Smooth modeling of covariate effects in bisulfite sequencing-derived measures of DNA methylation

Kaiqiong Zhao

McGill University

Supervisors: Celia Greenwood & Karim Oualkacha

BIRS workshop New Statistical Methods for Family-Based Sequencing Studies

Banff Centre - August 5 - 10, 2018

Epigenetics and DNA Methylation

- change gene expression without changing DNA sequence
- can be altered by age, diet, stress and environmental exposures

 interest: identify genomic regions where DNA methylation patterns demonstrate alterations associated with disease phenotypes (DMRs).

Motivating Dataset Methylation profiles of Rheumatoid Arthritis (RA) patients and controls (provided courtesy of Dr. Marie Hudson, McGill)

 Samples: cell-separated blood samples of 22 RA patients and 21 healthy individuals from either T cells or monocytes.

	MONO	TCELL
RA	10	12
Control	8	13

- Methylation: targeted custom captured bisulfite sequencing [†]
 - Prior selection of predefined genomic regions of interest
 - $\Box~\sim$ 400, 000 regions in the genome
- This presentation focuses on one targeted region
 - Chr4: 102,711,629 102,712,832 (near gene BANK1)
 - consists of 123 CpG sites

[†] Allum et al (2015) *Nature*.

Position	Unmeth counts	Meth counts	Total counts	Sample ID	Sample-level covariates
102711629	2	2	4	1	
102711630	15	0	15	1	
102711649	15	0	15	1	
102711650	8	0	8	1	
102711850	15	0	15	2	
102711851	4	9	13	2	

Sample-level covariates: disease status, cell type composition, age, smoking status...

Challenges

Read-depth variability

□ The total number of reads varies at different CpG sites. Modeling the proportion treats noisy measurements the same way as accurate ones $\left(\frac{5}{10} = \frac{50}{100}\right)$

missing values occur frequently

Variability in cell-type mixture proportions

ightarrow adjusting for multiple covariates

Methylation levels vary substantially across different cell types, which can confound the association of interest.

Experimental errors

- Sequencing errors: more mis-alignment of unmethylated reads after bisulfite sequencing
- Bisulfite conversion errors: incomplete C-T conversion; or over-treatment with bisulfite leading to conversion of methylated C to T

Existing methods & Motivations

Challenges	BSmooth (Hansen et al., 2012)	BiSeq (Hebestreit et al., 2013)	SMSC (Lakhal-Chaieb et.al., 2017)
Variable read-depth	√ 		√
Experimental error			\checkmark
Mixture of cell types		\checkmark	
Multiple covariates		\checkmark	

Most of the existing methods are of two-stage nature
 (1) smooth the methylated proportions for each sample, and
 (2) fit model (t-test or beta regression) to the smoothed methylation data.

- Motivation: extend the work in Lakhal-Chaieb et.al., 2017 to enable an integrated analysis of multiple samples that allows for
 - cell type mixtures, and
 - □ multiple **covariates** in the model.

Notation & Model

Let (i, j, k) index sample, CpG sites and reads respectively.

$$i = 1, 2, \dots l; \ j = 1, 2, \dots n_i; \ k = 1, 2, \dots X_{ij}, \ N = \sum_{i=1}^{n} n_i$$

Example: CpG site j for Individual i

Model

▶ Assume **known error rates** *p*₀ and *p*₁,

$$p_0 = \mathbb{P}(Y_{ijk} = 1 | S_{ijk} = 0)$$

$$p_1 = \mathbb{P}(Y_{ijk} = 1 | S_{ijk} = 1).$$

(Lakhal-Chaieb et.al., 2017)

We specify model

$$S_{ij} \mid \boldsymbol{Z}_{i}, X_{ij} \sim \text{Binomial}(X_{ij}, \pi_{ij})$$

$$\theta_{ij} = \log \left\{ \frac{\pi_{ij}}{1 - \pi_{ij}} \right\} = \beta_0(t_{ij}) + \beta_1(t_{ij}) Z_{1i} + \beta_2(t_{ij}) Z_{2i} + \ldots + \beta_P(t_{ij}) Z_{Pi}.$$

