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Introduction

setting

 genomic region of 𝑝 SNPs, either only rare variants or combination
rare/common

 test region for association with phenotype

existing approaches

population-based study designs: 
e.g. CMC, SKAT (Li and Leal 2008, Wu et al. 2011)

 family-based study designs: 
e.g. rare-variant GDT, rare-variant FBAT, FB-SKAT (He et al. 2017, De et al. 
2013, Ionita-Laza et al. 2013)



Region-based family-based association testing

 advantage of family-based settings: allows to construct association tests that
are robust against population stratification

base of transmission-based approaches as TDT/FBAT

multiple variants: empirical estimates of correlation, asymptotic theory
problematic



Region-based family-based association testing

 advantage of family-based settings: allows to construct association tests that
are robust against population stratification

base of transmission-based approaches as TDT/FBAT

multiple variants: empirical estimates of correlation, asymptotic theory
problematic

→ propose our general framework for region-based association analysis in 
family-based association studies



Framework

1. conditional offspring genotype distribution for nuclear family

2. construction of suitable region-based association test statistics

3. evaluation of significance



FBAT-haplotype algorithm

 genomic region with 𝑝 tightly linked
markers

nuclear family 𝑖, parental genotypes
may be missing, observed offspring
genotypes 𝑋𝑖, phenotypes 𝑇𝑖

 FBAT-haplotype algorithm utilizes
sufficient statistic approach
(Laird and Rabinowitz 2000, 
Horvath et al. 2004)

output: 𝑋 | 𝑆𝑖 , joint offspring
genotype distribution given
sufficient statistic 𝑆𝑖

(A/B,A/B,A/A)

?? ??

(A/A,A/B,A/A)



FBAT-haplotype algorithm: details

 requires construction of all possible 
parental mating types for given
offspring genotypes

 comparison of likelihood ratios
along parental mating types

number of potential phased
parental mating types can be very
large

(A/B,A/B,A/A)

?? ??

(A/A,A/B,A/A)



FBAT-haplotype algorithm: improvement

 identify set ℎ𝑜𝑓𝑓 of all haplotypes
that are compatible with obsered
offspring genotypes

 instead of constructing all possible 
parental mating types, use only
ℎ𝑜𝑓𝑓 haplotypes
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FBAT-haplotype algorithm: improvement

 identify set ℎ𝑜𝑓𝑓 of all haplotypes
that are compatible with obsered
offspring genotypes

 instead of constructing all possible 
parental mating types, use only
ℎ𝑜𝑓𝑓 haplotypes

→ output maintained

→ speed up by several magnitudes



Advantage in WGS studies
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𝑃 3𝑥𝑔1, 1𝑥𝑔2 = 0.286

haplotypes in ℎ𝑜𝑓𝑓 : 3 ≪ 28 = 256 (due to rare variants)

number of parental mating types considered: 4, same conditional distribution

8 markers, major/minor A/B, phase unknown
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WGS study with 441 nuclear families
→ 421 have no parental genotypes available!

Application to Alzheimer‘s Disease WGS study



Application to Alzheimer‘s Disease WGS study

Set Number of variants original version modified version

1 5 8.18 sec 0.04 sec

2 5 9.89 sec 0.05 sec

3 6 230.76 sec 0.04 sec

4 6 191.15 sec 0.14 sec

5 7 43 min 0.06 sec

6 7 27 min 0.04 sec

7 8 ~ 21 hr 0.11 sec

WGS study with 441 nuclear families
→ 421 have no parental genotypes available!



Construction of region-based association tests

Knowledge:

observed offspring phenotypes 𝑇𝑖
offspring genotypes 𝑋𝑖
 corresponding conditional distribution 𝑇 = 𝑇(𝑋)

→ construct suitable association test statistics 𝑇(𝑋) to test the association
between genotypes and phenotypes



Multivariate FBAT

define 𝑝 dimensional residual 
vector Ui = 𝑋𝑖 − 𝐸 𝑋𝑖 𝑆𝑖 𝑇𝑖

 corresponding 𝑝 × 𝑝 dimensional 
covariance matrix 𝑉𝑖 = 𝑉𝑎𝑟(𝑈𝑖|𝑆𝑖)

both objects computed using the
conditional distribution

 Similar to multimarker 𝐹𝐵𝐴𝑇𝑀𝑀
(Rakovski et al. 2007), but does not 
need empirical correlation matrix

𝐹𝐵𝐴𝑇𝑀𝑉 = σ𝑖𝑈𝑖
𝑇 σ𝑖 𝑉𝑖

−1 σ𝑖𝑈𝑖



Burden FBAT

define 𝑝 dimensional weight vector
𝑊

 collapse residual vector by setting 
𝑈𝑖
∗ = 𝑊𝑇𝑈𝑖

 compute corresponding
𝑉𝑖
∗ = 𝑊𝑇𝑉𝑖𝑊

 similar to 𝐹𝐵𝐴𝑇𝑣0/𝐹𝐵𝐴𝑇𝑣1 (De et 
al. 2013)

