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Outline of talk

• A comparision of the use of ultraproducts in model theory
and operator algebra

• Ultraproducts as an exploratory tool for finding the right
language

• Test case 1: correspondences and property T
• Test case 2: the uniform 2-norm
• Test case 3: σ-finite von Neumann algebras



The role of ultraproducts

Theorem (Łoś’ Theorem)
SupposeMi are L-structures for all i ∈ I, U is an ultrafilter on I,
ϕ(x) is an L-formula and a ∈M :=

∏
U
Mi then

ϕM(a) = lim
i→U

ϕMi (ai).

Theorem
Suppose A and M are separable L-structures then TFAE

1. A embeds into N for some N ≡ M.
2. A embeds into MU for any free ultrafilter U on N.
3. A satisifies the universal theory of M.



Model theoretic use of ultraproducts

Theorem
For a class of L-structures C, TFAE
• C is an elementary class i.e. all L-structures satisfying

some set of sentences.
• C is closed under isomorphisms, ultraproducts and

elementary submodels.
• C is closed under isomorphisms, ultraproducts and

ultraroots.



Definable sets via functors

• Met will be the category of bounded metric spaces with
isometries as morphisms. Mod(T ) is the category of
models of T .

• Suppose we have a theory T in a language L and Si for
i ≤ n are sorts in L. We call a functor

X : Mod(T )→ Met

a T -functor if for every modelM of T , X (M) is a closed
subset of

∏m
j=1 Sj(M) and X is just restriction on

morphisms.
• This functor is called a definable set if for all modelsM of

T the function d(x ,X (M)) is a formula in T .



Definable sets and ultraproducts

Theorem
Suppose that X is a T -functor. Then the following are
equivalent:

1. X is a definable set.
2. For all sets I, ultrafilters U on I and models of T ,Mi for

i ∈ I, ifM =
∏
UMi then

X (M) =
∏
U

X (Mi).



Background on correspondences
Fix tracial von Neumann algebras (M, τM) and (N, τN).
• An M-N correspondence is a Hilbert space H together with

commuting normal representations πM and πN .
• If φ : M → N is a completely positive map then on M⊗̄N

define the sesquilinear form

〈a1 ⊗ b1,a2 ⊗ b2〉 = τN(φ(a∗2a1)b∗2b1).

Let Hφ be the correspondence obtained by taking the
completion of M⊗̄N with respect to 〈·, ·〉.

• If H is a correspondence, ξ ∈ H is K -bounded if for all
c ∈ M+, d ∈ N+

〈cξ, ξ〉 ≤ K τM(c) and 〈ξd , ξ〉 ≤ K τN(d).

If ξ satisfies the first inequality it is called left bounded and
if the second, right bounded.



Background, cont’d

• Suppose H is a correspondence, ξ ∈ H is right bounded
and Rξ : N → H by the right action. We define φξ : M → N
by

φξ(m) = R∗ξmRξ.

φξ(m) is in fact in N and not just in B(L2(N, τN)) and φξ is a
c.p. map.

• If ξ is a right bounded vector in a correspondence H then
Hφξ is isomorphic to MξN via the map which sends 1⊗ 1
to ξ.

• Every correspondence is the direct sum of cyclic
correspondences of the form Hφ where φ is a c.p. map
associated to a 1-bounded vector or subtracial vector.



Property T for II1 factors

Definition
We say that a II1 factor M has property T if for every ε > 0 there
is a finite F ⊆ M and δ > 0 such that if H is an M-M
correspondence, ξ ∈ H is a unit vector and ‖[x , ξ]‖ ≤ δ for all
x ∈ F then there is a central vector η ∈ H such that ‖η − ξ‖ ≤ ε.

• Problem 1: We don’t have a model theory of
correspondences.

• Problem 2: We don’t have a notion of ultraproduct for
correspondences.



The language of correspondences

Fix tracial von Neumann algebras M and N. The language L of
M-N correspondences will include:
• for each K ∈ N, there will be a sort SK and for any

correspondence H, SK (H) will be the set of K -bounded
vectors. The metric will be induced by the inner product on
H;

• for K < L there will be an isometry from SK to SL which for
a given correspondence will be interpreted as the inclusion
map;

• + will be defined on all pairs of sorts and will be interpreted
standardly as the restriction of addition from any
correspondence; and,

• there will be unary functions for each c ∈ M and d ∈ N
which implement the left and right actions.



The equivalence

• Let Corr(M,N) be the category of M-N correspondences.
• For H ∈ Corr(M,N), let H be the L-structure described on

the previous slide, called the dissection of H, and C be the
class of all such structures.

• We want to show two things:
1. C is an elementary class, and
2. the functor H → H is an equivalence.



Ultraproducts of correspondences

1. Fix M-N correspondences Hi for i ∈ I and an ultrafilter U
on I. We can form the ultraproduct in two ways:

2. We could take the ultraproducts of the dissections. This
amounts to forming SK (Hi) for each K and i and let H, the
ultraproduct, be the closure of

⋃
K

(∏
U

SK (Hi)

)

in
∏
U Hi .

3. Alternatively, we could take those ξ ∈
∏
U Hi at which the

left and right actions at ξ are continuous i.e.
Lξ : M →

∏
U Hi and Rξ : N →

∏
U Hi are bounded.



The main theorem

Theorem

1. If M and N are tracial von Neumann algebras then the
class of M-N correspondences forms an elementary class.

2. If M is a II1 factor then M has property T iff the set of
1-bounded M-central vectors is a definable set for the
class of M-M correspondences.

