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Background: NGS
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Next Generation Sequencing Studies

The emergence of new high-throughput genotyping technologies, such
as Next Generation Sequencing (NGS), allows the study of the human
genome at an unprecedented depth and scale

They provide invaluable opportunities to decipher the biological
processes involved in complex human diseases

The study of the genetic landscape of inherited and acquired
mutations in cancer patients could provide invaluable insights into the
essential pathways driving the progression from a normal cell to
non-invasive precursor lesions, and then to advanced and metastatic
diseases
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Outline of our framework

Model setting
Bayes Factor derivation for case-control design
Prior definition
Hyper-parameter specification
Asymptotic properties
Genome-wide inference
Simulations with the program sim1000G
Application on lung cancer study
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Example NGS data
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NGS data
An example of sequenced genomic region is displayed below through the sequence
viewer IGV.

(Banff Workshop 2018) Aug. 8, 2018 6 / 39



Data example: a genetic region with 10 loci
Cases:

0 0 1 0 0 00 0
x = 1individual 1

0 0 0 1 0 00 1
x = 2individual 2

Controls:

0 0 0 0 0 01 0
x = 1individual 1

0 0 0 0 0 00 0
x = 0individual 2

Blue: non-mutated locus
Red: mutated locus
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Density curve of p̂ of real data
k: inidvidual k
n: number of loci in the region
xk : number of rare variants in the region for individual k, xk ∼ Binomial(n, pk)
pk : probability of having a rare variant at single locus for individual k, p̂k = xk

n
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Rationale for our rare variant association test

Goal: Develop regional association test based on the comparison of
rare variant rate (pi) distribution between cases and controls.

This comparison is accomplished by using the Bayes Factor (BF)
statistic.
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Background: Bayes Factor
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Influential work on the BF: The "BayesBall"

Albert, J. (2008), "Streaky Hitting in Baseball", Journal of
Quantitative Analysis of Sports, vol. 4.
Albert, J. (2013), "Looking at Spacings to Assess Streakiness",
Journal of Quantitative Analysis of Sports, vol. 9.

Joe DiMaggio

Jim Albert Department of Mathematics and Statistics Bowling Green State University ()Looking at Spacings to Assess Streakiness September 2013 40 / 43

	  

	  

2002 Shawn Green

Jim Albert Department of Mathematics and Statistics Bowling Green State University ()Looking at Spacings to Assess Streakiness September 2013 32 / 43

A Test Statistic

A Bayes factor.

Ratio of the marginal probabilities of the observed data y under
the two models MK and M :

Bayes factor in support of true streakiness is

BFK =
f (y |MK )

f (y |M)
.

Values of BFK > 1 support the streaky model, and values
BFK < 1 support the consistent model.

Jim Albert Department of Mathematics and Statistics Bowling Green State University ()Looking at Spacings to Assess Streakiness September 2013 9 / 43
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BF in genetic association studies

First GWAS application = the WTCCC study (2007)
Some review in Stephens and Balding (Nat. Rev. Genetics, 2009)
Wakefield (2009) formalized the BF in the context of GWAS

Interesting discussion about informative priors (effect-MAF
dependence) vs. non-informative priors (implicit p-value prior)
Sketches the use of BF in the Bayesian False Discovery although not
detailed

McCallum and Ionita-Laza, Biometrics 2015
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Methods
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Model Setting

Let Xijk be the count of rare variants in the region i , for group j and
individual k

Xijk ∼ Binomial(nijk , pijk)

Suppose that pijk varies across genetic regions and individuals,
according to a prior density function g(pijk |θij), with θij ≡ θi1 if j is
in the control group and θij ≡ θi2 if j is in the case group.

Our goal is to assess whether there is a difference in rare variant
counts between cases and controls in a particular region i by
comparing : Hi0 : θi1 = θi2 = θi vs. Hi1 : θi1 6= θi2 using the Bayes
Factor (BF) statistic.
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Bayes Factor

Bayes Factor (BF) is the ratio between the probabilities of the data
(marginal likelihood) under the alternative hypothesis (association
exists) and the null hypothesis (no association).

BF = m1(X )
m0(X )

The marginal likelihood function under H0 and H1:

m0(X) =

∫
P

f (X |P)g(P)dP =

∫
P

f (X |P)

∫
θ

g(P|θ)π(θ|η∗
,K∗)dθdP

m1(X) =

∫
P1

f (X1|P1)

∫
θ1

g(P1|θ1)π(θ1|η
∗
1 ,K∗

1 )dθ1dP1 ×

∫
P2

f (X2|P2)

∫
θ2

g(P2|θ2)π(θ2|η
∗
2 ,K∗

2 )dθ2dP2

where θ is the parameter we want to compare between cases and
controls.
There are two definitions for the prior distribution g(P|θ).
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Prior definition I

Under the beta prior distribution, we have

pijk |θij ∼ Beta(ηij ,Ki ),

Here the beta distribution is parametrized in terms of mean (denoted
by ηij) and precision (denoted by Ki). Relationship with (α, β):

η = α

(α + β) , K = α + β.

