Construction of coalescent trees on partially fixed pedigrees

Renaud Alie, Sorana Froda \& Fabrice Larribe

Université du Québec à Montréal
7 August 2018

Genealogies

- Φ : Phenotypes

A : Affected, \mathbf{N} : Not Affected
■ \mathcal{H} : Haplotypes
\square : Mutant, \square : Non-Mutant

- θ : Unknown parameter

$$
\mathcal{L}(\theta)=P(\Phi, \mathcal{H} \mid \theta)
$$

Genealogies

- Φ : Phenotypes

A: Affected, \mathbf{N} : Not Affected
■ H: Haplotypes
\square : Mutant, \square : Non-Mutant

- θ : Unknown parameter
- \mathcal{G} : Genealogy

$$
\begin{aligned}
\mathcal{L}(\theta) & =P(\Phi, \mathcal{H} \mid \theta) \\
& =\int_{\mathcal{G}} P(\Phi, \mathcal{H} \mid \mathcal{G}, \theta) P(\mathcal{G} \mid \theta) \mathrm{d} \mathcal{G}
\end{aligned}
$$

Diploid, Two-Sex, Wright-Fisher Model

Population size $2 N ; \quad N$ males $O O ; \quad N$ females $O O ; 4 N$ genes.

000000000000000000000000

Diploid, Two-Sex, Wright-Fisher Model

Population size $2 N ; \quad N$ males $O O ; \quad N$ females $O O ; 4 N$ genes.

$\infty \infty \infty$ $\infty \infty \infty$

Diploid, Two-Sex, Wright-Fisher Model

Population size $2 N ; \quad N$ males $00 ; \quad N$ females $00 ; 4 N$ genes.

Diploid, Two-Sex, Wright-Fisher Model

Population size $2 N ; \quad N$ males $O O ; \quad N$ females $O O ; 4 N$ genes.

Diploid, Two-Sex, Wright-Fisher Model

Population size $2 N ; \quad N$ males $O O ; \quad N$ females $O O ; 4 N$ genes.

Diploid, Two-Sex, Wright-Fisher Model

Population size $2 N ; \quad N$ males $00 ; \quad N$ females $00 ; 4 N$ genes.

Diploid, Two-Sex, Wright-Fisher Model

Population size $2 N ; \quad N$ males $00 ; \quad N$ females $00 ; 4 N$ genes.

Diploid, Two-Sex, Wright-Fisher Model

Population size $2 N ; \quad N$ males $O O ; \quad N$ females $O O ; 4 N$ genes.

Diploid, Two-Sex, Wright-Fisher Model

Population size $2 N ; \quad N$ males $O O ; \quad N$ females $O O ; 4 N$ genes.

Diploid, Two-Sex, Wright-Fisher Model

Population size $2 N ; \quad N$ males $O O$; N females $O O ; 4 N$ genes.

Diploid, Two-Sex, Wright-Fisher Model

Population size $2 N ; \quad N$ males $O O ; \quad N$ females $O O ; 4 N$ genes.

Diploid, Two-Sex, Wright-Fisher Model

Population size $2 N ; \quad N$ males $O O ; \quad N$ females $O O ; 4 N$ genes.

Diploid, Two-Sex, Wright-Fisher Model

Population size $2 N ; \quad N$ males $O O ; \quad N$ females $O O ; 4 N$ genes.

Diploid, Two-Sex, Wright-Fisher Model

Population size $2 N ; \quad N$ males OO; N females OO; $4 N$ genes.
Convergence to the n -coalescent (Möhle [1998])

$$
T_{1} / 4 N \sim \mathcal{E} \times p(3), T_{2} / 4 N \sim \mathcal{E} \times p(1) ; \quad N \text { large }
$$

Population Pedigree

Population Pedigree

Population Pedigree (Wakeley et al. [2012])
The set of all family relationships among members of the population for every generation.

Population Pedigree

Population Pedigree (Wakeley et al. [2012])
The set of all family relationships among members of the population for every generation.

Population Pedigree

Population Pedigree (Wakeley et al. [2012])
The set of all family relationships among members of the population for every generation.

Population Pedigree

Population Pedigree (Wakeley et al. [2012])
The set of all family relationships among members of the population for every generation.

Population Pedigree

Population Pedigree (Wakeley et al. [2012])
The set of all family relationships among members of the population for every generation.

Population Pedigree

Population Pedigree (Wakeley et al. [2012])
The set of all family relationships among members of the population for every generation.

