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Introduction

setting

 genomic region of 𝑝 SNPs, either only rare variants or combination
rare/common

 test region for association with phenotype

existing approaches

population-based study designs: 
e.g. CMC, SKAT (Li and Leal 2008, Wu et al. 2011)

 family-based study designs: 
e.g. rare-variant GDT, rare-variant FBAT, FB-SKAT (He et al. 2017, De et al. 
2013, Ionita-Laza et al. 2013)



Region-based family-based association testing

 advantage of family-based settings: allows to construct association tests that
are robust against population stratification

base of transmission-based approaches as TDT/FBAT

multiple variants: empirical estimates of correlation, asymptotic theory
problematic



Region-based family-based association testing

 advantage of family-based settings: allows to construct association tests that
are robust against population stratification

base of transmission-based approaches as TDT/FBAT

multiple variants: empirical estimates of correlation, asymptotic theory
problematic

→ propose our general framework for region-based association analysis in 
family-based association studies



Framework

1. conditional offspring genotype distribution for nuclear family

2. construction of suitable region-based association test statistics

3. evaluation of significance



FBAT-haplotype algorithm

 genomic region with 𝑝 tightly linked
markers

nuclear family 𝑖, parental genotypes
may be missing, observed offspring
genotypes 𝑋𝑖, phenotypes 𝑇𝑖

 FBAT-haplotype algorithm utilizes
sufficient statistic approach
(Laird and Rabinowitz 2000, 
Horvath et al. 2004)

output: 𝑋 | 𝑆𝑖 , joint offspring
genotype distribution given
sufficient statistic 𝑆𝑖

(A/B,A/B,A/A)

?? ??

(A/A,A/B,A/A)



FBAT-haplotype algorithm: details

 requires construction of all possible 
parental mating types for given
offspring genotypes

 comparison of likelihood ratios
along parental mating types

number of potential phased
parental mating types can be very
large

(A/B,A/B,A/A)

?? ??

(A/A,A/B,A/A)



FBAT-haplotype algorithm: improvement

 identify set ℎ𝑜𝑓𝑓 of all haplotypes
that are compatible with obsered
offspring genotypes

 instead of constructing all possible 
parental mating types, use only
ℎ𝑜𝑓𝑓 haplotypes
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FBAT-haplotype algorithm: improvement

 identify set ℎ𝑜𝑓𝑓 of all haplotypes
that are compatible with obsered
offspring genotypes

 instead of constructing all possible 
parental mating types, use only
ℎ𝑜𝑓𝑓 haplotypes

→ output maintained

→ speed up by several magnitudes



Advantage in WGS studies
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8 markers, major/minor A/B, phase unknown

nuclear family, 4 offspring, no parental genotypes
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Advantage in WGS studies

offspring 1:  (A/A, A/A, A/A, A/A, A/A, A/B, A/A, A/A)=𝑔1
offspring 2:  (A/A, A/A, A/B, A/A, A/A, A/A, A/A, A/A)=𝑔2
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𝑃 3𝑥𝑔1, 1𝑥𝑔2 = 0.286

haplotypes in ℎ𝑜𝑓𝑓 : 3 ≪ 28 = 256 (due to rare variants)

number of parental mating types considered: 4, same conditional distribution

8 markers, major/minor A/B, phase unknown

nuclear family, 4 offspring, no parental genotypes



WGS study with 441 nuclear families
→ 421 have no parental genotypes available!

Application to Alzheimer‘s Disease WGS study



Application to Alzheimer‘s Disease WGS study

Set Number of variants original version modified version

1 5 8.18 sec 0.04 sec

2 5 9.89 sec 0.05 sec

3 6 230.76 sec 0.04 sec

4 6 191.15 sec 0.14 sec

5 7 43 min 0.06 sec

6 7 27 min 0.04 sec

7 8 ~ 21 hr 0.11 sec

WGS study with 441 nuclear families
→ 421 have no parental genotypes available!



Construction of region-based association tests

Knowledge:

observed offspring phenotypes 𝑇𝑖
offspring genotypes 𝑋𝑖
 corresponding conditional distribution 𝑇 = 𝑇(𝑋)

→ construct suitable association test statistics 𝑇(𝑋) to test the association
between genotypes and phenotypes



Multivariate FBAT

define 𝑝 dimensional residual 
vector Ui = 𝑋𝑖 − 𝐸 𝑋𝑖 𝑆𝑖 𝑇𝑖

 corresponding 𝑝 × 𝑝 dimensional 
covariance matrix 𝑉𝑖 = 𝑉𝑎𝑟(𝑈𝑖|𝑆𝑖)

both objects computed using the
conditional distribution

 Similar to multimarker 𝐹𝐵𝐴𝑇𝑀𝑀
(Rakovski et al. 2007), but does not 
need empirical correlation matrix

