Introduction	Results	Discussion	Acknowledgement

Using gene genealogies to localize rare variants associated with complex traits in diploid populations

Charith B. Karunarathna

Department of Statistics and Actuarial Science Simon Fraser University Burnaby, BC, Canada.

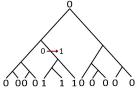
BIRS Workshop, August 5-10, 2018

Introduction •••••	Results 0000000	Discussion 00	Acknowledgement 0
Purpose of the study			
Purpose of t	he study		

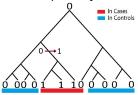
- To compare the performance of selected association methods to localize trait-influencing causal variants within a 2-Mbp candidate genomic region.
- Our work extends that of Burkett et al. 2014, which investigated the ability to detect causal variant.
- First, we present a case study of one of 200 simulated datasets for insight into the methods.
- Then, using the 200 simulated datasets, we score which method localizes best, overall.

Introduction ○●○○○	Results 0000000	Discussion 00	Acknowledgement 0
Data Simulation			
Data simulation			

- Simulate data for 3000 haplotypes in a 2-Mbp genomic region using 'fastsimcoal2' (Excoffier et al. 2013).
 - Keep the ancestral trees connecting haplotypes.
- Randomly pair the 3000 haplotypes into 1500 diploid individuals.
- Assign disease status to the 1500 individuals based on randomly sampled risk SNVs (rSNVs) from the mid region (950kbp-1050kbp).
- Sample 50 diseased individuals (cases) and 50 non-diseased individuals (controls).


Introduction	Results 0000000	Discussion 00	Acknowledgement 0
Association Methods			
Association I	Methods		

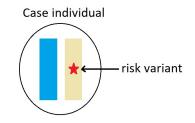
- Single-variant method
 - Fisher's exact test
- Pooled-variant methods
 - Variable Threshold test (VT) (Price et al. 2010)
 - C-alpha test (Neale et al. 2011)
- Joint-modeling methods
 - CAVIARBF (Chen et al. 2015)
 - Elastic-Net (Zou & Hastie. 2005)
- Tree-based methods
 - Blossoc (Mailund et al. 2006)
 - Naive Mantel (Burkett et al. 2014), and informed Mantel (Karunarathna & Graham. 2018)



Introduction	Results	Discussion	Acknowledgement
00000	0000000		
Genealogical Trees			
Genealogical	Trees		

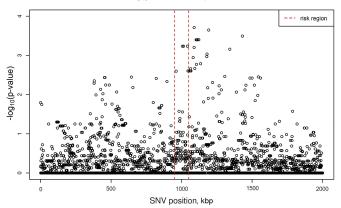
• Genealogical tree represents the ancestry of a genetic variant.

• Case alleles tend to cluster together on a tree for a variant that influences disease susceptibility.

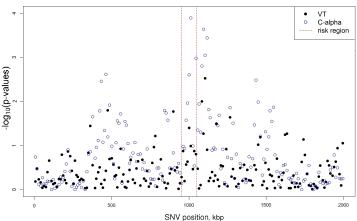


• Tree-based methods evaluate the clustering of the disease status on the trees.

Introduction ○○○○●	Results 0000000	Discussion 00	Acknowledgement 0
Genealogical Trees			
Tree based	methods		


- Two methods to assess clustering of disease status in genealogical trees, Blossoc and Mantel test.
- Blossoc uses reconstructed unknown trees.
- Mantel test uses the known trees.
- Two versions of Mantel test as the bench mark for comparison: naive Mantel, and informed Mantel.

Introduction	Results	Discussion	Acknowledgement
	000000		
Results: Example Dataset			


Single-variant method: Fisher's exact test

-log₁₀ Fisher's exact p-values

Figure 1: Manhattan plot for Fisher's exact test in the 100 case and 100 control haplotypes.