3. The class of M-N correspondences is model theoretically
very nice: it is stable, classifiable and has a model
companion.



Uniform 2-norm

• Fix a C∗-algebra A and a non-empty set Φ of states on A.
For x ∈ A, define

‖x‖Φ = sup
ϕ∈Φ
‖x‖ϕ.

• This is a semi-norm on A and we say Φ is faithful if ‖ · ‖Φ is
a norm.

• Already (A, ‖ · ‖, ‖ · ‖Φ) is a metric structure but we want
one more condition.

• We say Φ is full if it is invariant under unitary conjugation.
We now assume Φ is full and faithful.



Uniform 2-norm, cont’d

Now mimic the construction of the standard representation: let
L2(A,Φ) be the Banach space completion of A with respect to
‖ · ‖Φ. We call ξ ∈ L2(A,Φ) K -bounded if

‖aξ‖Φ ≤ K‖a‖Φ and ‖ξa‖Φ ≤ K‖a‖Φ.

Let AΦ be the Banach algebra of all bounded vectors in
L2(A,Φ). There is a natural involution on AΦ arising from the
adjoint on A and this makes AΦ an involutive Banach algebra.
Let’s call AΦ the statial algebra associated to Φ.

Proposition
If Φ is full and faithful then AΦ admits an equivalent C∗-algebra
norm.



Uniform 2-norm and ultraproducts
• For each i ∈ I, fix (Ai , ‖ · ‖, ‖ · ‖Φi ) for C∗-algebras A and full

and faithful Φi , and let Ai be its associated statial algebra.
Let U be an ultrafilter on I. Here are three equivalent ways
to view the ultraproduct of the Ai ’s:

• Form
∏
U Ai as a C∗-algebra and consider its left and right

actions on the Banach space ultraproduct
∏
U L2(Ai ,Φi).

Let
∏
U Ai be the closure of the points of continuity of these

actions.
• Equivalently, the

∏
U Ai could be the closure of the

bounded points of this action.
• A third possibility is that we could take the ultraproduct of

the metric structures (Ai , ‖ · ‖, ‖ · ‖Φi ) and then let
∏
U Ai be

the closure of the bounded points of L2(
∏
U Ai , ‖ · ‖Φ̂)

where Φ̂ = limU Φi .
• The last takes advantage of the fact that the statial algebra

is an imaginary sort.



Observations

Theorem (Ozawa,Ng-Robert,Rørdam,BBSTWW)
Suppose A is a simple, exact, Z-stable C∗-algebra in which all
quasi-traces are traces. Then if Φ = T (A), ‖ · ‖Φ is equivalent to
a LC∗-formula in the theory of A.

Suppose that A is a C∗-algebra and Φ is full and faithful. Then
we have a short exact sequence

0→ J → AU → AUΦ → 0

where J is the kernel of the quotient map. By demanding that Φ
is faithful, the map from A to AΦ is injective. This implies that
the kernel of the quotient map is not a definable set.



σ-finite von Neumann algebras

• A von Neumann algebra M is σ-finite if it has a faithful,
normal state. We let σ-vNa be the class of all pairs (M, ϕ)
where M is a vNa and ϕ is a faithful normal state on M.

• For (M, ϕ) ∈ σ-vNa, let Hϕ be the standard representation
arising from M via ϕ. M acts naturally on Hϕ on the left.

• We say that a ∈ M is ϕ-right K -bounded if

〈ba,ba〉ϕ ≤ K 〈b,b〉 for all b ∈ M.

• Fact: If (M, ϕ) is a σ-finite vNa then the set of ϕ-right
bounded elements of M is strongly dense.



The Ocneanu ultraproduct

• Fix σ-finite vNa’s (Mi , ϕi) for i ∈ I and U , an ultrafilter on I.

• For a state ϕ on a σ-finite vNa, write ‖x‖#
ϕ for√

ϕ(x∗x) + ϕ(xx∗) and let

`∞(Mi , I) = {(ai) ∈
∏

I

Mi : sup
I
‖ai‖ <∞} and

J = {(ai) ∈ `∞(Mi , I) : lim
U
‖ai‖#

ϕi
= 0}.

• Then the Ocneanu ultraproduct is M(J)/J with faithful
normal state given by limU ϕi .



σ-finite von Neumann algebras - the language

Fix a σ-finite (M, ϕ).
• We will have sorts SK ,N(M) for the set of all x ∈ M such

that ‖x‖ ≤ N and both x and x∗ are ϕ-right K -bounded.
The norm on these sorts is ‖ · ‖#

ϕ . The sorts are complete
with respect to this norm.

• This leads to a natural notion of the dissection of (M, ϕ)
where we restrict all the algebraic operations to the sorts.

• Let S be the class of all such dissections.



σ-finite von Neumann algebras - the theorem

Theorem

1. (Dabrowski) The class σ-vNa is categorically equivalent to
an elementary class.

2. The class S is an elementary class which is categorically
equivalent to σ-vNa. Write Tσ for the theory of S.

If (M, ϕ) is a σ-finite let ∆ϕ be the modular operator with
respect to ϕ and let

σt (x) = ∆itx∆−it for t ∈ R.

Corollary
For each t ∈ R, σt restricted to any sort S is Tσ-definable. If this
restriction is given by a formula ψS

t then the map t 7→ ψS
t is

continuous in the logic topology.



Thank you!


