Model theory and operator algebras BIRS, November 2018

Native land aknowledgement

I wish to acknowledge that we are meeting today on the traditional lands of the Ktanaxa, Tsuu T'ina and Niitsitapi peoples.

Correspondences and model theory

Bradd Hart

Joint work with I. Goldbring and T. Sinclair

Nov. 28, 2018

Outline of talk

- A comparision of the use of ultraproducts in model theory and operator algebra
- Ultraproducts as an exploratory tool for finding the right language
- Test case 1: correspondences and property T
- Test case 2: the uniform 2-norm
- Test case 3: σ-finite von Neumann algebras

The role of ultraproducts

Theorem (Łoś' Theorem)

Suppose \mathcal{M}_i are \mathcal{L} -structures for all $i \in I$, \mathcal{U} is an ultrafilter on I, $\varphi(\overline{x})$ is an \mathcal{L} -formula and $\overline{a} \in \mathcal{M} := \prod_{\mathcal{U}} \mathcal{M}_i$ then

$$\varphi^{\mathcal{M}}(\overline{a}) = \lim_{i \to U} \varphi^{\mathcal{M}_i}(\overline{a}_i).$$

Theorem

Suppose A and M are separable \mathcal{L} -structures then TFAE

- 1. A embeds into N for some $N \equiv M$.
- 2. A embeds into $M^{\mathcal{U}}$ for any free ultrafilter \mathcal{U} on \mathbb{N} .
- 3. A satisifies the universal theory of M.

Model theoretic use of ultraproducts

Theorem

For a class of \mathcal{L} -structures \mathcal{C} , TFAE

- C is an elementary class i.e. all L-structures satisfying some set of sentences.
- C is closed under isomorphisms, ultraproducts and elementary submodels.
- C is closed under isomorphisms, ultraproducts and ultraroots.

Definable sets via functors

- Met will be the category of bounded metric spaces with isometries as morphisms. Mod(T) is the category of models of T.
- Suppose we have a theory *T* in a language *L* and *S_i* for *i* ≤ *n* are sorts in *L*. We call a functor

$$X \colon \mathsf{Mod}(T) \to \mathsf{Met}$$

a T-functor if for every model \mathcal{M} of T, $X(\mathcal{M})$ is a closed subset of $\prod_{j=1}^m S_j(\mathcal{M})$ and X is just restriction on morphisms.

 This functor is called a definable set if for all models M of T the function d(x, X(M)) is a formula in T.

Definable sets and ultraproducts

Theorem

Suppose that X is a T-functor. Then the following are equivalent:

- 1. X is a definable set.
- 2. For all sets I, ultrafilters \mathcal{U} on I and models of T, \mathcal{M}_i for $i \in I$, if $\mathcal{M} = \prod_{\mathcal{U}} \mathcal{M}_i$ then

$$X(\mathcal{M}) = \prod_{\mathcal{U}} X(\mathcal{M}_i).$$

Background on correspondences

Fix tracial von Neumann algebras (M, τ_M) and (N, τ_N) .

- An M-N correspondence is a Hilbert space H together with commuting normal representations π_M and π_N .
- If φ: M → N is a completely positive map then on M⊗N
 define the sesquilinear form

$$\langle a_1 \otimes b_1, a_2 \otimes b_2 \rangle = \tau_N(\phi(a_2^*a_1)b_2^*b_1).$$

Let H_{ϕ} be the correspondence obtained by taking the completion of $M \bar{\otimes} N$ with respect to $\langle \cdot, \cdot \rangle$.

• If H is a correspondence, $\xi \in H$ is K-bounded if for all $c \in M_+$, $d \in N_+$

$$\langle c\xi, \xi \rangle \leq K\tau_M(c)$$
 and $\langle \xi d, \xi \rangle \leq K\tau_N(d)$.

If ξ satisfies the first inequality it is called left bounded and if the second, right bounded.

Background, cont'd

 Suppose H is a correspondence, ξ ∈ H is right bounded and R_ξ : N → H by the right action. We define φ_ξ : M → N by

$$\phi_{\xi}(m) = R_{\xi}^* m R_{\xi}.$$

 $\phi_{\xi}(m)$ is in fact in N and not just in $B(L^2(N, \tau_N))$ and ϕ_{ξ} is a c.p. map.

- If ξ is a right bounded vector in a correspondence H then $H_{\phi_{\xi}}$ is isomorphic to $\overline{M\xi N}$ via the map which sends 1 \otimes 1 to ξ .
- Every correspondence is the direct sum of cyclic correspondences of the form H_φ where φ is a c.p. map associated to a 1-bounded vector or subtracial vector.

Property T for II₁ factors

Definition

We say that a II_1 factor M has property T if for every $\epsilon > 0$ there is a finite $F \subseteq M$ and $\delta > 0$ such that if H is an M-M correspondence, $\xi \in H$ is a unit vector and $\|[x,\xi]\| \le \delta$ for all $x \in F$ then there is a central vector $\eta \in H$ such that $\|\eta - \xi\| \le \epsilon$.

- Problem 1: We don't have a model theory of correspondences.
- Problem 2: We don't have a notion of ultraproduct for correspondences.

The language of correspondences

Fix tracial von Neumann algebras M and N. The language \mathcal{L} of M-N correspondences will include:

- for each $K \in \mathbb{N}$, there will be a sort S_K and for any correspondence H, $S_K(H)$ will be the set of K-bounded vectors. The metric will be induced by the inner product on H;
- for K < L there will be an isometry from S_K to S_L which for a given correspondence will be interpreted as the inclusion map;
- + will be defined on all pairs of sorts and will be interpreted standardly as the restriction of addition from any correspondence; and,
- there will be unary functions for each c ∈ M and d ∈ N which implement the left and right actions.

