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Introduction

setting

- genomic region of p SNPs, either only rare variants or combination
rare/common

- test region for association with phenotype

existing approaches

* population-based study designs:
e.g. CMC, SKAT (Li and Leal 2008, Wu et al. 2011)

- family-based study designs:

e.g. rare-variant GDT, rare-variant FBAT, FB-SKAT (He et al. 2017, De et al.
2013, lonita-Laza et al. 2013)



Region-based family-based association testing

- advantage of family-based settings: allows to construct association tests that
are robust against population stratification

* base of transmission-based approaches as TDT/FBAT

* multiple variants: empirical estimates of correlation, asymptotic theory
problematic
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- advantage of family-based settings: allows to construct association tests that
are robust against population stratification

* base of transmission-based approaches as TDT/FBAT

* multiple variants: empirical estimates of correlation, asymptotic theory
problematic

- propose our general framework for region-based association analysis in
family-based association studies



Framework

1. conditional offspring genotype distribution for nuclear family

2. construction of suitable region-based association test statistics

3. evaluation of significance



FBAT-haplotype algorithm

* genomic region with p tightly linked
markers

* nuclear family i, parental genotypes O
may be missing, observed offspring ” v
genotypes X;, phenotypes T;

* FBAT-haplotype algorithm utilizes
sufficient statistic approach
(Laird and Rabinowitz 2000,
Horvath et al. 2004)

- output: X | S}, joint offspring
genotype distribution given
sufficient statistic S;

(A/A,A/B,A/A) (A/B,A/B,A/A)



FBAT-haplotype algorithm: details

* requires construction of all possible
parental mating types for given

offspring genotypes O

2?7 ??

* comparison of likelihood ratios
along parental mating types

* number of potential phased
parental mating types can be very
large

(A/A,A/B,A/A) (A/B,A/B,A/A)



FBAT-haplotype algorithm: improvement

*identify set h, ¢ of all haplotypes
that are compatible with obsered
offspring genotypes

* instead of constructing all possible
parental mating types, use only
h,rs haplotypes
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FBAT-haplotype algorithm: improvement

*identify set h, ¢ of all haplotypes
that are compatible with obsered
offspring genotypes

* instead of constructing all possible
parental mating types, use only
h,rs haplotypes

- output maintained

- speed up by several magnitudes
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Advantage in WGS studies

* nuclear family, 4 offspring, no parental genotypes

8 markers, major/n?inor A/B, phase unknown

offspring 1: (A/A, A/A, A/A, A/A, A/A, A/B, AJ/A, AJ/A)=g,
offspring 2: (A/A, A/A, A/B, A/A, A/A, A/A, AJA, AJ/A)=g,
offspring 3: (A/A, A/A, A/A, A/A, A/A, A/B, A/A, A/A) =g,
offspring 4: (A/A, A/A, A/B, A/A, A/A, A/A, A/A, A/A) =g,
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* nuclear family, 4 offspring, no parental genotypes

8 markers, major/n;\inor A/B, phase unknown

offspring 1: (A/A, A/A, A/A, A/A, A/A, A/B, AJ/A, AJ/A)=g,
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conditional distribution: P[1xg,,3x g,] = 0.286, P|2xg,,2xg,] = 0.429,
P|3xg4,1xg,] = 0.286

haplotypesin h,sr : 3 < 28 = 256 (due to rare variants)

number of parental mating types considered: 4, same conditional distribution



Application to Alzheimer’s Disease WGS study

WGS study with 441 nuclear families
— 421 have no parental genotypes available!



Application to Alzheimer’s Disease WGS study

WGS study with 441 nuclear families
— 421 have no parental genotypes available!

Set

Number of variants

original version

modified version
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8.18 sec
9.89 sec
230.76 sec
191.15 sec
43 min
27 min

~21hr

0.04 sec
0.05 sec
0.04 sec
0.14 sec
0.06 sec
0.04 sec
0.11 sec



Construction of region-based association tests

Knowledge:

* observed offspring phenotypes T;
- offspring genotypes X;

T = T(X)

* corresponding conditional distribution

- construct suitable association test statistics T (X) to test the association
between genotypes and phenotypes



Multivariate FBAT

- define p dimensional residual
vector Ui = (Xl — E[XllSl])Tl

* corresponding p X p dimensional
covariance matrix V; = Var(U;|S;)

FBATyy = [ Uil" X, Vi~ [X;Uf]

* both objects computed using the
conditional distribution

* Similar to multimarker FBAT
(Rakovski et al. 2007), but does not
need empirical correlation matrix



Burden FBAT

- define p dimensional weight vector
|4

* collapse residual vector by setting
U =wru; O Ur)?

