# A general framework for the region-based analysis of rare variants data in family-based association studies

Julian Hecker, Christoph Lange 08/08/2018

### Introduction

#### setting

- $\mbox{ }$  genomic region of p SNPs, either only rare variants or combination rare/common
- test region for association with phenotype

#### existing approaches

- population-based study designs:
  - e.g. CMC, SKAT (Li and Leal 2008, Wu et al. 2011)
- family-based study designs:
  - e.g. rare-variant GDT, rare-variant FBAT, FB-SKAT (He et al. 2017, De et al. 2013, Ionita-Laza et al. 2013)

# Region-based family-based association testing

- advantage of family-based settings: allows to construct association tests that are robust against population stratification
- base of transmission-based approaches as TDT/FBAT
- multiple variants: empirical estimates of correlation, asymptotic theory problematic

# Region-based family-based association testing

- advantage of family-based settings: allows to construct association tests that are robust against population stratification
- base of transmission-based approaches as TDT/FBAT
- multiple variants: empirical estimates of correlation, asymptotic theory problematic

→ propose our general framework for region-based association analysis in family-based association studies

#### Framework

- 1. conditional offspring genotype distribution for nuclear family
- 2. construction of suitable region-based association test statistics
- 3. evaluation of significance

# FBAT-haplotype algorithm

- ${}^{\bullet}$  genomic region with p tightly linked markers
- nuclear family i, parental genotypes may be missing, observed offspring genotypes  $X_i$ , phenotypes  $T_i$
- FBAT-haplotype algorithm utilizes sufficient statistic approach (Laird and Rabinowitz 2000, Horvath et al. 2004)
- output:  $X \mid S_i$ , joint offspring genotype distribution given sufficient statistic  $S_i$



# FBAT-haplotype algorithm: details

- requires construction of all possible parental mating types for given offspring genotypes
- comparison of likelihood ratios along parental mating types
- number of potential phased parental mating types can be very large



# FBAT-haplotype algorithm: improvement

- identify set  $h_{off}$  of all haplotypes that are compatible with observed offspring genotypes
- instead of constructing all possible parental mating types, use only  $h_{off}$  haplotypes



# FBAT-haplotype algorithm: improvement

- identify set  $h_{off}$  of all haplotypes that are compatible with observed offspring genotypes
- instead of constructing all possible parental mating types, use only  $h_{off}$  haplotypes
- $\rightarrow$  output maintained



# FBAT-haplotype algorithm: improvement

- identify set  $h_{off}$  of all haplotypes that are compatible with observed offspring genotypes
- instead of constructing all possible parental mating types, use only  $h_{off}$  haplotypes



- $\rightarrow$  output maintained
- $\rightarrow$  speed up by several magnitudes

nuclear family, 4 offspring, no parental genotypes

8 markers, major/minor A/B, phase unknown

nuclear family, 4 offspring, no parental genotypes

8 markers, major/minor A/B, phase unknown

original version: number of potential parents : 257

nuclear family, 4 offspring, no parental genotypes

8 markers, major/minor A/B, phase unknown

original version: number of potential parents : 257 conditional distribution:  $P[1xg_1, 3x g_2] = 0.286$ ,  $P[2xg_1, 2xg_2] = 0.429$ ,  $P[3xg_1, 1xg_2] = 0.286$ 

nuclear family, 4 offspring, no parental genotypes

8 markers, major/minor A/B, phase unknown

original version: number of potential parents : 257 conditional distribution:  $P[1xg_1, 3x g_2] = 0.286$ ,  $P[2xg_1, 2xg_2] = 0.429$ ,  $P[3xg_1, 1xg_2] = 0.286$ 

haplotypes in  $h_{off}$  :  $3 \ll 2^8 = 256$  (due to rare variants)

nuclear family, 4 offspring, no parental genotypes

8 markers, major/minor A/B, phase unknown

original version: number of potential parents : 257 conditional distribution:  $P[1xg_1, 3x g_2] = 0.286$ ,  $P[2xg_1, 2xg_2] = 0.429$ ,  $P[3xg_1, 1xg_2] = 0.286$ 

haplotypes in  $h_{off}$  :  $3 \ll 2^8 = 256$  (due to rare variants)

number of parental mating types considered: 4, same conditional distribution

Application to Alzheimer's Disease WGS study

WGS study with 441 nuclear families → 421 have no parental genotypes available! Application to Alzheimer's Disease WGS study

WGS study with 441 nuclear families → 421 have no parental genotypes available!

