Genotyping germline copy number variants in large-scale studies

Rob Scharpf

August 9, 2018

Goal

- To improve copy number calling at copy number polymorphic (CNP) regions in large-scale studies
- To extend these methods to trio-based study designs

Pancreatic cancer case-control consortium

- ≈ 8000 participants genotyped on the Illumina Omni-Exome array
- Inherited variants in ATM, BRCA2, and PALB2 known to increase risk
- 80% of familial clustering for this disease is unexplained

Arrays and capture-based sequencing (one genome)

Another sample

B allele frequency

- Imbalanced
- Balanced

Dependency of data quality on batch

Li et al, 2014 (BMC Genomics)

Arrays and capture-based sequencing (one region)

array

sequencing

- different studies / different regions

A known CNP region with 4 SNPs

$\square 1 \square 2 \square 3$

Arrays: Cardin et al., 2011 (Genetic Epidemiology)
Sequencing: XHMM, Conifer, CLAMMS, and others

A known CNP region with 4 SNPs

Genomic position

Recap

By genome:

- Bin-to-bin (or probe-to-probe) technical variation within a sample greatly limits resolution
- GC content and other unmodeled sequence characteristics that influence PCR and measured abundances
- Latent factors that cause groups of sample to appear very different (batch effects) are completely ignored

By region:

- Sequence-induced variation of abundances is less critical
- Batch effects can be estimated and modeled
- Not great for rare CNVs

Marginal distribution

Marginal distribution

Marginal distribution

Challenges

- Consequences of batch effects similar to copy number
- We do not know the batches
- Time is often a surrogate for the unknown batch effects
- Samples are processed on hundreds of chemistry plates in large samples

Data processing in the Pancreatic Cancer Consortium

DNA extracted from 9 centers

Randomization to
plate by case status and study center

Scan date of array

Surrogate variable analysis (SVA) for latent batch effects

- SVA would also remove variation from the latent biological subclasses (here, the latent copy number states)

Simple approach

- Provisionally define batch using commonly available metadata available on the samples in a study
- This information is too granular for mixture models
- hundreds of chemistry plates
- scan / sequencing date

eCDFs of the individual chemistry plates

Combine plates with similar eCDFs

Batch 1
Batch 2
Batch 3

Batches are mostly location shifts

Model abundances hierarchically as a mixture of t

 distributions

- top 2 models by marginal likelihood

Chemistry plate was just a guess

- Marginal likelihoods for 300 CNP regions
- Suggests timing explained more of the technical variation
- Or, study center / DNA extraction method was too coarse

Mixture components need not correspond to differences

 in latent copy number (unfortunately)- batch estimates do not always account for skewed / heavy-tailed data
- merge components by amount of overlap
- distinct copy number states with substantial overlap
- same copy number state with small overlap
- merging does not genotype components
- the actual copy number is critical for improving trio-based inference

Components with substantial overlap

CNP_025

$\underset{\text { index }}{\text { Component }} \square 1 \square 2 \square 3$

Approach: fit yet another mixture model

$$
\begin{array}{r}
\text { exm168720 } \\
\text { exm168709- } \\
\text { exm1773967 } \\
\text { exm168688 - } \\
\text { exm168686- } \\
k g p 22827313-6: ~
\end{array}
$$

- What copy number states maximize the likelihood of the observed allele frequencies?

Log likelihoods for the allele frequencies

Mapped components

Components with substantial overlap

A

- Components 2 and 3 capture the heterozygous deletion

Duplication polymorphism

A

D

CNPBayes

Home " Bioconductor 3.7 " Software Packages " CNPBayes

CNPBayes

platforms all downloads top 50% posts 0 in Bioc 3 years
build warnings
DOI: $10.18129 /$ B9.bioc.CNPBayes if y

Bayesian mixture models for copy number polymorphisms

Bioconductor version: Release (3.7)

Bayesian hierarchical mixture models for batch effects and copy number.
Author: Stephen Cristiano, Robert Scharpf, and Jacob Carey
Maintainer: Jacob Carey <jcarey15 at jhu.edu>
Citation (from within R, enter citation("CNPBayes")):
Cristiano S, Scharpf R, Carey J (2018). CNPBayes: Bayesian mixture models for copy number polymorphisms. R package version 1.10.0, https://github.com/scristia/CNPBayes.

Installation

To install this package, start R and enter:
\#\# try http:// if https:// URLs are not supported source("https://bioconductor.org/biocLite.R") biocLite("CNPBayes")

Conclusions

- Batches are inevetible in large scale studies
- Be careful using principal components to summarize copy number
- Metadata on the samples can be used to provisionally define batch
- Copy number (not mixture component indices) critical for extension to trio-based studies

Acknowledgements

- Stephen Cristiano
- Alison Klein
- David McKean
- Jacob Carey

