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The Hereditary Nature of Disease

Inference regarding the hereditary nature of disease is initially based on the nature

and extent of the within-family association in some feature of the disease process

Fisher (1934)

Analysis are typically based on correlated (within-families) responses on disease status

Ziegler et al. (2000)

Families are typically selected through identification of an affected individual called

the proband resulting in a biased sampling scheme

Much work has been carried out for the analysis of biased samples of clustered binary

responses Cannings and Thompson (1977); Burton et al. (2000)
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Illness-Death Models Xu et al. (2010)

0

HEALTHY

1

DISEASE

2



Illness-Death Models Xu et al. (2010)
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Offers a natural and helpful frame for joint modeling of disease onset and death

2



Notation and Selection Conditions

Here we consider the selection conditions for the proband in a family study

• B is calendar time of birth

• R0 is date of screening and recruitment to a prevalent cohort study

• R1 is date of proband sub-sampling for family study

Sampling Conditions for Proband

Let C0 = R0−B denote the age at screening for a prevalent cohort and A0 = R1−B
denote the age at proband sampling from the prevalent cohort

• Proband must be alive and diseased at age C0 and A0
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Selection of Family Members to Proband
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1. Clustered Illness-Death Model
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Notation

Xij1 is the age at disease onset for member j of family i

Xij2 is the age at post-disease death for member j of family i

Xij3 is the age at disease-free death for member j of family i

j = 0, . . . ,mi, i = 1, . . . , nF
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Family Data

Bij is birth data of member j of family i, individual (i, j)

Vij are fixed covariates

Xijk is age at entry to state k for individual (i, j)

Zij(s) is the state occupied for individual (i, j) at age s

Hij(a) = {Zij(s), 0 < s < a, Bij, Vij}

lim
∆a↓0

P (Zij(a + ∆a−) = k | Zij(a−) = h, Hij(a))

∆a
= λijk(t, a | Hij(a))

with t = Bij + a and (h, k) ∈ {(0, 1), (0, 3), (1, 2)}
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A Markov Proportional Intensity Model

Assume the disease process is Markov given (Bij, Vij) so

λijk(t, a | Hij(a)) = λk(t, a | bij, vij), k = 1, 2, 3

Disease Intensity

λ1(t, a | bij, vij) = λ1(a) exp(v′ijβ1)

Mortality Andersen et al. (1985)

Allow calendar time trends and set

λ3(t, a|bij, vij) = λ3(t, a|bij)

λ2(t, a | bij, vij) = λ3(t, a|bij) ν0(a) exp(v′ijβ2)
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Joint Models for Age at Disease Onset

Let Bi = (Bi0, . . . , Bimi
)′ and V i = (Vi0, . . . , Vimi

)′

Copula Models with Latent Variable Framework Joe (1997)

P (Xi01 > a0, . . . , Ximi1 > ami
| V i;ϕ) = C(F(a0|Vi0;φ1), . . . ,F(ami

| Vimi
;φ1); ρ)

where ϕ = (φ′1, ρ)′

Let φ = (φ′1, φ
′
2)′ where φ2 is a parameter vector for the transition from the disease

to the death state and ψ = (φ′, ρ)

The Cross Ratio for Age at Onset with Pair j and k Oakes (1989)

θ(aj, ak) =
λ1(ak | Xij1 = aj;V i, ϕ)

λ1(ak | Xij1 > aj;V i, ϕ)
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Cause-specific Cross Ratio for Age at Onset

Bandeen-Roche and Liang (2002)

We are really in a semi-competing risk setting, so make two additional assumptions:

A.1 Independent semi-competing risks: Xij1 ⊥ Xij3 | Vij

A.2 Xij3 ⊥ {Zik(s), 0 < s} | Bi, V i for j 6= k

Then

θ1(aj, ak) =
λ1(ak | Xij1 = aj, Xij3 > aj; Bi, V i, ϕ)

λ1(ak | Xij1 > aj, Xij3 > aj; Bi, V i, ϕ)
= θ(aj, ak)

Cross-Odds Ratio Scheike et al. (2010)