𝐹𝐵𝐴𝑇𝑏𝑢𝑟𝑑𝑒𝑛 =
σ𝑖𝑈𝑖

∗ 2

σ𝑖 𝑉𝑖
∗



FBAT-SKAT

overall N ≔ σ𝑖 𝑛𝑖 dimensional 
phenotype vector 𝑇

overall p × 𝑁 dimensional  
genotype matrix 𝑋

 𝑝 × 𝑝 weight matrix 𝑊
𝐹𝐵𝐴𝑇𝑆𝐾𝐴𝑇 = 𝑇𝑇𝑋𝑇𝑊𝑋𝑇 − 𝑇𝑇𝐸 𝑋𝑇𝑊𝑋 𝑆 𝑇



Association p-values

based on conditional offspring
genotype distribution, p-values can
be computed by

 asymptotic theory (determine first
two moments)

 simulations (draws from conditional
distribution)

exact calculation of p-value
(Schneiter, Laird, Corcoran 2005)

𝑃𝐻0 𝑇(𝑋) ≥ 𝑡𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 =?



Simulation study: type 1 error

null hypothesis

400 trios using haplotypes from the
EUR sample (1000 Genomes
Project) 

30k windows of 30 consecutive
variants with at least one minor 
allele

𝐹𝐵𝐴𝑇𝑀𝑉 and 𝐹𝐵𝐴𝑇𝑆𝐾𝐴𝑇 based on 
simulated p-values (100k replicates)

*based on on 3912 observations

test statistic 0.01 0.05 0.1

FBATMV 0.00981 0.05074 0.10008

FBATSKAT 0.01011 0.05077 0.09854

FBATburden 0.01036 0.04992 0.10047

FBATburden−w 0.01087 0.04955 0.09881

FBATv0 0.01035 0.05035 0.10032

FBATv1 0.01069 0.04951 0.09900

FBATMM ∗ 0.03064 0.09834 0.14631



Association p-values

based on conditional offspring
genotype distribution, p-values can
be computed by

 asymptotic theory (determine first
two moments) → rare variants

 simulations (draws from
conditional distribution)

exact calculations→ complexity

𝑃𝐻0 𝑇(𝑋) ≥ 𝑡𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 =?



Simulation-based p-values and whole-genome scans

 significance levels of interest are very small→ computational intensive
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Simulation-based p-values and whole-genome scans

 significance levels of interest are very small→ computational intensive

 adaptive strategies in existing genetic association analysis tools, e.g. PLINK
(Chang et al. 2015), use heuristics to stop early if the p-value is obviously
non-significant

existing sequential Monte Carlo methodology complicated

→ sequential testing approach



Simulation-based p-values and whole-genome scans

𝑝 true, unknown association p-value

 sequence 𝑥1, 𝑥2, … where 𝑥1 = 1 iff simulated statistic more extreme, 0 
otherwise

we introduce a small indifference region and consider the hypotheses

𝐻1: 𝑝 ≤ 𝑝1 vs. 𝐻2: 𝑝 ≥ 𝑝2 = 𝑝1 + 𝑑

(e.g. 𝑝1 = 4 ∗ 10−8 and 𝑑 = 10−8) 



Objects and decision rule

objects

pre-specified error probabilities 𝛼1, 𝛼2 (e.g. 𝛼1 = 𝛼2 = 10−10).

define (Pavlov 1991)

𝜏𝑖 𝛼𝑖 ≔ min{𝑛: 𝜋𝑛/ sup
𝜃∈𝐷𝑖

𝑝𝑛 𝜃, 𝑥𝑛 ≥ 𝛼𝑖
−1}

for 𝑖 = 1,2, where 𝐷1 = 0, 𝑝1 , 𝐷2 = 𝑝2, 1 , 𝑥𝑛 = 𝑥1, … , 𝑥𝑛 , 𝑝𝑛 𝜃, 𝑥𝑛 =

ς𝑖=1
𝑛 𝑝( 𝜃, 𝑥𝑖), 𝜋𝑛 ≔ ς𝑖=1

𝑛 𝑝( መ𝜃𝑖−1 , 𝑥𝑖) and 𝜽𝒊−𝟏 ≔
σ𝒌=𝟏
𝒊−𝟏 𝒙𝒌+

𝟏

𝟐

𝒊
. 

𝑝(𝜃, 𝑥) Bernoulli density with parameter 𝜃.



Objects and decision rule

objects

pre-specified error probabilities 𝛼1, 𝛼2 (e.g. 𝛼1 = 𝛼2 = 10−10).

define (Pavlov 1991)

𝜏𝑖 𝛼𝑖 ≔ min{𝑛: 𝜋𝑛/ sup
𝜃∈𝐷𝑖

𝑝𝑛 𝜃, 𝑥𝑛 ≥ 𝛼𝑖
−1}
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𝑛 𝑝( 𝜃, 𝑥𝑖), 𝜋𝑛 ≔ ς𝑖=1

𝑛 𝑝( መ𝜃𝑖−1 , 𝑥𝑖) and 𝜽𝒊−𝟏 ≔
σ𝒌=𝟏
𝒊−𝟏 𝒙𝒌+

𝟏

𝟐

𝒊
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𝑝(𝜃, 𝑥) Bernoulli density with parameter 𝜃.

decision procedure STr

If 𝜏1 𝛼1 ≤ 𝜏2(𝛼2), we set 𝜕 = 2 and 𝑁 = 𝜏1(𝛼1). If 𝜏1 𝛼1 > 𝜏2(𝛼2), we
set 𝜕 = 1 and 𝑁 = 𝜏2(𝛼2).