| Set | Number of variants | original version modified version |          |  |  |
|-----|--------------------|-----------------------------------|----------|--|--|
| 1   | 5                  | 8.18 sec                          | 0.04 sec |  |  |
| 2   | 5                  | 9.89 sec                          | 0.05 sec |  |  |
| 3   | 6                  | 230.76 sec                        | 0.04 sec |  |  |
| 4   | 6                  | 191.15 sec                        | 0.14 sec |  |  |
| 5   | 7                  | 43 min                            | 0.06 sec |  |  |
| 6   | 7                  | 27 min                            | 0.04 sec |  |  |
| 7   | 8                  | ~ 21 hr                           | 0.11 sec |  |  |

Construction of region-based association tests

Knowledge:

- observed offspring phenotypes  $T_i$
- offspring genotypes X<sub>i</sub>
- corresponding conditional distribution

$$T = T(X)$$

 $\rightarrow$  construct suitable association test statistics T(X) to test the association between genotypes and phenotypes

## Multivariate FBAT

- define p dimensional residual vector  $U_i = (X_i - E[X_i|S_i])T_i$
- corresponding  $p \times p$  dimensional covariance matrix  $V_i = Var(U_i|S_i)$
- both objects computed using the conditional distribution
- Similar to multimarker  $FBAT_{MM}$ (Rakovski et al. 2007), but does not need empirical correlation matrix

 $FBAT_{MV} = [\sum_{i} U_i]^T [\sum_{i} V_i]^{-1} [\sum_{i} U_i]$ 

# **Burden FBAT**

- define p dimensional weight vector W
- collapse residual vector by setting  $U_i^* = W^T U_i$

• compute corresponding  $V_i^* = W^T V_i W$ 

• similar to  $FBAT_{v0}/FBAT_{v1}$  (De et al. 2013)

$$FBAT_{burden} = \frac{(\sum_{i} U_{i}^{*})^{2}}{\sum_{i} V_{i}^{*}}$$

- overall N :=  $\sum_i n_i$  dimensional phenotype vector T
- overall p  $\times N$  dimensional genotype matrix X

$$FBAT_{SKAT} = T^T X^T W X T - T^T E[X^T W X | S]T$$

•  $p \times p$  weight matrix W

### Association p-values

based on conditional offspring genotype distribution, p-values can be computed by

- asymptotic theory (determine first two moments)
- simulations (draws from conditional distribution)
- exact calculation of p-value (Schneiter, Laird, Corcoran 2005)

 $P_{H_0}[T(X) \ge t_{observed}] = ?$ 

## Simulation study: type 1 error

- null hypothesis
- 400 trios using haplotypes from the EUR sample (1000 Genomes Project)
- 30k windows of 30 consecutive variants with at least one minor allele
- $FBAT_{MV}$  and  $FBAT_{SKAT}$  based on simulated p-values (100k replicates)

\*based on on 3912 observations

| test statistic           | 0.01    | 0.05    | 0.1     |  |
|--------------------------|---------|---------|---------|--|
| FBAT <sub>MV</sub>       | 0.00981 | 0.05074 | 0.10008 |  |
| FBAT <sub>SKAT</sub>     | 0.01011 | 0.05077 | 0.09854 |  |
| FBAT <sub>burden</sub>   | 0.01036 | 0.04992 | 0.10047 |  |
| FBAT <sub>burden-w</sub> | 0.01087 | 0.04955 | 0.09881 |  |
| FBAT <sub>v0</sub>       | 0.01035 | 0.05035 | 0.10032 |  |
| FBAT <sub>v1</sub>       | 0.01069 | 0.04951 | 0.09900 |  |
| FBAT <sub>MM</sub> *     | 0.03064 | 0.09834 | 0.14631 |  |

#### Association p-values

based on conditional offspring genotype distribution, p-values can be computed by

- asymptotic theory (determine first two moments) → rare variants
- simulations (draws from conditional distribution)
- exact calculations  $\rightarrow$  complexity

 $P_{H_0}[T(X) \ge t_{observed}] = ?$ 

• significance levels of interest are very small  $\rightarrow$  computational intensive

- significance levels of interest are very small  $\rightarrow$  computational intensive
- adaptive strategies in existing genetic association analysis tools, e.g. PLINK (Chang et al. 2015), use heuristics to stop early if the p-value is obviously non-significant

- significance levels of interest are very small  $\rightarrow$  computational intensive
- adaptive strategies in existing genetic association analysis tools, e.g. PLINK (Chang et al. 2015), use heuristics to stop early if the p-value is obviously non-significant
- existing sequential Monte Carlo methodology complicated

- significance levels of interest are very small  $\rightarrow$  computational intensive
- adaptive strategies in existing genetic association analysis tools, e.g. PLINK (Chang et al. 2015), use heuristics to stop early if the p-value is obviously non-significant
- existing sequential Monte Carlo methodology complicated
- $\rightarrow$  sequential testing approach