π(a) =
ODDS(Xik1 ≤ a,Xik1 < Xik3|Xij1 ≤ a,Xij1 < Xij3;Bi,V i, ϕ)

ODDS(Xik1 ≤ a,Xik1 < Xik3, Bik, Vik, φ1)
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2. Biased Sampling and Likelihood Construction

Family studies are recruited through affected individuals (the proband); subscript 0

Lexis Diagram for Family Data
AGE

CALENDAR TIME

Ri0Bi0

Proband

Known disease onset

Known death

RiRiBij

Non-probands

Ci0

Ti0

Bi0: Date of birth for the proband

Ci0: Age of the proband at registry selection

Ti0: Age at onset of the proband

Ai0 Ai0: Age of the proband at family selection

Aij

Bij: Date of birth for non-proband

Aij: Age of non-proband at family selection

Ai = (Ai0, . . . , Aimi
) for family size mi + 1
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Likelihood Construction

Z i(si) = (Zi0(si0), Zi1(si1), . . . , Zimi
(simi

))′ with si = (si0, . . . , simi
)′

Z̄ij(s) = {Zij(u), 0 < u < s;Bij}

Z̄ i(si) = {Zij(u), 0 < u < sij, j = 0, . . . ,mi;Bi}

Biased selection (alive and diseased) of proband

Left truncated death and right-truncated disease onset time

Li0(φ) = P (Z̄i0(Ai0)|Zi0(Ci0) = 1, Ci0, Bi0, Vi0;φ)

Biased selection (alive) of non-probands

LIIi (ψ) ∝ Li0(φ)P (Z̄
−
i (A−i )|Z̄i0(Ai0), Zi0(Ai0) = 1,Z−i (A−i ) ∈ {0, 1}mi,Ai,Bi,V i;ψ)
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Pairwise Conditional Composite Likelihood Construction

We wish to avoid calculating

P (Z̄i0(Ai0), Zi0(Ai0) = 1,Z i(Ai) ∈ {0, 1}mi,Ai,Bi,V i)

The composite likelihood is Varin et al. (2011)

CL(ψ) ∝
nF∏
i=1

Li0(φ)
∏

1≤j<l≤mi

{
LIIijl(ψ)

} 1
mi−1 (1)

where

LIIijl(ψ) = P (Z̄
−
ijl(A

−
ijl)|Z̄i0(Ai0), Zi0(Ai0) = 1,Z−ijl(A

−
ijl) ∈ {0, 1}

2,Aijl,Bijl,V ijl;ψ)

• Z̄ ijl(sijl) = {Zih(u), 0 < u < sih, h = 0, j, l;Bijl} Aijl = (Ai0, Aij, Ail)
′

• Bijl = (Bi0, Bij, Bil)
′ V ijl = (V ′i0, V

′
ij, V

′
il)
′
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3. Use of Auxiliary Data to Augment likelihood

Auxiliary data are critical because

• proband simply gives a right-truncated onset time

• low incidence of disease among non-probands

• λ3(·, ·) and λ2(·, ·) are inestimable from the family data alone

The combination of data from different sources have been suggested

• for case-control studies Pfeiffer et al (2008), Zheng et al (2010)

• for twin-based studies Balliu et al (2012)

We consider Zhong and Cook (2016, 2017)

• a registry data (with follow-up) −→ λ2()

• a cross-sectional survey yielding current status data −→ λ1()

• a national statistics for mortality rate −→ λ3()

3. Use of Auxiliary Data to Augment likelihood 13



Augmented Likelihood Construction

A1, A2 is the set of individuals in the registry and the cross-sectional survey

Xr1 is the age at onset, Xr2 is the age at death following disease (if available)

Cr is the age at recruitment and A∗r = min(C∗r , Xr2) with C∗r the last assessment time

We multiply CL(ψ) in (1) by LA1 × LA2 where

LA1 ∝
nR∏
r

P (Z̄r(A
∗
r)|Zr(Cr) = 1, Cr, Br, Vr)

