Model theory and operator algebras BIRS, November 2018 # Native land aknowledgement I wish to acknowledge that we are meeting today on the traditional lands of the Ktanaxa, Tsuu T'ina and Niitsitapi peoples. # Correspondences and model theory Bradd Hart Joint work with I. Goldbring and T. Sinclair Nov. 28, 2018 #### Outline of talk - A comparision of the use of ultraproducts in model theory and operator algebra - Ultraproducts as an exploratory tool for finding the right language - Test case 1: correspondences and property T - Test case 2: the uniform 2-norm - Test case 3: σ-finite von Neumann algebras # The role of ultraproducts #### Theorem (Łoś' Theorem) Suppose \mathcal{M}_i are \mathcal{L} -structures for all $i \in I$, \mathcal{U} is an ultrafilter on I, $\varphi(\overline{x})$ is an \mathcal{L} -formula and $\overline{a} \in \mathcal{M} := \prod_{\mathcal{U}} \mathcal{M}_i$ then $$\varphi^{\mathcal{M}}(\overline{a}) = \lim_{i \to U} \varphi^{\mathcal{M}_i}(\overline{a}_i).$$ #### **Theorem** Suppose A and M are separable \mathcal{L} -structures then TFAE - 1. A embeds into N for some $N \equiv M$. - 2. A embeds into $M^{\mathcal{U}}$ for any free ultrafilter \mathcal{U} on \mathbb{N} . - 3. A satisifies the universal theory of M. # Model theoretic use of ultraproducts #### **Theorem** For a class of \mathcal{L} -structures \mathcal{C} , TFAE - C is an elementary class i.e. all L-structures satisfying some set of sentences. - C is closed under isomorphisms, ultraproducts and elementary submodels. - C is closed under isomorphisms, ultraproducts and ultraroots. #### Definable sets via functors - Met will be the category of bounded metric spaces with isometries as morphisms. Mod(T) is the category of models of T. - Suppose we have a theory *T* in a language *L* and *S_i* for *i* ≤ *n* are sorts in *L*. We call a functor $$X \colon \mathsf{Mod}(T) \to \mathsf{Met}$$ a T-functor if for every model \mathcal{M} of T, $X(\mathcal{M})$ is a closed subset of $\prod_{j=1}^m S_j(\mathcal{M})$ and X is just restriction on morphisms. This functor is called a definable set if for all models M of T the function d(x, X(M)) is a formula in T. # Definable sets and ultraproducts #### **Theorem** Suppose that X is a T-functor. Then the following are equivalent: - 1. X is a definable set. - 2. For all sets I, ultrafilters \mathcal{U} on I and models of T, \mathcal{M}_i for $i \in I$, if $\mathcal{M} = \prod_{\mathcal{U}} \mathcal{M}_i$ then $$X(\mathcal{M}) = \prod_{\mathcal{U}} X(\mathcal{M}_i).$$ # Background on correspondences Fix tracial von Neumann algebras (M, τ_M) and (N, τ_N) . - An M-N correspondence is a Hilbert space H together with commuting normal representations π_M and π_N . - If φ: M → N is a completely positive map then on M⊗N define the sesquilinear form $$\langle a_1 \otimes b_1, a_2 \otimes b_2 \rangle = \tau_N(\phi(a_2^*a_1)b_2^*b_1).$$ Let H_{ϕ} be the correspondence obtained by taking the completion of $M \bar{\otimes} N$ with respect to $\langle \cdot, \cdot \rangle$. • If H is a correspondence, $\xi \in H$ is K-bounded if for all $c \in M_+$, $d \in N_+$ $$\langle c\xi, \xi \rangle \leq K\tau_M(c)$$ and $\langle \xi d, \xi \rangle \leq K\tau_N(d)$. If ξ satisfies the first inequality it is called left bounded and if the second, right bounded. # Background, cont'd Suppose H is a correspondence, ξ ∈ H is right bounded and R_ξ : N → H by the right action. We define φ_ξ : M → N by $$\phi_{\xi}(m) = R_{\xi}^* m R_{\xi}.