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Overview

• Brief introduction to motor-based transport. 

• Stochastic models and renewal-reward framework. 

• Empirical asymptotic velocity. 

• Current-future work.



Kinesin
• What does the molecular motor Kinesin do? 

• Stepping is the interaction of diffusion and kinetics. 

• What type of data can be obtained from what type 
of experiment? 

• What are some of the quantities of interest and 
basic models? 



Motor-based Neuronal Transport

Pasinelli and Brown Nature Reviews Neuroscience 7, 710–723 (September 2006) | doi:
10.1038/nrn1971



A Kolomeisky, M Fisher, Ann Rev Phys Chem, 2007
R Vale, Cell, 2003

Kinesin, Myosin, and Dynein



Kinesin

using a model that incorporates a substantial amount of biological
detail but a minimal number of assumptions. The motor domain is
approximated as a sphere with a diameter of 6 nm [26], and its
diffusion is modeled in one dimension along a lattice of binding
sites spaced 8.2 nm apart (the spacing of tubulin dimers along a
microtubule protofilament). Thermally-driven diffusion of the free
kinesin head is constrained by the flexible neck linker domain, and
binding to the microtubule is allowed only when the head is within
61 nm of the next binding site on the microtubule (Figure 2A).
ATP binding to the bound motor head (State 3 in Figure 1) is
thought to promote docking of the neck linker domain [5,6],
which can be intuitively described as a diffusion and stabilization
rather than the rigid powerstroke of the myosin lever arm. This
neck linker docking is incorporated into the model by switching
the tethered diffusion from a center point position of zero and a

tether length equal to both neck linker domains (State 2 in Figure 1)
to a center point position of 4 nm toward the microtubule plus-end
and a tether consisting of only one neck linker (Steps 3 and 4 in
Figure 1). Completion of a step requires diffusion of the tethered
head to the next binding site followed by attachment and ADP
release (State 1). As described below, this straightforward model
challenges the assumption that diffusion and binding is rapid and
unconstrained.

Increasing Stiffness Model
Polymers such as DNA and unfolded polypeptides are often

described as ‘‘entropic springs’’ because stretching them, which
reduces their number of possible conformational states, requires
energy input to compensate for the loss of entropy [27]. From the
WLC formalism, the force, fWLC(x), required to extend a

Figure 1. Kinesin Chemomechanical Pathway. Working model for the Kinesin-1 chemomechanical pathway based on previous experimental
work. Nucleotide abbreviations are as follows: T =ATP, D=ADP, DP=ADP.Pi, w=No nucleotide. For clarity, ADP bound to tethered head in states 2–4
is not shown. In State 2 the tethered head diffuses, tethered by both neck linker domain, while in states 3 and 4 the neck linker domain of the bound
head is docked, leading to a displacement of the tethered head towards the next binding site. State 5 represents motor detachment. Note that the
number of steps per interaction (motor processivity) can be approximated by kattach/kunbind.
doi:10.1371/journal.pcbi.1000980.g001

Kinesin Tethered Diffusion

PLoS Computational Biology | www.ploscompbiol.org 3 November 2010 | Volume 6 | Issue 11 | e1000980



Single Motor Experiments

Block Lab:http://www.stanford.edu/group/blocklab/kinesin/kinesin.html

Svoboda et al, Nature, 1993

M Schnitzer et al, Nature Cell Biology, 2000



Single Motor Experiments
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Important Quantities of Interest.

• Asymptotic Velocity

Va = lim
t�⇥

E [X (t)]

t
or Va = lim

t�⇥
X (t)

t

• E�ective Di�usion

De� = lim
t�⇥

Var [X (t)]

2t

or the quantity which ensures

X (t)� Vat⇥
2De� t

converges to a standard normal.

• Randomness Parameter

R =
2De�

LVa

• Processivity
� the number of random steps taken before detachment.
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Asymptotic Velocity


Effective Diffusion


Randomness Parameter

 (Fano Factor)


Processivity: expected 
number of steps before 
detachment.


Quantities of Interest
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Figure 1: A proposed model for the chemical reactions of a kinesin step. Note that the
rate kon is linearly dependent on the concentration of ATP.

that incorporate both the chemical cycle as well as tethered diffusion of the
free head during kinesin stepping.