- p true, unknown association p-value
- sequence  $x_1, x_2, ...$  where  $x_1 = 1$  iff simulated statistic more extreme, 0 otherwise
- we introduce a small indifference region and consider the hypotheses

$$H_1: p \le p_1 \text{ vs. } H_2: p \ge p_2 = p_1 + d$$

(e.g.  $p_1 = 4 * 10^{-8}$  and  $d = 10^{-8}$ )

#### Objects and decision rule

#### objects

pre-specified error probabilities  $\alpha_1$ ,  $\alpha_2$  (e.g.  $\alpha_1 = \alpha_2 = 10^{-10}$ ).

define (Pavlov 1991)

$$\tau_i(\alpha_i) \coloneqq \min\{n: \pi_n / \sup_{\theta \in D_i} p_n(\theta, x^n) \ge \alpha_i^{-1}\}$$

for i = 1, 2, where  $D_1 = [0, p_1], D_2 = [p_2, 1], x^n = (x_1, \dots, x_n), p_n(\theta, x^n) = \prod_{i=1}^n p(\theta, x_i), \ \pi_n \coloneqq \prod_{i=1}^n p(\hat{\theta}_{i-1}, x_i) \text{ and } \widehat{\theta}_{i-1} \coloneqq \frac{\sum_{k=1}^{i-1} x_k + \frac{1}{2}}{i}.$ 

 $p(\theta, x)$  Bernoulli density with parameter  $\theta$ .

#### Objects and decision rule

#### objects

pre-specified error probabilities  $\alpha_1$ ,  $\alpha_2$  (e.g.  $\alpha_1 = \alpha_2 = 10^{-10}$ ).

define (Pavlov 1991)

$$\tau_i(\alpha_i) \coloneqq \min\{n: \pi_n / \sup_{\theta \in D_i} p_n(\theta, x^n) \ge \alpha_i^{-1}\}$$

for 
$$i = 1, 2$$
, where  $D_1 = [0, p_1], D_2 = [p_2, 1], x^n = (x_1, \dots, x_n), p_n(\theta, x^n) = \prod_{i=1}^n p(\theta, x_i), \ \pi_n \coloneqq \prod_{i=1}^n p(\hat{\theta}_{i-1}, x_i) \text{ and } \widehat{\theta}_{i-1} \coloneqq \frac{\sum_{k=1}^{i-1} x_k + \frac{1}{2}}{i}.$ 

 $p(\theta, x)$  Bernoulli density with parameter  $\theta$ .

#### decision procedure STr

If  $\tau_1(\alpha_1) \leq \tau_2(\alpha_2)$ , we set  $\partial = 2$  and  $N = \tau_1(\alpha_1)$ . If  $\tau_1(\alpha_1) > \tau_2(\alpha_2)$ , we set  $\partial = 1$  and  $N = \tau_2(\alpha_2)$ .

#### Theoretical result

#### Theorem (Pavlov 1991, Tartakovsky 2014)

1.) 
$$P_{\theta}[\delta = 2] \le \alpha_1$$
 for  $\theta \in D_1$  and  $P_{\theta}[\delta = 1] \le \alpha_2$  for  $\theta \in D_2$ 

2.) Let  $K(t_1, t_2, \alpha)$  be the class of all decision rules  $(N', \partial')$  such that  $P_{\theta}[\delta' = 2] \leq t_1 \alpha$  for  $\theta \in D_1$  and  $P_{\theta}[\delta' = 1] \leq t_2 \alpha$  for  $\theta \in D_2$ , then

$$\frac{E_{\theta[N]}}{\inf_{(N',\partial')\in K(t_1,t_2,\alpha)}E_{\theta}[N']} = 1 + o(1) \text{ as } \alpha \to 0 \text{ for all } \theta \in [0,1].$$

- $\rightarrow$  error probabilities are strictly controlled
- → approaches theoretical minimum number of expected simulations if error level goes to zero

# Comparison with confidence interval based approach

- $\hat{p}$  empirical estimate of p-value after n simulations
- $(\hat{p} c_{\alpha}SE, \hat{p} + c_{\alpha}SE)$  corresponding  $1 \alpha$  confidence interval, based on asymptotic theory,  $c_{\alpha}$  is  $1 \frac{\alpha}{2}$  quantile of standard normal distribution

#### **CI-based rule (CIr)**

choose  $\partial = 1$  if  $\hat{p} + c_{\alpha}SE \leq p_2$ , set  $\partial = 2$  if  $\hat{p} - c_{\alpha}SE \geq p_1$ . Similar to adaptive strategy implemented in PLINK (Chang et al. 2015)

- simulated 12,045,191 p-values for SNPs in LD, mimicked testing by Bernoulli draws where success parameter = p-value
- ${\, \cdot \, {\rm compared \, overall \, number \, of \, required \, draws \, for \, different \, choices \, for \, p_1}$  and  $p_2.$

