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Local Search Algorithm

L← Arbitrary feasible solution
While ∃ L′ s.t L′ ∈ Local Neighborhood (L) and cost(L′) < cost(L)

L← L′

Output L

Why Local Search?

I Easy to implement

I Easy to run in parallel

I Competitive results in
practice

OPT

Time of the algorithm

Value of the 
Solution Cost of final solution 

approximation ratio?



Practical Success of Local Search Heuristics for TSP

I Good competitor for the DIMACS TSP challenge of early 2000s
according to the report by D. Johnson et al.. In particular for
Euclidean inputs.

I Best known alg. (Arora and Mitchell approach) were considered too
slow for the quality of their output.

I 2-OPT is O(1)-approx. for random inputs and converges in
polynomial time [Englert, Roeglin, Voecking ’07]
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Local Search for Geometric Optimization

Previous Work: (1+ε)-Approximation

[N. Mustafa & S. Ray ’09]: Hitting Set Problem

[T. Chan & S. Har-Peled ’09]: Independent Set for Pseudo-Disks

[E. Krohn & M. Gibson & G. Kanade & K. Varadarajan ’14]:
Terrain Guarding

[C.-A., Klein, Mathieu ’16 Friggstad, Rezapour, Salavatipour’16]
Clustering problems.

etc.

Neighborhood size depends on ε.

This Talk:

I Traveling Salesman Problem



Our Results

Random inputs

Local search achieves a (1 + ε) approximation for random inputs in
RO(1).

Worst-case

There exist inputs and initial solutions such that local search may
output a solution of cost at least 2OPT.



Local Search for TSP

Algorithm
L← Arbitrary feasible solution
While ∃ L′ s.t. L and L′ differ by O(1/ε2) edges and cost(L′) < cost(L)

L← L′

Output L

Figure: A step of the Local Search Algorithm
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Theorem for today

Local search w/ neighborhood size O(1/ε2) outputs a (1 +ε) approx
for inputs consisting of points sampled uniformly in [0, 1]2.

Sketch.
Intuition for the analysis: Divide the plane into regions such that

I each region contains few points;

I sum of perimeters of regions is short.

This breaks the plane into independent subproblems that are

1. solved optimally by the algorithm; and

2. whose solutions are cheap to combine.



Defining a Recursive Dissection

Assume points are in [0, 1]2.

Split the box using horizontal or vertical lines and splitting into two equal
size sub-boxes. Stop when the box has less than 1/ε2 points.

R. Karp ’77

Sum of perimeters of all the boxes is O(ε
√
n).

Namely,
∑
b∈B
|perimeter(b)| = O(ε

√
n).



Defining a Recursive Dissection
Assume points are in [0, 1]2.

Split the box using horizontal or vertical lines and splitting into two equal
size sub-boxes. Stop when the box has less than 1/ε2 points.

50% 50%

R. Karp ’77

Sum of perimeters of all the boxes is O(ε
√
n).

Namely,
∑
b∈B
|perimeter(b)| = O(ε

√
n).



Defining a Recursive Dissection
Assume points are in [0, 1]2.

Split the box using horizontal or vertical lines and splitting into two equal
size sub-boxes. Stop when the box has less than 1/ε2 points.

1/ε2 1/ε2

1/ε2 1/ε2

R. Karp ’77

Sum of perimeters of all the boxes is O(ε
√
n).

Namely,
∑
b∈B
|perimeter(b)| = O(ε

√
n).



A Partition into Boxes

At the end: Each box contains at most 1/ε2 input points.

1/ε2 1/ε2

1/ε2 1/ε2



Analysis

Each box has at most 1/ε2 points.

Optimal solution:

Box b

Locally optimal solution:

Box b

Mixed solution for box b:

OPT inside b
Local 
outside b

New Tour Mb



OPT inside b
Local 
outside b

New Tour Mb

Can glue the optimal tour within the box to the local tour outside
the box by adding twice boundary of the box.

OPT inside b

New Tour M'b

Local 
outside b

Cost(M ′
b) ≤ Cost(Mb).

M ′
b differs from L by

O(1/ε2) edges



Outcome

By local optimality Cost(L) ≤ Cost(M ′
b) ≤ Cost(Mb)

Cost(L) =
∑

b′ Cost(L in b′)

Cost(Mb) = Cost(OPT in b) + 2Perimeter of b +
∑

b′ 6=b Cost(L in b′)

Local optimality implies:

Cost(L in b) ≤ Cost(OPT in b) + 2Perimeter of b.



Upper bound cost(L)

Cost(L) =
∑
b

Cost(L inside b)

local
optimality

≤
∑
b

Cost(Mb inside b) + 2|perimet.(b)|

=
∑
b

Cost(OPT inside b) +
∑
b

2|perimeter(b)|

= OPT +
∑
b

2|perimeter(b)|
Karp’s
Lemma= OPT +O(ε

√
n).



Analysis

Theorem (Worst-Case)
Local Search produces a tour whose length is at most
(1 + ε)OPT +O(ε

√
n).

Random Input Case
[J. Beardwood, J. Halton and J. Hammersley ’59]
OPT = Θ(

√
n) with high probability.

Corollary (Random Input)
The Local Search Algorithm produces a tour whose length is at most
(1 +O(ε))OPT.



Lower bound

In the worst-case, a local optimal could be a factor 2 away from a global
optimal
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Our Results

Random inputs

Local search achieves a (1 + ε)-approximation for random inputs in
RO(1).

Worst-case

There exist inputs and initial solutions such that local search may
output a solution of cost at least 2OPT.



Extensions

More general distributions e.g.:[Englert, Roeglin, Voecking ’07]?

Can we prove that Lin–Kernighan is better than k-OPT?

Can we find a fast implementation for k-OPT in the plane?

Other ways to go beyond the worst-case: what if OPT is clear?

Thanks for your attention!
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