Theoretical result

Theorem (Pavlov 1991, Tartakovsky 2014)

1.) 𝑃𝜃 𝛿 = 2 ≤ 𝛼1 for 𝜃 ∈ 𝐷1 and 𝑃𝜃 𝛿 = 1 ≤ 𝛼2 for 𝜃 ∈ 𝐷2

2.) Let 𝐾 𝑡1, 𝑡2, 𝛼 be the class of all decision rules (𝑁′, 𝜕′) such that

𝑃𝜃 𝛿′ = 2 ≤ 𝑡1𝛼 for 𝜃 ∈ 𝐷1and 𝑃𝜃 𝛿′ = 1 ≤ 𝑡2𝛼 for 𝜃 ∈ 𝐷2, then

𝐸𝜃 𝑁

inf
𝑁′,𝜕′ ∈𝐾 𝑡1,𝑡2,𝛼

𝐸𝜃 𝑁′ = 1 + 𝑜 1 as 𝛼 → 0 for all 𝜃 ∈ 0,1 .

→ error probabilities are strictly controlled
→ approaches theoretical minimum number of expected simulations if

error level goes to zero



Comparison with confidence interval based approach

 Ƹ𝑝 empirical estimate of p-value after 𝑛 simulations 

 ( Ƹ𝑝 − 𝑐𝛼𝑆𝐸, Ƹ𝑝 +𝑐𝛼 𝑆𝐸) corresponding 1 − 𝛼 confidence interval, based on 
asymptotic theory, 𝑐𝛼 is 1 −

𝛼

2
quantile of standard normal distribution

CI-based rule (CIr) 
choose 𝜕 = 1 if Ƹ𝑝 + 𝑐𝛼𝑆𝐸 ≤ 𝑝2,  set 𝜕 = 2 if Ƹ𝑝 − 𝑐𝛼𝑆𝐸 ≥ 𝑝1. Similar to
adaptive strategy implemented in PLINK (Chang et al. 2015)

 simulated 12,045,191 p-values for SNPs in LD, mimicked testing by
Bernoulli draws where success parameter = p-value

 compared overall number of required draws for different choices for 𝑝1
and 𝑝2. 



Comparison with confidence interval based approach

STr: total number of simulations for STr

CIr: total number of simulations for CIr

error: number of observed „type 1 / type 1“ errors

𝑝1/𝑝2 𝛼1/𝛼2 𝛼 STr CIr ratio CIr/STr error STr error CIr

1e-09/2e-09 1e-10/1e-10 1e-10 6.04e08 7.62e09 12.62 0/0 0/0

5e-08/6e-08 1e-10/1e-10 1e-10 1.23e09 7.86e09 6.39 0/0 0/0

9e-04/1e-03 1e-10/1e-10 1e-10 2.41e10 1.85e10 0.77 0/0 10/0

9e-04/1e-03 1e-10/4e-03 1e-10 1.66e10 1.85e10 1.11 0/0 10/0



Comparison with confidence interval based approach

STr: total number of simulations for STr

CIr: total number of simulations for CIr

error: number of observed „type 1 / type 1“ errors

CIr: type 1 error at least 0.00425

𝑝1/𝑝2 𝛼1/𝛼2 𝛼 STr CIr ratio CIr/STr error STr error CIr

1e-09/2e-09 1e-10/1e-10 1e-10 6.04e08 7.62e09 12.62 0/0 0/0

5e-08/6e-08 1e-10/1e-10 1e-10 1.23e09 7.86e09 6.39 0/0 0/0

9e-04/1e-03 1e-10/1e-10 1e-10 2.41e10 1.85e10 0.77 0/0 10/0

9e-04/1e-03 1e-10/4e-03 1e-10 1.66e10 1.85e10 1.11 0/0 10/0



Remarks

 STr: roughly 98% of simulations
for 1% of SNPs 

 can be applied to any association
test statistic

 sequential Monte Carlo 

H1: 𝑝 ≤ 𝑝1 vs. H2: 𝑝 > 𝑝1, 

worst-case 𝑝 ≈ 𝑝1

 interesting scenario 𝑑 → 휀



Discussion

• general framework for region-based
association analysis in family-based
studies

• robustness due to conditional
genotype distribution

• multivariate, burden and SKAT 
association test statistics

• efficient and rigorous procedure to
evaluate simulation-based p-value

• implementation available soon

https://sites.google.com/view/fbat-web-page
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