FBATburden — Z V*
L7

* compute corresponding
V:=wlv,w

*similar to FBAT,,/FBAT, (De et
al. 2013)



FBAT-SKAT

-overall N := )}; n; dimensional
phenotype vector T

*overallp X N dimensional
genotype matrix X

FBATgar = TTXTWXT — TTE[XTWX|S]T
* p X p weight matrix W



Association p-values

based on conditional offspring
genotype distribution, p-values can
be computed by

* asymptotic theory (determine first
two moments)

* simulations (draws from conditional
distribution)

* exact calculation of p-value
(Schneiter, Laird, Corcoran 2005)

PHO[ T(X) = tobserved] =?



Simulation study: type 1 error

* null hypothesis

* 400 trios using haplotypes from the
EUR sample (1000 Genomes
Project)

* 30k windows of 30 consecutive
variants with at least one minor
allele

 FBATyy and FBATgk 47 based on
simulated p-values (100k replicates)

*based on on 3912 observations

test statistic 0.01 0.05 0.1

FBATwy 0.00981 0.05074 0.10008
FBATskat 0.01011 0.05077 0.09854
FBATpurden 0.01036 0.04992 0.10047
FBATburden-w | 0.01087 0.04955 | 0.09881
FBAT, 0.01035 0.05035 0.10032
FBATy, 0.01069 0.04951 0.09900
FBATuym * 0.03064 0.09834 0.14631




Association p-values

based on conditional offspring
genotype distribution, p-values can
be computed by

* asymptotic theory (determine first
two moments) = rare variants _
) PHO[ T(X) = tobserved] =?

* simulations (draws from
conditional distribution)

* exact calculations = complexity
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- sighificance levels of interest are very small 2 computational intensive
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Simulation-based p-values and whole-genome scans

- sighificance levels of interest are very small 2 computational intensive

- adaptive strategies in existing genetic association analysis tools, e.g. PLINK

(Chang et al. 2015), use heuristics to stop early if the p-value is obviously
non-significant

- existing sequential Monte Carlo methodology complicated

—> sequential testing approach



Simulation-based p-values and whole-genome scans

* p true, unknown association p-value

* sequence X1, X,, ... where x; = 1 iff simulated statistic more extreme, O
otherwise

* we introduce a small indifference region and consider the hypotheses
Hi:p<pyvs.H,:p=>p, =p; +d

(e.g.py =4*10"8andd = 1079)



Objects and decision rule

objects

pre-specified error probabilities a;, a5 (e.g. @y = a; = 10719,

define (Pavlov 1991)
7;(a;) :== min{n: m,/ sup p,(0,x™) = a; '}
0€D;
fori = 1,2, where D; = [0,p{], D, = [p,, 1], x™ = (xl, . xn) p,(0,x™) =

Zk 1 xk+—
l .

?=1p(9,xi), Ty = 1p(61 1,%;) and 91 1=

p(0, x) Bernoulli density with parameter 6.



Objects and decision rule

objects

pre-specified error probabilities a;, a5 (e.g. @y = a; = 10719,

define (Pavlov 1991)
7;(a;) :== min{n: m,/ sup p,(0,x™) = a; '}
0€D;
fori = 1,2, where D; = [0,p{], D, = [p,, 1], x™ = (xl, . xn) p,(0,x™) =

Zk 1 xk+—
l .

?=1 p(0,x;), Ty = 1p(61 1,%;) and 91 1=
p(0, x) Bernoulli density with parameter 6.

decision procedure STr

If 7,(ay) < 15(ay), weset d =2 and N = 1,(aq). If 71(ay) > 1,(ay), we
setd =1 and N = 7,(a5).