With the Beta prior, the marginal distribution of rare variants count
in the region is Beta-Binomial (BB). It assumes a similar pairwise
correlation between the rare variants within the region. Our
simulation studies (thanks to Fode Tounkara) showed that the BB fits
the sequencing rare variants data much better than many Copula
alternatives.
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Prior definition II

Under the mixture prior distribution, we assume that pijk follows a
mixture distribution of a point mass at zero and a beta distribution
with probability w0ij and w1ij = 1− w0ij , respectively:

Xijk =
{
0, if pijk = 0 with P(pijk = 0) = w0ij
Xijk ∼ Bin(nijk , pijk), if pijk > 0 with P(pijk > 0) = 1− w0ij

Also when pijk > 0, the prior density for pijk is Beta(ηij ,Ki ).
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Hierarchical hyper-parameter specification

Our hyper parameters of interest are η, η1, η2, w01, w02, and w0.

We assume a hierarchical prior structure where each hyper-parameter
is assumed to follow a beta distribution with new mean and precision
parameters η∗, η∗1, η∗2, K ∗, K ∗1 , K ∗2 .

The parameters of the prior and hyperprior distributions are estimated
empirically from the data by using MLE.
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BF distribution under the null

Ideal parameters η∗ and K ∗ should lead to:
BF is independent of gene size
BF (log BF ) has a known theoretical distribution

Theorem 1. Assume that η∗ = η̂, K ∗ = η̂Σ̂−1, η∗1 = η̂1, K ∗1 = η̂1Σ̂−11 ,
η∗2 = η̂2 and K ∗2 = η̂2Σ̂−12 , for gene i , when sample size N1 →∞ and
N2 →∞,

2 log BF = (η̂1 − η̂2)2

Σ̂1 + Σ̂2
∼ χ2(1)
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BF with individual-level covariates
For group j (j=1 or 2, j=1, control group, j=2, case group), individual k, pjk ∼ Beta(ηjk ,K ).
We build Beta regression to model the relationship between covariate vector wjk with length
equal to c and the rare variant rate at single locus pjk .

Version 1

logit(ηjk) = β0j + wjkβ

β0j ∼ Normal(µj , σ
2
j )

β ∼ MVN(µβ,B)

Version 2

logit(ηjk) = logit(ηj) + Rjk ,

where Rjk = βwjk and wjk is a vector of PCs or ethinic group indicator variables.

ηj ∼ beta(η∗j ,K ∗j )
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Bayesian FDR
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Bayesian control of False Discovery Rate (FDR) for
genome wide inference

The goal of genome-wide inference is to perform a simultaneous
testing of multiple hypotheses (i.e. all the genes or genomic regions)
= m null hypotheses Hi , i = 1, · · · ,m, using data Y

Let Zi = 1 if Hi is true and Zi = 0 if Hi is false, i = 1, · · · ,m, and π0
the proportion of regions/genes generated under the null

We have Zi |π0 ∼ Bernoulli(1− π0)

We also define δi denote a decision rule in (0, 1) on Zi based on the
data and D =

∑m
i=1 δi
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Bayesian control of False Discovery Rate (FDR) for
genome wide inference

Following Muller et al. (2006), the False Discovery Proportion (FDP) is
defined as

FDP ≡
∑m

i=1 δi (1− Zi )
D

∨
1 ,

and the Bayesian FDR as:

FDR ≡ E (FDP|Y ) =
∑m

i=1 δi (1− vi )
D

∨
1 .

The interest in the Bayesian control of the FDR, is to estimate
vi ≡ Pr(Zi = 1|Y ) by

v̂i = (1− π̂0)BFi
π̂0 + (1− π̂0)BFi
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Estimate of π̂0

Wen et al. (2016) showed that an upper bound estimation of π0 can
be obtained by

π̂0 =
∑m

i=1 I(BFi ≤ qi ,γ)
mγ .

=> requires permutations to assess the null distribution of the BF for
each gene
=> lacks well study of impact of γ
Since we proved that 2 log BFi

d−→ χ2(1), we can then estimate π0 by

π̂0 =
∑m

i=1 I(2 log BFi ≤ q∗γ)
mγ ,

where q∗γ is the γ-quantile of a χ2(1) distribution
=> which avoids the need for permutations
=> Try to find optimal value of γ
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Simulation Procedure

R package "sim1000G" is used to simulate the rare variant genotype
data.

Now available on the CRAN, credit to Apostolos Dimitromanolakis
The simulated data can capture the allele frequencies and LD patterns
in the genome, as well as recombination hotspots.
Only choose variants with MAF ∈ (1e − 6, 0.01) for data analysis.