This combination of chemical reactions and diffusion determines both the
duration and direction of a step and also accounts for the dissociation of the
motor from the microtubule. We will refer to the duration, or dwell time,
of the ith step as τi and the direction and direction of the ith step as Zi.
In this paper, we will present computational techniques to determine the
asymptotic behavior of X(t) = L

∑N(t)
i=1 Zi, the approximate location of the

motor at time t where N(t) is the number of cycles completed by time t and
L is the size of the step. We will define a mechanochemical cycle in more
detail later, but essentially a cycle can be viewed as the time between having
both heads bound until both heads are bound again.

While there have been a number of proposed models that include the
combination of chemical and diffusive elements, these tend to rely on the
spatially periodic structure of the microtubule in order to create a similarly
spatial periodic model for the motor. (See reviews of molecular motor model-
ing Julicher et al. (1997), Kolomeisky and Fisher (2007), and Mogilner et al.

3

Periodic Discrete Space Markov Process




0 10 20 30 40 50 60

-6
0

-5
0

-4
0

-3
0

-2
0

-1
0

0

x

3 
* 

co
s(

x)
 - 

x

Multiple
Scales in
Molecular

Motor Models.

John Fricks

Overview

Nanoscale
Kinesin.
Important
Quantities of
Interest.
Common
Models.
Our Model(s).
Biological
Results.

Mesoscale
Multiple
Motors
Common
Models.
A Simple Model.
Biological
Results.

The Models.

Stochastic Di�erential Equation Model

• Brownian particle in a periodic potential.

• dX (t) = a(X (t))dt + �dB(t)

• Fails to account for two individual heads.

• Fails to coordinate physical movement and chemical
kinetics.

Diffusion in a Tilted Periodic Potential
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Heiner Linke (http://www.phys.unsw.edu.au/STAFF/RESEARCH/linke.html)
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The Models.

Flashing Ratchet

• dX (t) = aK(t)(X (t))dt + �dB(t)

• Accounts for both chemical and physical states.

• How can these be coordinated?

Flashing Ratchet




Role of diffusion in the hydrolysis cycle

• The kinetics of the hydrolysis cycle 
is important, but what about the 
movement through space of the 
free head? 

• How does an applied force affect 
the stepping speed?

Figure 1: A proposed model for the chemical reactions of a kinesin step. Note that the
rate kon is linearly dependent on the concentration of ATP.
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ing Julicher et al. (1997), Kolomeisky and Fisher (2007), and Mogilner et al.

3



Modeling Variable-Step Kinesins 9

3.2 Variable-length Stepping

Our within-step model is a local model in the sense that we focus on the dynamics
within a single step, the events that occur between two successive bindings to the
microtubule. In the uniform-length stepping scenario, the neck linkers are long
enough to permit the free head to rebind at only two locations, the binding sites
on either side of the bound head. Thus, the separation between the heads at the
end of a step—and consequently the initial separation for the next cycle—is always
one binding site. Since the initial condition is the same for each step, the within-
step dynamics are identical and require no information from the previous step. So,
the steps are independent. An illustration of uniform-length stepping is shown in
Figure 2, where Z is the step size. We define Z to be the binding site location
occupied by the front head at the end of a step minus the binding site location
occupied by the front head at the beginning of the step, where ‘front’ means closest
to the plus end of the microtubule.

Fig. 2 An illustration of uniform-length stepping.

The initial condition for a motor with extended neck linkers, on the other hand,
may vary depending on the previous step. For example, a motor with neck linkers
twice as long as those of a wild-type motor can reach four binding sites, two on
either side of the bound head, which implies that the ending separation between
heads, call it S, is either one or two binding sites. Hence, the initial separation,
S�, for the next step will also be one or two sites. The stepping of such a motor is
illustrated in Figure 3. The first panel of the figure shows the possible outcomes,
(Z, S), for S� = 1, and the second panel shows possibilities given S� = 2. In the
sequel, we will discuss in some detail the transition from the i � 1th step of the
chain to the ith step. To simplify notation we will use a superscript ⇥ to indicate
the i� 1th cycle and no superscript to indicate the ith cycle.

Since variable-length steps are not identical, the ending separation for a given
step becomes the initial separation for the next step, which implies that adjacent
steps are not independent. In the previous uniform-step framework, we needed to
consider only the moments of step duration and step direction. Now we must also
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Renewal-Reward Processes.

• Zi , i = 1, 2, ... with mean µz and variance ⇥2
z .