Theoretical result

Theorem (Pavlov 1991, Tartakovsky 2014)
1.) Pg[6 = 2] < ay for @ € D; and Py[6 = 1] < a, for8 € D,

2.) Let K(t4, t,, @) be the class of all decision rules (N', ") such that
Pyl6' = 2] < tjafor @ € Diand Pg[d' = 1] < t,a for 6 € D,, then

Eg[n]

sv = Lo asa— 0forall 6 € [0,1]

') inf
(N ,0 )EK(tl,tz,a)

—> error probabilities are strictly controlled

— approaches theoretical minimum number of expected simulations if
error level goes to zero



Comparison with confidence interval based approach

* p empirical estimate of p-value after n simulations

*(p — c,SE, D +c, SE) corresponding 1 — a confidence interval, based on
asymptotic theory, ¢, is 1 — % guantile of standard normal distribution

Cl-based rule (Clr)
choose d = 1ifp + c,SE < p,, setd = 2if p — c,SE = p4. Similar to
adaptive strategy implemented in PLINK (Chang et al. 2015)

* simulated 12,045,191 p-values for SNPs in LD, mimicked testing by
Bernoulli draws where success parameter = p-value

- compared overall number of required draws for different choices for p;
and p,.



Comparison with confidence interval based approach

P1/P> a/a; a STr Clr ratio CIr/STr | error STr | error Clr
1e-09/2e-09 | 1e-10/1e-10 | 1le-10 | 6.04e08 7.62e09 12.62 0/0 0/0
5e-08/6e-08 | 1e-10/1e-10 | 1e-10 | 1.23e09 7.86e09 6.39 0/0 0/0
9e-04/1e-03 | 1e-10/1e-10 | 1e-10 | 2.41el0 1.85e10 0.77 0/0 10/0
9e-04/1e-03 | 1e-10/4e-03 | 1e-10 | 1.66e10 1.85e10 1.11 0/0 10/0

STr: total number of simulations for STr
Clr: total number of simulations for Clr
error: number of observed ,type 1/ type 1“ errors
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P1/P> a/a, a STr Clr ratio CIr/STr | error STr | error Clr
1e-09/2e-09 | 1e-10/1e-10 | 1le-10 | 6.04e08 7.62e09 12.62 0/0 0/0
5e-08/6e-08 | 1e-10/1e-10 | 1e-10 | 1.23e09 7.86e09 6.39 0/0 0/0
9e-04/1e-03 | 1e-10/1e-10 | 1e-10 | 2.41el0 1.85e10 0.77 0/0 10/0
9e-04/1e-03 | 1e-10/4e-03 | 1e-10 | 1.66e10 1.85e10 1.11 0/0 10/0

STr: total number of simulations for STr
Clr: total number of simulations for Clr
error: number of observed ,type 1/ type 1“ errors

Clr: type 1 error at least 0.00425



Remarks

* STr: roughly 98% of simulations
for 1% of SNPs

° C a n b e a p p | i e d t O a ny a S s O C i ati O n Supplementary materials forﬂ:is article are available at hﬂp://pubs..amsfaf‘org/tac./jasa/m#t&&
Sequential Implementation of Monte Carlo Tests

test statistic With Uniformly Bounded Resampling Risk

Axel GANDY

This paper i d an ded ial i for ing the p-value of a test using Monte Carlo simulation. It guarantees
that the resampling risk, lhe pmhahlhly of a different declslcm than the one hased on the r.heommal p-value, is umfm'mly bounded by

* sequential Monte Carlo ey et : il e i bl

property. Although (he a]gonmm is npen -ended, the expected number ol' steps is finite, except when the p-value is on ﬂ\e thmsl\old belween

rejecting and not rejecting. The algorithm is suitable as slandard for implementing tests that require (re)sampling. It can also be used in

other situations: to check whether a test is con: servar.we i i double ap tests, and to ine the sample size
L < " required for a certain power. An R-package imp the sequential alg is available online.
”1. p D1 VS.Ilz. p>p1, ' e sea
KEY WORDS: Monte Carlo testing; p-value; S 1 S 1 test; S: test.

worst-case p = p;

* interesting scenariod — ¢



Discussion

* general framework for region-based
association analysis in family-based Welcome To The FBAT Web Page
st u d i e S FBAT-Toolkit Team

(in alphabetical order)

* robustness due to conditional
genotype distribution AR

https://sites.google.com/view/fbat-web-page

 multivariate, burden and SKAT
association test statistics

Branch: masterv = SeqPerm / sequential.cpp

julianhecker Add files via upload

» efficient and rigorous procedure to teontibuter

evaluate simulation-based p-value 62 Lines (55 sloc) | 2.25 KB
unsigned long ctr=0; // counter # successes
- - - UﬂSigHE‘S ;C-’Tg H=@; // counter TEI"TUTETiCﬂS
* implementation available soon

unsigned long tmpx; // temporary variable, specifies if current g

test statistic or not.
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