Number of causal variants is proportional to the region size. We
assume all causal variants are deleterious, with OR = 2.63 to 3.73,
inversely related to MAF.
Each simulated dataset has same number of cases and controls.
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QQ plot: BF simulated under the null
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Simulation Results

Table: Statistical power of different methods for different gene sizes and sample
sizes with 1,000 replicates (reject null hypothesis when p < 0.05)

Statistical Test N1 = N2 = 250 N1 = N2 = 500 N1 = N2 = 1000
72 sites 147 sites 442 sites 72 sites 147 sites 442 sites 72 sites 147 sites 442 sites

BF method
Beta prior Compare η 23.8 41.3 87.2 35.3 58.9 98.3 59.4 82.2 100.0
Mixture prior Compare η 25.6 44.4 88.7 37.1 61.7 98.2 62.2 83.5 100.0

SKAT 13.1 22.0 50.2 24.9 45.2 86.1 55.7 79.1 99.9
Burden 16.9 30.2 83.5 25.8 50.2 96.6 48.4 75.1 100.0
SKAT-O 16.8 32.6 82.5 29.9 57.6 98.0 61.8 88.5 100.0
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Lung cancer data application
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Lung Cancer Study

Our data is from lung cancer exome-sequencing consortium study,
including 4 different cohorts.
After removing the duplicated individuals, sample size of different
cohorts

Cohort cases controls Total
Toronto 260 258 518
Liverpool 65 69 134
HSPH 426 269 695
IARC 293 284 577
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Data summary

After filtering out multi-allelic variants, the MAF distribution for the
bi-allelic variants are

MAF 0 (0,0.01] (0.01,0.05] (0.05,0.5] Total
#(Variants) 62,940 1,095,794 60,204 129,412 1,348,350
Proportion (%) 4.7 81.3 4.5 9.6

In the analysis, the number of sites within the gene is at least 20 for
beta prior BF and 50 for mixture prior BF.
The number of genes used for beta prior BF and mixture prior BF are
14,321 and 7,454 respectively.
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QQ plot: include all variants
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QQ plot: include high impact variants
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QQ plot: include high and moderate impact variants
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Bayesian FDR application

Table: Estimate of π0

γ = 1− 1
m γ = 0.99 γ = 0.95 γ = 0.9

beta mixture beta mixture beta mixture beta mixture
all variants 1 1 0.9993095 1 1 1 1 1
high risk 1 1 0.9995661 1 1 1 0.9952272 1

moderate risk 1 1 1 1 0.9987782 1 0.9992063 1

FDR of the top gene using beta prior in the moderate risk dataset:
γ = 0.95, FDR ≈ 0.007
γ = 0.9, FDR ≈ 0.01
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Top 20 genes with beta prior: high impact variants

gene.name chr sites BFbeta p.beta BF(TO) BF(Livepool) BF(HSPH) BF(IARC)
CAMTA2 17 48 807.97 2.53e-04 35.13 1.64 1.71 10.48
ADAMTSL4 1 52 397.20 5.41e-04 3.85 0.98 17.91 10.09
CACNA1G 17 44 283.65 7.77e-04 2.54 0.97 13.08 10.24
SCRIB 8 56 249.19 8.93e-04 4.35 1.70 2.19 24.98
SREBF2 22 43 247.25 9.01e-04 8.26 0.94 3.38 21.21
ERBB2 17 36 224.39 1.00e-03 7.70 0.89 5.06 2.10
PCDH7 4 22 212.20 1.06e-03 4.62 5.35 3.61
SAMD4B 19 21 139.04 1.68e-03 1.16 1.95
CDC42BPA 1 38 135.67 1.73e-03 1.03 1.15 346.24
PAMR1 11 22 127.98 1.84e-03 7.83 1.05 24.03
PP2D1 3 31 121.32 1.95e-03 2.45 2.21 11.00 3.03
WDR92 2 21 120.58 1.96e-03 1.65 1.08 7.29
CCDC60 12 31 116.36 2.04e-03 9.69 0.89 1414.61 1.04
ABL2 1 30 114.33 2.08e-03 5.43 3.52 1.66 4.98
KIF20A 5 24 113.20 2.10e-03 49.67 2.74 2.92
RBM14 11 21 110.41 2.16e-03 1.09 5.84 1.77
TERT 5 26 106.05 2.26e-03 28.90 0.89 1.39 13.90
AXDND1 1 37 90.50 2.68e-03 1.30 0.94 11.12 5.40
LRSAM1 9 37 86.92 2.81e-03 195.87 2.64 1.91 1.41
FN1 2 63 78.13 3.15e-03 2.51 1.07 5.26 3.70
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Impact of protective variants
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Figure: The Y-axis represents the difference in total minor allele counts between controls (u1) and
cases (u2) at each single site (locus) of the region. If the genetic variant has a deleterious effect on the
disease, then u2 > u1 and conversely if it has a protective effect, then u1 > u2.
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Discussion
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Discussion

The use of empirical Bayes priors along with a Bayesian control of
FDR offer a comprehensive framework to make genome-wide
statistical inference about the important chromosomal regions
associated with the disease of interest
How to define the priors? asymptotic properties of BF or informative
priors?
logBF ≈ logLR + log π(θ|H1)

π(θ|H0) - term
The regression framework might offer a good compromise (Zhou and
Guan, JASA, 2018) but still not fully developed for discrete outcomes
Future developments include the extension of the BF approach to
account for variant-level covariates and family designs
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