Population Pedigree

Population Pedigree (Wakeley et al. [2012])
The set of all family relationships among members of the population for every generation.
"There is a fundamental connection between coalescent trees and pedigrees: a pedigree can be thought of as providing a scaffold on which coalescent trees are constructed." Speed and Balding [2015]

Population Pedigree

Population Pedigree (Wakeley et al. [2012])
The set of all family relationships among members of the population for every generation.
"There is a fundamental connection between coalescent trees and pedigrees : a pedigree can be thought of as providing a scaffold on which coalescent trees are constructed." Speed and Balding [2015]

Population Pedigree

Population Pedigree (Wakeley et al. [2012])
The set of all family relationships among members of the population for every generation.
"There is a fundamental connection between coalescent trees and pedigrees: a pedigree can be thought of as providing a scaffold on which coalescent trees are constructed." Speed and Balding [2015]

Population Pedigree

Population Pedigree (Wakeley et al. [2012])
The set of all family relationships among members of the population for every generation.
"There is a fundamental connection between coalescent trees and pedigrees : a pedigree can be thought of as providing a scaffold on which coalescent trees are constructed." Speed and Balding [2015]

Population Pedigree

Population Pedigree (Wakeley et al. [2012])
The set of all family relationships among members of the population for every generation.
"There is a fundamental connection between coalescent trees and pedigrees: a pedigree can be thought of as providing a scaffold on which coalescent trees are constructed." Speed and Balding [2015]

Population Pedigree

Population Pedigree (Wakeley et al. [2012])
The set of all family relationships among members of the population for every generation.
"There is a fundamental connection between coalescent trees and pedigrees: a pedigree can be thought of as providing a scaffold on which coalescent trees are constructed." Speed and Balding [2015]

Pedigree Genealogy

Pedigree Genealogy

Meiosis Indicator (Thompson [2000])

$$
S_{i} \sim \text { i.i.d. Bernoulli (0.5) . Mendel's } 1^{\text {st }} \text { Law }
$$

Pedigree Genealogy

Meiosis Indicator (Thompson [2000])

$$
S_{i} \sim i . i . d . \text { Bernoulli }(0.5) . \quad \text { Mendel's } 1^{\text {st }} \text { Law }
$$

Pedigree Genealogy

Meiosis Indicator (Thompson [2000])

$$
S_{i} \sim \text { i.i.d. Bernoulli (0.5) . Mendel's } 1^{\text {st }} \text { Law }
$$

Pedigree Genealogy

Meiosis Indicator (Thompson [2000])

$$
S_{i} \sim \text { i.i.d. Bernoulli (0.5) . Mendel's } 1^{\text {st }} \text { Law }
$$

IBD Partition

Partition of genes into subsets that are IBD

Pedigree Genealogy

Meiosis Indicator (Thompson [2000])

$$
S_{i} \sim \text { i.i.d. Bernoulli (0.5) . Mendel's } 1^{\text {st }} \text { Law }
$$

IBD Partition

Partition of genes into subsets that are IBD

Pedigree Genealogy

Meiosis Indicator (Thompson [2000])

$$
S_{i} \sim \text { i.i.d. Bernoulli (0.5) . Mendel's } 1^{\text {st }} \text { Law }
$$

IBD Partition

Partition of genes into subsets that are IBD

Pedigree Genealogy

Meiosis Indicator (Thompson [2000])

$$
S_{i} \sim \text { i.i.d. Bernoulli (0.5) . Mendel's } 1^{\text {st }} \text { Law }
$$

IBD Partition

Partition of genes into subsets that are IBD

Pedigree Genealogy

Meiosis Indicator (Thompson [2000])

$$
S_{i} \sim \text { i.i.d. Bernoulli (0.5) . Mendel's } 1^{\text {st }} \text { Law }
$$

IBD Partition

Partition of genes into subsets that are IBD

Pedigree Genealogy

Meiosis Indicator (Thompson [2000])

$$
S_{i} \sim \text { i.i.d. Bernoulli (0.5) . Mendel's } 1^{\text {st }} \text { Law }
$$

IBD Partition

Partition of genes into subsets that are IBD

Pedigree Genealogy

Meiosis Indicator (Thompson [2000])

$$
S_{i} \sim \text { i.i.d. Bernoulli (0.5) . Mendel's } 1^{\text {st }} \text { Law }
$$