X (t) =

N(t)⇥

i=1

Zi

where N(t) is a renewal process.
• N(t) = max{n :

�n
i=1 ⇤i ⇥ t}

• Time between events are independent and identically
distributed, ⇤i , i = 1, 2, .... (⇤0 = 0).

• The ⇤i have finite mean (µ⌧ ) and variance (⇥2
⌧ ).
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PROCESSIVE MOTOR PROTEINS WITH RANDOM DETACHMENT 3

here or in the following section that this formalism encompasses
a wide variety of commonly used models.

A B

space

time

B A A B B A A B B A

2 32110000 -1-1 1

T (N)

S(N)
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�1
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Fig 2. A diagrammatic representation of kinesin processivity. The motor depicted took five
steps (N = 5) before dissociating from the microtubule at time T (N) =

�N=5
i=1 �i. Steps

1, 3, 4, and 5 were forward steps (Z1 = Z3 = Z4 = Z5 = 1), and step 2 was backward
(Z2 = �1). Hence the displacement at dissociation was S(N) = 3. The figure below each
dwell shows the position of the motor’s two heads at the end of the dwell. The location of
the front head at time 0 is taken to be 0.

Initially we will show that assuming a non-random number of steps im-
plies the asymptotic normality of the quantities in question, which is not
surprising. Then we will show that assuming a geometric number of steps
implies heavy tailed limiting distributions.

2. Randomly Stopped Motors.

2.1. Preliminaries. In this section we present several lemmas—some of
which are interesting in their own right—that are required to prove the
main result in the next section. Throughout, we use n to represent a non-
random sample size and m to represent the mean random sample size, i.e.,
we assume that N is a geometric random variable with success probability
1/m, which is equivalent to assuming that the probability of detachment
from the microtubule is 1/m.

Renewal-Reward 
Framework

Note: work of Arjun Krishnan (Utah) 
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Define

S(t) =

btcX

i=0

Zi T (t) =

btcX

i=0

⌧i

n�1/2

✓
S(nt)� µZnt
T (nt)� µ⌧nt

◆
)

✓
B1(t)
B2(t)

◆

where the covariance matrix is

⌃ =

✓
�2

Z �Z ,⌧

�Z ,⌧ �2
⌧

◆

Functional Central Limit 
Theorem
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FCLT for Renewal-Reward.

• Note that X (t) = S(T�1(t)).
Now, if we define

Xn(t) = n�1/2

✓
S(T�1(nt))� µZ

µ⌧
nt

◆
,

and we apply a continuous mapping theorem.

Xn(t) ) B1

✓
t

µ⌧

◆
� µZ

µ⌧
B2

✓
t

µ⌧

◆
.

• This is equivalent in law to

Xn(t) = n�1/2
✓
X (nt) �

µz

µ⌧
nt

◆
)

vuut �2

Z

µ⌧
+

µ2
z�

2
⌧

µ3
⌧

� 2
µZ�Z,⌧

µ2
⌧

B(t).

•
X (nt) ⇡

µz

µ⌧
nt + n1/2

vuut �2

Z

µ⌧
+

µ2
z�

2
⌧

µ3
⌧

� 2
µZ�Z,⌧

µ2
⌧

B(t).

Functional Central Limit 
Theorem
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In addition to these properties of the expectation of the process, one may verify a
strong law of large numbers,

V⇤ = lim
t⇥⇤

X(t)
t

= lim
t⇥⇤

L
⇤N(t)

i=1 Zi

t
= L

µZ

µ�
, (8)

a useful fact for data analysis. This implies that the empirical velocity for the path
of one motor will converge to the asymptotic velocity.

A second quantity of interest is e�ective di�usion (9), which can be defined as

D = lim
t⇥⇤

VX(t)
2t

. (9)

In (14), we were able to apply a functional central limit theorem from Whitt (21),
which relies on a central limit theorem for the partial sums

⇤
Zi and

⇤
⇥i. Using

a scaling parameter n,

n�1/2 (X(nt)� V⇤nt) ⇤
⇧
2DB(t)

as n ⇥ ⌅ where B(t) is a standard Brownian motion and

D =
L2

2

�
µ2
Z�

2
�

µ3
�

+
�2
Z

µ�
� 2

µZ�Z,�

µ2
�

⇥
= (V 2

⇤�2
� + L2�2

Z � 2LV⇤�Z,� )/(2µ� ). (10)

