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Genealogies
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L(θ) = P (Φ, H|θ) .

=
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G
P (Φ, H|G, θ) P (G|θ) d G.
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Diploid, Two-Sex, Wright-Fisher Model

Population size 2N ; N males ; N females ; 4N genes.

Convergence to the n-coalescent (Möhle [1998])

T1/4N ∼ Exp(3), T2/4N ∼ Exp(1); N large.
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Population Pedigree

Population Pedigree (Wakeley et al. [2012])

The set of all family relationships among members of the population for every
generation.

"There is a fundamental connection between coalescent trees and pedigrees : a
pedigree can be thought of as providing a scaffold on which coalescent trees are
constructed." Speed and Balding [2015]
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SNP Data

S1 S2 S3 S4 S5 S6 S7 S8 S9

ε1 ε2 ε3

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

k-locus Meiosis Indicator
Si ∈ {0, 1}k .

e.g. No interference (Allen and Darwiche [2008]) :

P(Si = 011) = P(Si = 100) = 0.5p12(1 − p23).

Evidence : ε (Koller and Friedman [2009])

An instantiation of a subset of random variables.

P(S1, S2, . . . , Sn|ε) ̸=
n∏

i=1
P(Si |ε).
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Perspectives

Pedigree Censorship
Big Pedigree ⇔ High Complexity.

Deviations from the coalescent decreases the more distant the ancestry.
(Wakeley et al. [2012])

Recombination Model

Independently segregating loci
Non-interfering recombinations
Positive interference

Founder Prior

Uniform prior
Linkage equilibrium
Linkage disequilibrium
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