IBD Partition

Partition of genes into subsets that are IBD

Pedigree Genealogy

$$
\begin{array}{llllllllllll}
0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1
\end{array}
$$

Meiosis Indicator (Thompson [2000])

$$
S_{i} \sim \text { i.i.d. Bernoulli (0.5) . Mendel's } 1^{\text {st }} \text { Law }
$$

IBD Partition

Partition of genes into subsets that are IBD

Pedigree Genealogy

\[

\]

Meiosis Indicator (Thompson [2000])

$$
S_{i} \sim \text { i.i.d. Bernoulli (0.5) . Mendel's } 1^{\text {st }} \text { Law }
$$

IBD Partition

Partition of genes into subsets that are IBD

SNP Data

SNP Data

区－区－区 区－区－区

k－locus Meiosis Indicator

$$
S_{i} \in\{0,1\}^{k}
$$

e．g．No interference（Allen and Darwiche［2008］）：

$$
P\left(S_{i}=011\right)=P\left(S_{i}=100\right)=0.5 p_{12}\left(1-p_{23}\right) .
$$

SNP Data

ロー区ー区 ロー区ー区

ε_{1}

Evidence ： $\boldsymbol{\varepsilon}$（Koller and Friedman［2009］）
An instantiation of a subset of random variables．

$$
P\left(S_{1}, S_{2}, \ldots, S_{n} \mid \varepsilon\right) \neq \prod_{i=1}^{n} P\left(S_{i} \mid \varepsilon\right)
$$

SNP Data

『－区－区 区－区－区

ε_{1}

Evidence ： $\boldsymbol{\varepsilon}$（Koller and Friedman［2009］）
An instantiation of a subset of random variables．

$$
P\left(S_{1}, S_{2}, \ldots, S_{n} \mid \varepsilon\right) \neq \prod_{i=1}^{n} P\left(S_{i} \mid \varepsilon\right)
$$

P－Coalescent

区－区－区 区－区－区

P-Coalescent

P-Coalescent

P-Coalescent

Perspectives

Perspectives

Pedigree Censorship

Big Pedigree \Leftrightarrow High Complexity.
Deviations from the coalescent decreases the more distant the ancestry. (Wakeley et al. [2012])

Perspectives

Pedigree Censorship

Big Pedigree \Leftrightarrow High Complexity.
Deviations from the coalescent decreases the more distant the ancestry. (Wakeley et al. [2012])

Recombination Model

- Independently segregating loci
- Non-interfering recombinations
- Positive interference

Perspectives

Pedigree Censorship

Big Pedigree \Leftrightarrow High Complexity.
Deviations from the coalescent decreases the more distant the ancestry. (Wakeley et al. [2012])

Recombination Model

- Independently segregating loci
- Non-interfering recombinations
- Positive interference

Founder Prior

- Uniform prior
- Linkage equilibrium
- Linkage disequilibrium

References I

David Allen and Adnan Darwiche. Rc_link: Genetic linkage analysis using bayesian networks. International journal of approximate reasoning, 48(2):499-525, 2008.
Alexandre Bureau. Genetic linkage analysis based on identity by descent using Markov chain Monte Carlo sampling on large pedigrees. PhD thesis, University of California, Berkeley, 2001.
Robert Fung and Brendan Del Favero. Backward simulation in bayesian networks. In Uncertainty Proceedings 1994, pages 227-234. Elsevier, 1994.
Daphne Koller and Nir Friedman. Probabilistic graphical models : principles and techniques. MIT press, 2009.
Fabrice Larribe, Sabin Lessard, and Nicholas J Schork. Gene mapping via the ancestral recombination graph. Theoretical population biology, 62(2) :215-229, 2002.

References II

M Möhle. Coalescent results for two-sex population models. Advances in Applied Probability, 30(2) :513-520, 1998.
Doug Speed and David J Balding. Relatedness in the post-genomic era : is it still useful? Nature Reviews Genetics, 16(1) :33, 2015.
Elizabeth A Thompson. Statistical inference from genetic data on pedigrees. In NSF-CBMS regional conference series in probability and statistics, pages i-169. JSTOR, 2000.
Elizabeth A Thompson. Identity by descent : variation in meiosis, across genomes, and in populations. Genetics, 194(2) :301-326, 2013.

John Wakeley, Léandra King, Bobbi S Low, and Sohini
Ramachandran. Gene genealogies within a fixed pedigree, and the robustness of kingman's coalescent. Genetics, pages genetics-111, 2012.