Use splines to parametrize smooth covariate effects:

$$\beta_{p}(t_{ij}) = \sum_{l=1}^{L} \alpha_{pl} B_{l}(t_{ij}) \text{ for } p = 0, 1, \dots P.$$

Smoothing parameters $\{\lambda_0, \lambda_1, \dots, \lambda_P\}$ for controlling the smoothness of $\beta_p(t)$

$$\mathcal{L}^{\text{Penalization}} = \sum_{\rho=0}^{P} \lambda_{\rho} \int \left(\beta_{\rho}^{\prime \prime}(t) \right)^{2} dt = \sum_{\rho=0}^{P} \lambda_{\rho} \alpha_{\rho}^{T} \mathbf{A} \alpha_{\rho}$$

Methods

Penalized EM algorithm Initialization: α* λ*; repeat E-step: calculate the conditional expected outcomes E(S_{ij} | Y_{jk}) M-step: (α̂, λ̂) = arg max Q(α, λ | α*). (Q is the binomial likelihood replacing S_i with its expectations)

repeat 2.1 P-IRLS iteration.

2.2 Smoothing parameters estimated by REML[‡].

until estimates converge;

$\widehat{lpha} ightarrow lpha^{\star}$ and $\widehat{\lambda} ightarrow \lambda^{\star}$

until estimates converge;

 Inference of smooth covariate effects taking account of the uncertainty in both E step and M step

$$\mathcal{H}(\alpha) = \left\{ \frac{\partial^2 \mathcal{Q}(\alpha \mid \alpha^*)}{\partial \alpha \; \partial \alpha^T} + \frac{\partial^2 \mathcal{Q}(\alpha \mid \alpha^*)}{\partial \alpha \; \partial \alpha^{*T}} \right\} \Big|_{\alpha^* = \alpha}^{\ddagger}$$

 $\implies \text{Estimates of the smooth} \\ \begin{array}{c} \text{functions of covariates effects} \\ \hline \beta_1(t), \beta_2(t) \dots \beta_P(t). \end{array}$

- $\implies \text{Variance of the smooth} \\ \text{estimates } \widehat{\mathbb{Var}}(\widehat{\beta_p(t)})$
- $\implies \text{A region-wise test statistic}$ $(p-value) \text{ for } H_0 : \beta_p(t) = \mathbf{0}$ $\widehat{\alpha_p} \left\{ \widehat{\mathbb{Var}}(\widehat{\alpha_p}) \right\}^{-1} \widehat{\alpha_p}^T \sim \chi^2_{edf} \text{ where }$

$$edf = trace(2H - HH^{T})$$

[‡] Oakes, D. (1999) Direct calculation of the information matrix via the EM. JRSSB

Data example Raw data & per-sample smoothed estimates

Genomic position (in bp)

Inference of the smooth covariate effects

Predicted methylation levels

Simulation

• $\beta_3(t) = 0$ and error parameters $p_0 = 0.003$ and $1 - p_1 = 0.1^{\ddagger}$

[‡] Prochenka.et al. (2015) Bioinformatics.

Coverage probability of confidence intervals

Region-based p-values under null

Samp 400, Simu size 100

14

Samp 40, Simu size 1000

Summary & Discussion

- 15
- a model characterizing bisulfite sequencing data from multiple samples, which copes naturally with variable read depth, experimental errors and test samples with a mixture of cell types.
- a smoothed EM method to make inference about smooth exposure/covariate effects.
- the method is shown to be capable in capturing the major underlying patterns in the data.

Next step plans

- estimating error rate p₀ by calculating C-T conversion rate at non-CpG Cs
- □ adding subject-specific random effects to account for the heterogeneity in methylation profiles that cannot be explained by covariates *Z*_is in the model
- □ correlated samples

Acknowledgement

Dr. Celia Greenwood (McGill) Dr. Karim Oualkacha (UQAM) Dr. Lajmi Lakhal-Chaieb (Laval) Dr. Kathleen Klein (JGH) Dr. Marie Hudson (McGill)

Thanks

Questions & Comments