$$ $\phi_{\xi}(m)$ is in fact in N and not just in $B(L^2(N, \tau_N))$ and ϕ_{ξ} is a c.p. map. - If ξ is a right bounded vector in a correspondence H then $H_{\phi_{\xi}}$ is isomorphic to $\overline{M\xi N}$ via the map which sends 1 \otimes 1 to ξ . - Every correspondence is the direct sum of cyclic correspondences of the form H_φ where φ is a c.p. map associated to a 1-bounded vector or subtracial vector. # Property T for II₁ factors #### Definition We say that a II_1 factor M has property T if for every $\epsilon > 0$ there is a finite $F \subseteq M$ and $\delta > 0$ such that if H is an M-M correspondence, $\xi \in H$ is a unit vector and $\|[x,\xi]\| \le \delta$ for all $x \in F$ then there is a central vector $\eta \in H$ such that $\|\eta - \xi\| \le \epsilon$. - Problem 1: We don't have a model theory of correspondences. - Problem 2: We don't have a notion of ultraproduct for correspondences. # The language of correspondences Fix tracial von Neumann algebras M and N. The language \mathcal{L} of M-N correspondences will include: - for each $K \in \mathbb{N}$, there will be a sort S_K and for any correspondence H, $S_K(H)$ will be the set of K-bounded vectors. The metric will be induced by the inner product on H; - for K < L there will be an isometry from S_K to S_L which for a given correspondence will be interpreted as the inclusion map; - + will be defined on all pairs of sorts and will be interpreted standardly as the restriction of addition from any correspondence; and, - there will be unary functions for each c ∈ M and d ∈ N which implement the left and right actions. ### The equivalence - Let Corr(*M*, *N*) be the category of *M*-*N* correspondences. - For $H \in \text{Corr}(M, N)$, let \overline{H} be the \mathcal{L} -structure described on the previous slide, called the dissection of H, and \mathcal{C} be the class of all such structures. - We want to show two things: - 1. C is an elementary class, and - 2. the functor $H \to \overline{H}$ is an equivalence. # Ultraproducts of correspondences - 1. Fix M-N correspondences H_i for $i \in I$ and an ultrafilter \mathcal{U} on I. We can form the ultraproduct in two ways: - 2. We could take the ultraproducts of the dissections. This amounts to forming $S_K(H_i)$ for each K and i and let H, the ultraproduct, be the closure of $$\bigcup_{K} \left(\prod_{\mathcal{U}} S_{K}(H_{i}) \right)$$ in $\prod_{\mathcal{U}} H_i$. 3. Alternatively, we could take those $\xi \in \prod_{\mathcal{U}} H_i$ at which the left and right actions at ξ are continuous i.e. $L_{\xi} : M \to \prod_{\mathcal{U}} H_i$ and $R_{\xi} : N \to \prod_{\mathcal{U}} H_i$ are bounded. #### The main theorem #### Theorem - If M and N are tracial von Neumann algebras then the class of M-N correspondences forms an elementary class. - 2. If M is a II₁ factor then M has property T iff the set of 1-bounded M-central vectors is a definable set for the class of M-M correspondences. - 3. The class of M-N correspondences is model theoretically very nice: it is stable, classifiable and has a model companion. #### Uniform 2-norm Fix a C*-algebra A and a non-empty set Φ of states on A. For x ∈ A, define $$\|x\|_{\Phi} = \sup_{\varphi \in \Phi} \|x\|_{\varphi}.$$ - This is a semi-norm on A and we say Φ is faithful if $\|\cdot\|_{\Phi}$ is a norm. - Already $(A, \|\cdot\|, \|\cdot\|_{\Phi})$ is a metric structure but we want one more condition. - We say Φ is full if it is invariant under unitary conjugation. We now assume Φ is full and faithful. ### Uniform 2-norm, cont'd Now mimic the construction of the standard representation: let $L^2(A,\Phi)$ be the Banach space completion of A with respect to $\|\cdot\|_{\Phi}$. We call $\xi\in L^2(A,\Phi)$ K-bounded if $$\|a\xi\|_{\Phi} \leq K\|a\|_{\Phi}$$ and $\|\xi a\|_{\Phi} \leq K\|a\|_{\Phi}$. Let A_{Φ} be the Banach algebra of all bounded vectors in $L^2(A,\Phi)$. There is a natural involution on A_{Φ} arising from the adjoint on A and this makes A_{Φ} an involutive Banach algebra. Let's call A_{Φ} the statial algebra associated to Φ . #### Proposition If Φ is full and faithful then A_{Φ} admits an equivalent C^* -algebra norm. # Uniform 2-norm and