𝐹𝐵𝐴𝑇𝑀𝑉 = σ𝑖𝑈𝑖
𝑇 σ𝑖 𝑉𝑖

−1 σ𝑖𝑈𝑖



Burden FBAT

define 𝑝 dimensional weight vector
𝑊

 collapse residual vector by setting 
𝑈𝑖
∗ = 𝑊𝑇𝑈𝑖

 compute corresponding
𝑉𝑖
∗ = 𝑊𝑇𝑉𝑖𝑊

 similar to 𝐹𝐵𝐴𝑇𝑣0/𝐹𝐵𝐴𝑇𝑣1 (De et 
al. 2013)

𝐹𝐵𝐴𝑇𝑏𝑢𝑟𝑑𝑒𝑛 =
σ𝑖𝑈𝑖

∗ 2

σ𝑖 𝑉𝑖
∗



FBAT-SKAT

overall N ≔ σ𝑖 𝑛𝑖 dimensional 
phenotype vector 𝑇

overall p × 𝑁 dimensional  
genotype matrix 𝑋

 𝑝 × 𝑝 weight matrix 𝑊
𝐹𝐵𝐴𝑇𝑆𝐾𝐴𝑇 = 𝑇𝑇𝑋𝑇𝑊𝑋𝑇 − 𝑇𝑇𝐸 𝑋𝑇𝑊𝑋 𝑆 𝑇



Association p-values

based on conditional offspring
genotype distribution, p-values can
be computed by

 asymptotic theory (determine first
two moments)

 simulations (draws from conditional
distribution)

exact calculation of p-value
(Schneiter, Laird, Corcoran 2005)

𝑃𝐻0 𝑇(𝑋) ≥ 𝑡𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 =?



Simulation study: type 1 error

null hypothesis

400 trios using haplotypes from the
EUR sample (1000 Genomes
Project) 

30k windows of 30 consecutive
variants with at least one minor 
allele

𝐹𝐵𝐴𝑇𝑀𝑉 and 𝐹𝐵𝐴𝑇𝑆𝐾𝐴𝑇 based on 
simulated p-values (100k replicates)

*based on on 3912 observations

test statistic 0.01 0.05 0.1

FBATMV 0.00981 0.05074 0.10008

FBATSKAT 0.01011 0.05077 0.09854

FBATburden 0.01036 0.04992 0.10047

FBATburden−w 0.01087 0.04955 0.09881

FBATv0 0.01035 0.05035 0.10032

FBATv1 0.01069 0.04951 0.09900

FBATMM ∗ 0.03064 0.09834 0.14631



Association p-values

based on conditional offspring
genotype distribution, p-values can
be computed by

 asymptotic theory (determine first
two moments) → rare variants

 simulations (draws from
conditional distribution)

exact calculations→ complexity

𝑃𝐻0 𝑇(𝑋) ≥ 𝑡𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 =?
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Simulation-based p-values and whole-genome scans

 significance levels of interest are very small→ computational intensive

 adaptive strategies in existing genetic association analysis tools, e.g. PLINK
(Chang et al. 2015), use heuristics to stop early if the p-value is obviously
non-significant

existing sequential Monte Carlo methodology complicated

→ sequential testing approach



Simulation-based p-values and whole-genome scans

𝑝 true, unknown association p-value

 sequence 𝑥1, 𝑥2, … where 𝑥1 = 1 iff simulated statistic more extreme, 0 
otherwise

we introduce a small indifference region and consider the hypotheses

𝐻1: 𝑝 ≤ 𝑝1 vs. 𝐻2: 𝑝 ≥ 𝑝2 = 𝑝1 + 𝑑

(e.g. 𝑝1 = 4 ∗ 10−8 and 𝑑 = 10−8) 



Objects and decision rule

objects

pre-specified error probabilities 𝛼1, 𝛼2 (e.g. 𝛼1 = 𝛼2 = 10−10).

define (Pavlov 1991)

𝜏𝑖 𝛼𝑖 ≔ min{𝑛: 𝜋𝑛/ sup
𝜃∈𝐷𝑖

𝑝𝑛 𝜃, 𝑥𝑛 ≥ 𝛼𝑖
−1}

for 𝑖 = 1,2, where 𝐷1 = 0, 𝑝1 , 𝐷2 = 𝑝2, 1 , 𝑥𝑛 = 𝑥1, … , 𝑥𝑛 , 𝑝𝑛 𝜃, 𝑥𝑛 =

ς𝑖=1
𝑛 𝑝( 𝜃, 𝑥𝑖), 𝜋𝑛 ≔ ς𝑖=1

𝑛 𝑝( መ𝜃𝑖−1 , 𝑥𝑖) and ෡𝜽𝒊−𝟏 ≔
σ𝒌=𝟏
𝒊−𝟏 𝒙𝒌+

𝟏

𝟐

𝒊
. 

𝑝(𝜃, 𝑥) Bernoulli density with parameter 𝜃.
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objects

pre-specified error probabilities 𝛼1, 𝛼2 (e.g. 𝛼1 = 𝛼2 = 10−10).

define (Pavlov 1991)

𝜏𝑖 𝛼𝑖 ≔ min{𝑛: 𝜋𝑛/ sup
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𝑝(𝜃, 𝑥) Bernoulli density with parameter 𝜃.

decision procedure STr

If 𝜏1 𝛼1 ≤ 𝜏2(𝛼2), we set 𝜕 = 2 and 𝑁 = 𝜏1(𝛼1). If 𝜏1 𝛼1 > 𝜏2(𝛼2), we
set 𝜕 = 1 and 𝑁 = 𝜏2(𝛼2).