Note that this also implies a more traditional central limit theorem for the quantity

2Dt�1/2 (X(t)� V⇤t) ,

which converges to a standard normal random variable as time increases.
We also consider processivity through the expected run length of a motor–how

far a motor travels on average before dissociation. This quantity is commonly used
in experimental settings (22; 23). It is natural to model the number of steps prior
to dissociation as a random variable, N . The distance travelled before detachment
is then given by

R = L
N⌅

i=1

Zi. (11)

Using this definition, the mean run length is

ER = LENEZi = L
µZ

r
, (12)

where r is the probability of becoming detached at any time step i. Note that the
processivity is defined in a slightly di�erent framework as the asymptotic quanti-
ties. However, both of these quantities, asymptotic and detachment-based, appear
in the experimental literature and can be though of as reasonable approximations
if the motors take many steps before detachment.
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Standard Quantities



• In the modeling community, processivity (distance/time 
traveled) has been under-emphasized. 

• One type of data obtainable from each type of experiment is 
distance/time till detachment. 

• How can we connect randomly-detached motor data to our 
models?



Asymptotic distribution of empirical velocity 

Pearson VII distribution 

Submitted to the Annals of Applied Statistics

A RANDOM WALK ON THE WILD SIDE: PROCESSIVE
MOTOR PROTEINS WITH RANDOM DETACHMENT⇤

By John Fricks and John Hughes

We show that the empirical velocity of processive motor proteins
has a limiting Pearson type VII distribution with infinite variance.
We develop a one-step maximum likelihood estimator for this Pearson
type VII distribution. In a simulation study, we pit our one-step MLE
against Welch’s t test and show that incorrectly assuming normality
can leave one unable to resolve small di�erences in the velocities of
two motors.

1. Introduction. We should probably say very early what the empiri-
cal velocity is

⇥V =

�N
i=1 Zi�N
i=1 �i

Processive motor proteins are ATP-powered biological machines that trans-
port materials within eukaryotic cells. The existence of eukaryotic organisms
quite literally depends on these tiny motors because the passive process of
molecular di�usion cannot transport large and/or massive payloads in a
timely fashion; larger cargos are likely to be impeded by collisions with
other objects, and di�usion cannot generate enough force to move massive
objects quickly. A motor protein overcomes these di⇤culties by hydrolyzing
ATP in order to tow some cargo—an organelle or vesicle, say—rapidly and
in a highly directed path along a suitable substrate.

An important type of motor protein is the kinesin, of which over 40 va-
rieties have been identified in humans alone (Miki, Setou, Kaneshiro, and
Hirokawa, 2001). A conventional kinesin, shown in Figure 1, comprises two
heads, a neck linker, a coiled-coil stalk, and a cargo-binding tail (Hirokawa,
Pfister, Yorifuji, Wagner, Brady, and Bloom, 1989; Yang, Laymon, and Gold-
stein, 1989). The motor “steps” along a microtubule, the heads serving as
“feet,” the neck linker serving as “legs.” Eventually the motor dissociates
from the microtubule after having taken some random number—usually in

�This work was supported by the NSF/NIH joint initiative in mathematical biology
(DMS 0714939).

Keywords and phrases: infinite variance, maximum likelihood, motor protein, nanotech-
nology, Pearson type VII distribution, renewal theory, random sums, stopped Brownian
motion
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2.3. The Pearson Type VII Distribution. In the late 19th and early 20th
centuries, Karl Pearson developed what is now called the Pearson family
of continuous probability distributions. It was known at the time that any
distribution can easily be extended to form a location-scale family. But it
was not known how to devise distributions with freely adjustable skewness
and kurtosis, and this was Pearson’s aim, for it had become clear that known
distributions were inadequate for fitting skewed data.

In the first of three papers, Pearson (1895) defined four types of distribu-
tion (types I–IV) in addition to the normal distribution (type V). Each type
was distinguished from the others by its support and its skewness. Pearson’s
type I distribution is now known as the beta distribution, his type III is
now known as the gamma distribution, and his type IV contains Student’s
t distribution as a special case.

In a second paper, Pearson (1901) redefined the type V distribution (now
known as the inverse gamma distribution) and introduced the type VI (now
known as the beta prime distribution). And in a final paper, Pearson (1916)
made further refinements, introducing types VII–XII.

