the local tour outside the box by adding twice boundary of the box.



 $\operatorname{Cost}(M'_b) \leq \operatorname{Cost}(M_b).$

 M_b' differs from L by $O(1/arepsilon^2)$ edges

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Outcome

By local optimality $Cost(L) \leq Cost(M'_b) \leq Cost(M_b)$

 $Cost(L) = \sum_{b'} Cost(L \text{ in } b')$ $Cost(M_b) = Cost(OPT \text{ in } b) + 2Perimeter \text{ of } b + \sum_{b' \neq b} Cost(L \text{ in } b')$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Local optimality implies:

 $Cost(L \text{ in } b) \leq Cost(OPT \text{ in } b) + 2Perimeter of b.$

Upper bound cost(L)

$$Cost(L) = \sum_{b} Cost(L \text{ inside } b) \stackrel{\text{optimality}}{\leq} \sum_{b} Cost(M_b \text{ inside } b) + 2|\text{perimet.}(b)|$$
$$= \sum_{b} Cost(OPT \text{ inside } b) + \sum_{b} 2|\text{perimeter}(b)|$$
$$= OPT + \sum_{b} 2|\text{perimeter}(b)| \stackrel{\text{Karp's}}{=} OPT + \mathcal{O}(\varepsilon\sqrt{n}).$$

Analysis

Theorem (Worst-Case)

Local Search produces a tour whose length is at most $(1 + \varepsilon)OPT + O(\varepsilon\sqrt{n}).$

Random Input Case

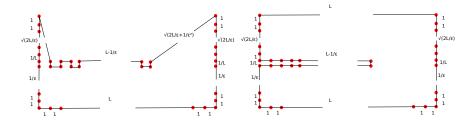
[J. Beardwood, J. Halton and J. Hammersley '59] OPT = $\Theta(\sqrt{n})$ with high probability.

Corollary (Random Input)

The Local Search Algorithm produces a tour whose length is at most $(1 + O(\varepsilon))OPT$.

Lower bound

In the worst-case, a local optimal could be a factor 2 away from a global optimal



(日)

æ

Our Results

Random inputs

Local search achieves a $(1 + \varepsilon)$ -approximation for random inputs in $R^{O(1)}$.

Worst-case

There exist inputs and initial solutions such that local search may output a solution of cost at least 20PT.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Extensions

More general distributions e.g.:[Englert, Roeglin, Voecking '07]? Can we prove that Lin–Kernighan is better than *k*-OPT? Can we find a fast implementation for *k*-OPT in the plane? Other ways to go beyond the worst-case: what if OPT is *clear*?

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Extensions

More general distributions e.g.:[Englert, Roeglin, Voecking '07]? Can we prove that Lin–Kernighan is better than *k*-OPT? Can we find a fast implementation for *k*-OPT in the plane? Other ways to go beyond the worst-case: what if OPT is *clear*?

Thanks for your attention!