Theoretical result

Theorem (Pavlov 1991, Tartakovsky 2014)

1.) 𝑃𝜃 𝛿 = 2 ≤ 𝛼1 for 𝜃 ∈ 𝐷1 and 𝑃𝜃 𝛿 = 1 ≤ 𝛼2 for 𝜃 ∈ 𝐷2

2.) Let 𝐾 𝑡1, 𝑡2, 𝛼 be the class of all decision rules (𝑁′, 𝜕′) such that

𝑃𝜃 𝛿′ = 2 ≤ 𝑡1𝛼 for 𝜃 ∈ 𝐷1and 𝑃𝜃 𝛿′ = 1 ≤ 𝑡2𝛼 for 𝜃 ∈ 𝐷2, then

𝐸𝜃 𝑁

inf
𝑁′,𝜕′ ∈𝐾 𝑡1,𝑡2,𝛼

𝐸𝜃 𝑁′ = 1 + 𝑜 1 as 𝛼 → 0 for all 𝜃 ∈ 0,1 .

→ error probabilities are strictly controlled
→ approaches theoretical minimum number of expected simulations if

error level goes to zero



Comparison with confidence interval based approach

 Ƹ𝑝 empirical estimate of p-value after 𝑛 simulations 

 ( Ƹ𝑝 − 𝑐𝛼𝑆𝐸, Ƹ𝑝 +𝑐𝛼 𝑆𝐸) corresponding 1 − 𝛼 confidence interval, based on 
asymptotic theory, 𝑐𝛼 is 1 −

𝛼

2
quantile of standard normal distribution

CI-based rule (CIr) 
choose 𝜕 = 1 if Ƹ𝑝 + 𝑐𝛼𝑆𝐸 ≤ 𝑝2,  set 𝜕 = 2 if Ƹ𝑝 − 𝑐𝛼𝑆𝐸 ≥ 𝑝1. Similar to
adaptive strategy implemented in PLINK (Chang et al. 2015)

 simulated 12,045,191 p-values for SNPs in LD, mimicked testing by
Bernoulli draws where success parameter = p-value

 compared overall number of required draws for different choices for 𝑝1
and 𝑝2. 



Comparison with confidence interval based approach

STr: total number of simulations for STr

CIr: total number of simulations for CIr

error: number of observed „type 1 / type 1“ errors

𝑝1/𝑝2 𝛼1/𝛼2 𝛼 STr CIr ratio CIr/STr error STr error CIr

1e-09/2e-09 1e-10/1e-10 1e-10 6.04e08 7.62e09 12.62 0/0 0/0

5e-08/6e-08 1e-10/1e-10 1e-10 1.23e09 7.86e09 6.39 0/0 0/0

9e-04/1e-03 1e-10/1e-10 1e-10 2.41e10 1.85e10 0.77 0/0 10/0

9e-04/1e-03 1e-10/4e-03 1e-10 1.66e10 1.85e10 1.11 0/0 10/0



Comparison with confidence interval based approach

STr: total number of simulations for STr

CIr: total number of simulations for CIr

error: number of observed „type 1 / type 1“ errors

CIr: type 1 error at least 0.00425

𝑝1/𝑝2 𝛼1/𝛼2 𝛼 STr CIr ratio CIr/STr error STr error CIr

1e-09/2e-09 1e-10/1e-10 1e-10 6.04e08 7.62e09 12.62 0/0 0/0

5e-08/6e-08 1e-10/1e-10 1e-10 1.23e09 7.86e09 6.39 0/0 0/0

9e-04/1e-03 1e-10/1e-10 1e-10 2.41e10 1.85e10 0.77 0/0 10/0

9e-04/1e-03 1e-10/4e-03 1e-10 1.66e10 1.85e10 1.11 0/0 10/0



Remarks

 STr: roughly 98% of simulations
for 1% of SNPs 

 can be applied to any association
test statistic

 sequential Monte Carlo 

H1: 𝑝 ≤ 𝑝1 vs. H2: 𝑝 > 𝑝1, 

worst-case 𝑝 ≈ 𝑝1

 interesting scenario 𝑑 → 𝜀



Discussion

• general framework for region-based
association analysis in family-based
studies

• robustness due to conditional
genotype distribution

• multivariate, burden and SKAT 
association test statistics

• efficient and rigorous procedure to
evaluate simulation-based p-value

• implementation available soon

https://sites.google.com/view/fbat-web-page



Brent Coull (HSPH Boston)

Nan Laird (HSPH Boston)

 Ingo Ruczinski (Johns Hopkins)

 F. William Townes (HSPH Boston)

 Edwin Silverman (Brigham and Women‘s Hospital)

Michael Cho (Brigham and Women‘s Hospital)

Chris Corcoran (Utah State)

Acknowledgements