LA2 ∝
nS∏
r

P (Zr(Cr) = 0|Zr(Cr) ∈ {0, 1}, Br, Vr)
I(Zr(Cr)=0)

× P (Zr(Cr) = 1|Zr(Cr) ∈ {0, 1}, Br, Vr)
I(Zr(Cr)=1)

3. Use of Auxiliary Data to Augment likelihood 14



Canadian National Mortality Rates over (t, a)

Assume λ3(·, ·) are given by the population mortality rates (Statistics Canada and Robert, 2017)
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Figure 1: Age-specific population mortality rates by calender period, Canada, 1921-2011
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4. Assessment of Genetic Risk Factors Chatterjee et al (2006)

Genotype Variable

Gij are genotype (gene carrier indicator)

P (Gij = 0) = (1− p)2, P (Gij = 1) = p2 + 2p(1− p) with the allele frequency p

Gi = (Gi0, . . . , Gimi
)′

Wij = (V ′ij, Gij)
′ and W i = (V ′i,G

′
i)
′

The transition intensities are given as

λl(t, a|bij, wij) for l = 1, 2, 3

Assumptions Population satisfies

1 Hardy-Weinberg Equilibrium and Mendel’s law

2 Gij ⊥ Vij

3 Z̄ij(s) ⊥ Gik | Gij for j 6= k

4 λ3(t, a|bij, wij) = λ3(t, a|bij), λ2(t, a|bij, wij) = λ2(t, a|bij, vij)

4. Assessment of Genetic Risk Factors 16



Missing Genotype

• No genetic information in the current status data

• No available genotype data for non-probands who died before study

With missing genotype, we model Gij with allele frequency p

Pairwise Conditional Composite Likelihood

Li0(φ) = P (Z̄i0(Ai0), Gi0|Zi0(Ci0) = 1, Ci0, Bi0, Vi0;φ)

LIIijl(ψ) = P (Z̄
−
ijl(A

−
ijl),G

−
ijl|Z̄i0(Ai0), Zi0(Ai0) = 1, Gi0,Z

−
ijl(A

−
ijl) ∈ {0, 1}

2,Aijl,Bijl,V ijl;ψ)

where Gijl = (Gi0, Gij, Gil)
′

Auxiliary Data

Gr denote genotype of individual r in A1 or A2

LA1,r ∝ P (Z̄r(A
∗
r), Gr|Zr(Cr) = 1, Cr, Br, Vr),

LA2,r ∝
∏

h∈{0,1}

EGr|Zr(Cr)∈{0,1}[P (Zr(Cr) = h|Zr(Cr) ∈ {0, 1}, Br, Gr, Vr)]
I(Zr(Cr)=h)
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Simulations with Genotype

Family Data

Family size: 4 or 6 members with 2 parents and 2 or 4 children; P (mi + 1 = 4) = 2/3

The date of birth: the uniform dist (1920, 1950) if a parent or (1950, 1980) otherwise

The affected individual recruitment date: the uniform dist (1980, 2010)

The family sampling date on July 1st of 2010

Gij is the gene mutation with the allele frequency p=0.06

Generate Gi based on the family structure

λ1(a|Wij) = λ01 exp(Gijα) with λ01 = 0.01 and α = log(1.5)

λ02(t, a) = νλ03(t, a) with ν = 1.1

4. Assessment of Genetic Risk Factors 18



Auxiliary Data

Registry data: follow-up by July 1st of 2010 with the record of death post disease

Current status survey data: the date of birth from the uniform dist (1930, 1980) and

the sampling date as July 1st of 2000

Sample Size

nF = 1000, nR = 2000, nS = 1000

Design

Not Modeling Gi:

(i) Family studies + Registry (All genotype is available)

Modeling Gi:

(ii) Family studies + Registry + Survey w/ missing genotype

4. Assessment of Genetic Risk Factors 19



Empirical Properties of Estimates

Table 1: Two sources of auxiliary data: the registry follow-up data and the current status survey

data; Clayton copula with Kendall’s τ=0.2, 0.4; nF = 1000, nR = 2000, nS = 1000, and nsim = 1000