ultraproducts - For each $i \in I$, fix $(A_i, \|\cdot\|, \|\cdot\|_{\Phi_i})$ for C*-algebras A and full and faithful Φ_i , and let A_i be its associated statial algebra. Let \mathcal{U} be an ultrafilter on I. Here are three equivalent ways to view the ultraproduct of the A_i 's: - Form ∏_U A_i as a C*-algebra and consider its left and right actions on the Banach space ultraproduct ∏_U L²(A_i, Φ_i). Let ∏_U A_i be the closure of the points of continuity of these actions. - Equivalently, the $\prod_{\mathcal{U}} A_i$ could be the closure of the bounded points of this action. - A third possibility is that we could take the ultraproduct of the metric structures $(A_i, \|\cdot\|, \|\cdot\|_{\Phi_i})$ and then let $\prod_{\mathcal{U}} A_i$ be the closure of the bounded points of $L^2(\prod_{\mathcal{U}} A_i, \|\cdot\|_{\hat{\Phi}})$ where $\hat{\Phi} = \lim_{\mathcal{U}} \Phi_i$. - The last takes advantage of the fact that the statial algebra is an imaginary sort. #### **Observations** #### Theorem (Ozawa, Ng-Robert, Rørdam, BBSTWW) Suppose A is a simple, exact, \mathcal{Z} -stable C^* -algebra in which all quasi-traces are traces. Then if $\Phi = T(A)$, $\|\cdot\|_{\Phi}$ is equivalent to a \mathcal{L}_{C^*} -formula in the theory of A. Suppose that A is a C^* -algebra and Φ is full and faithful. Then we have a short exact sequence $$0 \to \textbf{\textit{J}} \to \textbf{\textit{A}}^{\mathcal{U}} \to \textbf{\textit{A}}^{\mathcal{U}}_{\Phi} \to 0$$ where J is the kernel of the quotient map. By demanding that Φ is faithful, the map from A to A_{Φ} is injective. This implies that the kernel of the quotient map is not a definable set. ### σ -finite von Neumann algebras - A von Neumann algebra M is σ -finite if it has a faithful, normal state. We let σ -vNa be the class of all pairs (M, φ) where M is a vNa and φ is a faithful normal state on M. - For $(M, \varphi) \in \sigma$ -vNa, let H_{φ} be the standard representation arising from M via φ . M acts naturally on H_{φ} on the left. - We say that $a \in M$ is φ -right K-bounded if $$\langle ba, ba \rangle_{\varphi} \leq K \langle b, b \rangle$$ for all $b \in M$. • Fact: If (M, φ) is a σ -finite vNa then the set of φ -right bounded elements of M is strongly dense. # The Ocneanu ultraproduct - Fix σ -finite vNa's (M_i, φ_i) for $i \in I$ and \mathcal{U} , an ultrafilter on I. - For a state φ on a σ -finite vNa, write $\|x\|_{\varphi}^{\#}$ for $$\sqrt{arphi(x^*x)+arphi(xx^*)}$$ and let $\ell^\infty(M_i,I)=\{(a_i)\in\prod_I M_i:\sup_I\|a_i\|<\infty\}$ and $J=\{(a_i)\in\ell^\infty(M_i,I):\lim_{\mathcal U}\|a_i\|_{arphi_i}^\#=0\}.$ • Then the Ocneanu ultraproduct is M(J)/J with faithful normal state given by $\lim_{\mathcal{U}} \varphi_i$. # σ -finite von Neumann algebras - the language Fix a σ -finite (M, φ) . - We will have sorts $S_{K,N}(M)$ for the set of all $x \in M$ such that $\|x\| \le N$ and both x and x^* are φ -right K-bounded. The norm on these sorts is $\|\cdot\|_{\varphi}^{\#}$. The sorts are complete with respect to this norm. - This leads to a natural notion of the dissection of (M, φ) where we restrict all the algebraic operations to the sorts. - Let S be the class of all such dissections. # σ -finite von Neumann algebras - the theorem #### **Theorem** - 1. (Dabrowski) The class σ -vNa is categorically equivalent to an elementary class. - 2. The class S is an elementary class which is categorically equivalent to σ -vNa. Write T_{σ} for the theory of S. If (M,φ) is a σ -finite let Δ_{φ} be the modular operator with respect to φ and let $$\sigma_t(x) = \Delta^{it} x \Delta^{-it}$$ for $t \in \mathbb{R}$. #### Corollary For each $t \in \mathbb{R}$, σ_t restricted to any sort S is T_{σ} -definable. If this restriction is given by a formula ψ_t^S then the map $t \mapsto \psi_t^S$ is continuous in the logic topology.