The Pearson type VII distribution is a special case of the type IV distri-
bution, which has density

f(x) =

����
�(↵+ ⌫

2 i)
�(↵)

����
2

��
�
↵ � 1

2 ,
1
2

�
 

1 +

✓
x � µ

�

◆2
!�↵

exp

✓
�⌫ arctan

x � µ

�

◆
,

where µ is a location parameter, � is a scale parameter, ↵ is a shape param-
eter, ⌫ is a skewness parameter, and �(·) and �(·) denote the gamma and
beta functions, respectively. Setting ⌫ = 0 gives the type VII density:

f(x) =
1

��
�
↵ � 1

2 ,
1
2

�
 

1 +

✓
x � µ

�

◆2
!�↵

.

Student’s t distribution, and hence the Cauchy, are special cases, as is the
limiting distribution mentioned in the previous section, which has density

f(x) =
1

2�

 
1 +

✓
x � µ

�

◆2
!�3/2

.

This distribution has mean µ but no higher moments. We will henceforth
use P(µ, �) to denote a random variable of this type, i.e., a Pearson type
VII random variable with free parameters µ and �, and shape parameter
equal to 3/2.
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Also, see; 
Vu, Huong T., et al. "Discrete step sizes of molecular motors lead to bimodal non-Gaussian velocity distributions under force." arXiv preprint arXiv:1604.00226 (2016).
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2.4. Analysis of Experimental Data. Figure 3 shows our exploratory anal-
ysis of experimental data (with n = 236) collected at Penn State’s Hancock
Lab. The pdfs and cdfs shown in the figure correspond to fitted Pearson and
normal distributions, i.e., the P(µ̂n, ⇥̂n) and N (X̄n,

�
(Xi � X̄n)2/(n � 1))

distributions, where µ̂n and ⇥̂n denote the estimators of µ and ⇥ developed
in the next section. In both plots, the data appear to be in closer agreement
with the fitted Pearson type VII distribution than with the fitted normal
distribution.
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Fig 3. The first panel shows a histogram of the experimental data along with two densities.
The solid curve is the P density with µ = µ̂n and ⇥ = ⇥̂n. The dotted curve is the normal
density with µ = X̄n and ⇥ =

pP
(Xi � X̄n)2/(n� 1). The second panel shows the right

tails of the empirical, P, and normal cdfs, where the latter two cdfs are shown solid and
dotted, respectively.

We support this conclusion by testing the hypothesis

H0 : Xcame from the fitted normal distribution,

where X = (X1 = S1/T1, . . . , Xn = Sn/Tn)�. We tested the hypothesis
using a Monte Carlo Lilliefors-type test (Lilliefors, 1967), i.e., by parametric
bootstrapping a Kolmogorov-Smirnov statistic (Shao, 2003, pp. 446-449) for
the fitted normal distribution.
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Does the data match the 
Pearson VII?

Using K-S test, reject the null hypothesis of a normal distribution with p-value 0.0468. 
Fail to reject the null hypothesis of a Pearson-VII with p-value 0.618.  
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Fig 5. The power to resolve a di↵erence in velocities when the data are P distributed, for

sample sizes 50, 100, and 200, respectively. The solid curve shows the power when one

correctly assumes P-distributed data. The dotted curve shows the power if one incorrectly

assumes that the data are normal, i.e., if one applies Welch’s t test.

14

3.2. The One-Sample Location Problem. The plot in Figure 4 shows how
the widths of confidence intervals for velocity di↵er depending on the as-
sumption of P data or the assumption of normality. The intervals shown are
for 1,000 samples from the P distribution with µ = 469 and � = 87.9 (the
estimates for the dataset analyzed in Section 2.4). Each sample had size 100.
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Fig 4.

Although t-based inference o↵ers the desired coverage and excellent power
for this setup, we see that the t-based intervals tend to be much wider
than the Pearson intervals—just over twice as wide, on average, for this
simulation.

3.3. The Two-Sample Location Problem. A number of groups have en-
gineered kinesins with extended neck linkers and measured the resulting
change in the transport characteristics of the motors. For example, Muthukr-
ishnan, Zhang, Shastry, and Hancock (2009) and Shastry and Hancock
(2010) found that extending the Kinesin-1 neck linker by just a few amino

MLE for Pearson VII



An alternative approach
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converges to multivariate normal with zero mean and covariance
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Now, we apply the delta method
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converges in distribution to a zero-mean normal distribution with variance 
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