Registry Data Registry + Current Status Data

τ PARAMETER EBIAS ESE ASE ECP EBIAS ESE ASE ECP

0.2 log(λ01) 0.001 0.061 0.064 0.951 -0.000 0.042 0.042 0.941

α -0.003 0.070 0.071 0.953 -0.003 0.065 0.065 0.949

log(ν) -0.001 0.047 0.046 0.951 -0.001 0.046 0.046 0.949

log(p) - - - - 0.002 0.055 0.055 0.949

τ 0.000 0.030 0.032 0.956 0.001 0.024 0.024 0.952

0.4 log(λ01) 0.004 0.081 0.082 0.955 0.001 0.046 0.045 0.951

α -0.001 0.063 0.062 0.949 -0.002 0.059 0.058 0.948

log(ν) -0.002 0.047 0.046 0.948 -0.002 0.046 0.046 0.950

log(p) - - - - 0.002 0.053 0.053 0.942

τ -0.001 0.035 0.035 0.949 0.001 0.023 0.023 0.941

4. Assessment of Genetic Risk Factors 20



5. Application to Psoriatic Arthritis (PsA) Family Studies

PsA is an immune-mediated inflammatory disease occurring commonly in patients

with psoriasis

The Centre for Prognosis Studies in Rheumatic Disease at the University of Toronto

was established in 1976 and has been following patients since its formation

To date in April of 2017, a total of 1436 patients in the Toronto Registry include a

number of 150 proband sampled for the family study

We have 168 pseudo families where two-generation families are considered with a total

of 532 individuals for the family study

Patients with PsA are at higher risk for death compared to the general population of

Ontario with a standardised mortality ratio of 1.36 Gladman (2008)

A total of 15307 respondents are sampled for a U.S. national survey of the National

Psoriasis Foundation in 2001 Gelfand et al. (2005)
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Lexis Diagram for a family

Family: One proband with parents
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Figure 2: Lexis diagram for a family with 3 members; one proband and parents
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Table 2: Estimates of parameters based on the augmented pairwise likelihood; auxiliary data include

the University of Toronto Psoriatic Arthritis Registry and the survey from Gelfand et al. (2005)

without/with genotype variable under the Exponential model and piecewise constant marginal model

for age at PsA onset with a cut point 40.

MARKER αmarker ν τ pmarker

- - 1.152 (0.016) 0.362 (0.083) -

B27 0.605 (0.239) 1.155 (0.080) 0.345 (0.085) 0.054 (0.012)

C06 0.117 (0.086) 1.155 (0.060) 0.362 (0.089) 0.115 (0.011)

• ν̂ = 1.152; the ratio of the hazard of death post-PsA to PsA-free death is 1.152

• τ̂ = 0.362 (95% CI: 0.199, 0.525; p value< 0.001)

• θ̂ = 2.134 (95% CI: 1.354, 2.914; p value< 0.001)

• HLA-B27 effect on PsA onset

RR = 1.831; 95% CI: 0.137, 1.073; p =0.011

5. Application to Psoriatic Arthritis (PsA) Family Studies 23



Figure 3: The cross-odds ratio for two siblings born at the same year 1930, 1940, 1950, 1960 (the

right panel) and a child born at 1930, 1940, 1950, 1960 given a parent born at 1905, 1915, 1925, 1935

(the left panel) based on the fitted model with no genetic marker
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Figure 4: The marginal probability of death and the cumulative incidence function of PsA by the

year of birth at 1930, 1940, 1950, 1960 based on the fitted model with no genetic marker
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Concluding Remarks

Within family dependence in disease process must be modeled to account for selection

bias

Less well-studied is the survival bias from requiring individuals (probands and non-

probands) to live until the conduct of the family study if they must be examined for

disease status

Modeling dependencies in the context of the illness death model is challenging

Identifiability issues require auxiliary data which enable one to fit appropriate models

Tests for genetic associations with disease onset perform well

Score tests are being developed for genetic associations

5. Application to Psoriatic Arthritis (PsA) Family Studies 26
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