# Comparison with confidence interval based approach

| $p_{1}/p_{2}$ | $\alpha_1/\alpha_2$ | α     | STr     | Clr     | ratio CIr/STr | error STr | error Clr |
|---------------|---------------------|-------|---------|---------|---------------|-----------|-----------|
| 1e-09/2e-09   | 1e-10/1e-10         | 1e-10 | 6.04e08 | 7.62e09 | 12.62         | 0/0       | 0/0       |
| 5e-08/6e-08   | 1e-10/1e-10         | 1e-10 | 1.23e09 | 7.86e09 | 6.39          | 0/0       | 0/0       |
| 9e-04/1e-03   | 1e-10/1e-10         | 1e-10 | 2.41e10 | 1.85e10 | 0.77          | 0/0       | 10/0      |
| 9e-04/1e-03   | 1e-10/4e-03         | 1e-10 | 1.66e10 | 1.85e10 | 1.11          | 0/0       | 10/0      |

STr: total number of simulations for STr Clr: total number of simulations for Clr error: number of observed "type 1 / type 1" errors

## Comparison with confidence interval based approach

| $p_{1}/p_{2}$ | $\alpha_1/\alpha_2$ | α     | STr     | Clr     | ratio CIr/STr | error STr | error Clr |
|---------------|---------------------|-------|---------|---------|---------------|-----------|-----------|
| 1e-09/2e-09   | 1e-10/1e-10         | 1e-10 | 6.04e08 | 7.62e09 | 12.62         | 0/0       | 0/0       |
| 5e-08/6e-08   | 1e-10/1e-10         | 1e-10 | 1.23e09 | 7.86e09 | 6.39          | 0/0       | 0/0       |
| 9e-04/1e-03   | 1e-10/1e-10         | 1e-10 | 2.41e10 | 1.85e10 | 0.77          | 0/0       | 10/0      |
| 9e-04/1e-03   | 1e-10/4e-03         | 1e-10 | 1.66e10 | 1.85e10 | 1.11          | 0/0       | 10/0      |

STr: total number of simulations for STr Clr: total number of simulations for Clr error: number of observed "type 1 / type 1" errors Clr: type 1 error at least 0.00425

#### Remarks

- STr: roughly 98% of simulations for 1% of SNPs
- can be applied to any association test statistic
- sequential Monte Carlo H<sub>1</sub>:  $p \le p_1$  vs. H<sub>2</sub>:  $p > p_1$ , worst-case  $p \approx p_1$

• interesting scenario  $d \rightarrow \varepsilon$ 

Supplementary materials for this article are available at http://pubs.amstat.org/toc/jasa/104/488.

#### Sequential Implementation of Monte Carlo Tests With Uniformly Bounded Resampling Risk

Axel GANDY

This paper introduces an open-ended sequential algorithm for computing the *p*-value of a test using Monte Carlo simulation. It guarantees that the resampling risk, the probability of a different decision than the one based on the theoretical *p*-value, is uniformly bounded by an arbitrarily small constant. Previously suggested sequential or nonsequential algorithms, using a bounded sample size, do not have this property. Although the algorithm is open-ended, the expected number of steps is finite, except when the *p*-value is on the threshold between rejecting and not rejecting. The algorithm is suitable as standard for implementing tests that require (re)sampling. It can also be used in other situations: to check whether a test is conservative, iteratively to implement double bootstrap tests, and to determine the sample size required for a certain power. An R-package implementing the sequential algorithm is available online.

KEY WORDS: Monte Carlo testing; p-value; Sequential estimation; Sequential test; Significance test.

### Discussion

- general framework for region-based association analysis in family-based studies
- robustness due to conditional genotype distribution
- multivariate, burden and SKAT association test statistics
- efficient and rigorous procedure to evaluate simulation-based p-value
- implementation available soon



| Branch: master  SeqPerm / sequential.cpp                            |  |  |  |  |  |
|---------------------------------------------------------------------|--|--|--|--|--|
| 🛄 julianhecker Add files via upload                                 |  |  |  |  |  |
| 1 contributor                                                       |  |  |  |  |  |
| 62 lines (55 sloc) 2.25 KB                                          |  |  |  |  |  |
| <pre>unsigned long ctr=0; // counter # successes</pre>              |  |  |  |  |  |
| <pre>2 unsigned long n=0; // counter permutations</pre>             |  |  |  |  |  |
| 3                                                                   |  |  |  |  |  |
| 4 unsigned long tmpx; // temporary variable, specifies if current p |  |  |  |  |  |
| 5 // test statistic or not.                                         |  |  |  |  |  |

# Acknowledgements

- Brent Coull (HSPH Boston)
- Nan Laird (HSPH Boston)
- Ingo Ruczinski (Johns Hopkins)
- F. William Townes (HSPH Boston)
- Edwin Silverman (Brigham and Women's Hospital)
- Michael Cho (Brigham and Women's Hospital)
- Chris Corcoran (Utah State)