Introduction 00000	Results 0●00000	Discussion 00	Acknowledgement 0
Results: Example Dataset			
Pooled-variant	methods		

-log₁₀ VT and C-alpha values

Figure 2: The negative \log_{10} of p-values are shown on the vertical axes, obtained by applying VT and C-alpha tests across the simulated region using sliding windows of 20 SNVs overlapping by 5 SNVs.

Introduction 00000	Results 00●0000	Discussion 00	Acknowledgement 0
Results: Example Dataset			
Joint-modeling	methods		

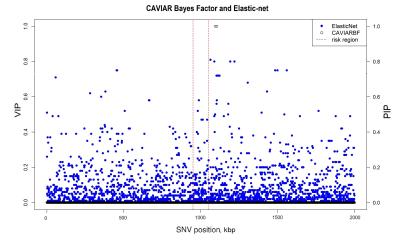
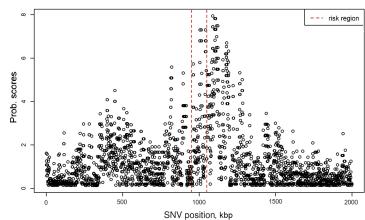
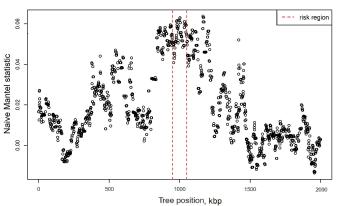



Figure 3: Variable-inclusion probabilities (VIPs) for SNVs computed from Elastic-net (left axis), and posterior inclusion probabilities (right axis), computed from CAVIARBF, across the simulated region.

SFU

Introduction 00000	Results 000●000	Discussion 00	Acknowledgement O
Results: Example Dataset			
Tree-based me	thods: Blossoc		



Blossoc

Figure 4: Plot showing the output from Blossoc.

Introduction 00000	Results 0000●00	Discussion 00	Acknowledgement 0
Results: Example Dataset			

Tree-based methods: Naive Mantel

Naive Mantel statistics for each tree

Figure 5: Naive-Mantel statistics for each tree position across the simulated region.

Introduction	Results	Discussion	Acknowledgement
	0000000		
Results: Example Dataset			

Tree-based methods: Informed Mantel

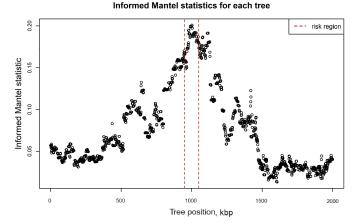


Figure 6: Informed-Mantel statistics for each tree position in the genomic region.

SFU

Introduction 00000	Results ○○○○○●	Discussion 00	Acknowledgement 0				
Results: Simulation Study							
Signal Localization							

Figure 7: Empirical Cumulative Distribution Functions (ECDFs) of average distances of the peak association signals from the risk region for the 200 datasets.

SFU

Introduction	Results	Discussion	Acknowledgement
00000	0000000	●○	0
Discussion			

- Localization results on the example dataset.
 - C-alpha test and informed Mantel test are the only methods that successfully localize the association signal.
 - However, the peak signal from all the other methods is close to the disease risk region.
- Localization results from the simulation study.
 - Naive Mantel test performed very poorly relative to the other methods.
 - Not surprisingly, the informed Mantel test outperformed all the other methods.
 - Blossoc, CAVIARBF, C-alpha, and Fishers exact test performed better in localizing the signal.

Introduction 00000	Results 000000	Discussion ○●	Acknowledgement 0
Reference			
Reference			

Karunarathna, C. B., & Graham, J. (2018). Using gene genealogies to localize rare variants associated with complex traits in diploid populations. Human heredity, 83(1), 30-39.

Introduction	Results	Discussion	Acknowledgement
00000	0000000	00	●
Acknowledgem	ents		

• Thanks to my supervisor, Dr.Jinko Graham, and to Dr.Kelly Burkett for helpful discussions.

7