The equivalence

- Let Corr(*M*, *N*) be the category of *M*-*N* correspondences.
- For $H \in \text{Corr}(M, N)$, let \overline{H} be the \mathcal{L} -structure described on the previous slide, called the dissection of H, and \mathcal{C} be the class of all such structures.
- We want to show two things:
 - 1. C is an elementary class, and
 - 2. the functor $H \to \overline{H}$ is an equivalence.

Ultraproducts of correspondences

- 1. Fix M-N correspondences H_i for $i \in I$ and an ultrafilter \mathcal{U} on I. We can form the ultraproduct in two ways:
- 2. We could take the ultraproducts of the dissections. This amounts to forming $S_K(H_i)$ for each K and i and let H, the ultraproduct, be the closure of

$$\bigcup_{K} \left(\prod_{\mathcal{U}} S_{K}(H_{i}) \right)$$

in $\prod_{\mathcal{U}} H_i$.

3. Alternatively, we could take those $\xi \in \prod_{\mathcal{U}} H_i$ at which the left and right actions at ξ are continuous i.e. $L_{\xi} : M \to \prod_{\mathcal{U}} H_i$ and $R_{\xi} : N \to \prod_{\mathcal{U}} H_i$ are bounded.

The main theorem

Theorem

- If M and N are tracial von Neumann algebras then the class of M-N correspondences forms an elementary class.
- 2. If M is a II₁ factor then M has property T iff the set of 1-bounded M-central vectors is a definable set for the class of M-M correspondences.
- 3. The class of M-N correspondences is model theoretically very nice: it is stable, classifiable and has a model companion.

Uniform 2-norm

Fix a C*-algebra A and a non-empty set Φ of states on A.
 For x ∈ A, define

$$\|x\|_{\Phi} = \sup_{\varphi \in \Phi} \|x\|_{\varphi}.$$

- This is a semi-norm on A and we say Φ is faithful if $\|\cdot\|_{\Phi}$ is a norm.
- Already $(A, \|\cdot\|, \|\cdot\|_{\Phi})$ is a metric structure but we want one more condition.
- We say Φ is full if it is invariant under unitary conjugation.
 We now assume Φ is full and faithful.

Uniform 2-norm, cont'd

Now mimic the construction of the standard representation: let $L^2(A,\Phi)$ be the Banach space completion of A with respect to $\|\cdot\|_{\Phi}$. We call $\xi\in L^2(A,\Phi)$ K-bounded if

$$\|a\xi\|_{\Phi} \leq K\|a\|_{\Phi}$$
 and $\|\xi a\|_{\Phi} \leq K\|a\|_{\Phi}$.

Let A_{Φ} be the Banach algebra of all bounded vectors in $L^2(A,\Phi)$. There is a natural involution on A_{Φ} arising from the adjoint on A and this makes A_{Φ} an involutive Banach algebra. Let's call A_{Φ} the statial algebra associated to Φ .

Proposition

If Φ is full and faithful then A_{Φ} admits an equivalent C^* -algebra norm.

Uniform 2-norm and ultraproducts

- For each $i \in I$, fix $(A_i, \|\cdot\|, \|\cdot\|_{\Phi_i})$ for C*-algebras A and full and faithful Φ_i , and let A_i be its associated statial algebra. Let \mathcal{U} be an ultrafilter on I. Here are three equivalent ways to view the ultraproduct of the A_i 's:
- Form ∏_U A_i as a C*-algebra and consider its left and right actions on the Banach space ultraproduct ∏_U L²(A_i, Φ_i).
 Let ∏_U A_i be the closure of the points of continuity of these actions.
- Equivalently, the $\prod_{\mathcal{U}} A_i$ could be the closure of the bounded points of this action.
- A third possibility is that we could take the ultraproduct of the metric structures $(A_i, \|\cdot\|, \|\cdot\|_{\Phi_i})$ and then let $\prod_{\mathcal{U}} A_i$ be the closure of the bounded points of $L^2(\prod_{\mathcal{U}} A_i, \|\cdot\|_{\hat{\Phi}})$ where $\hat{\Phi} = \lim_{\mathcal{U}} \Phi_i$.
- The last takes advantage of the fact that the statial algebra is an imaginary sort.

Observations

Theorem (Ozawa, Ng-Robert, Rørdam, BBSTWW)

Suppose A is a simple, exact, \mathcal{Z} -stable C^* -algebra in which all quasi-traces are traces. Then if $\Phi = T(A)$, $\|\cdot\|_{\Phi}$ is equivalent to a \mathcal{L}_{C^*} -formula in the theory of A.

Suppose that A is a C^* -algebra and Φ is full and faithful. Then we have a short exact sequence

$$0 \to \textbf{\textit{J}} \to \textbf{\textit{A}}^{\mathcal{U}} \to \textbf{\textit{A}}^{\mathcal{U}}_{\Phi} \to 0$$

where J is the kernel of the quotient map. By demanding that Φ is faithful, the map from A to A_{Φ} is injective. This implies that the kernel of the quotient map is not a definable set.

σ -finite von Neumann algebras

- A von Neumann algebra M is σ -finite if it has a faithful, normal state. We let σ -vNa be the class of all pairs (M, φ) where M is a vNa and φ is a faithful normal state on M.
- For $(M, \varphi) \in \sigma$ -vNa, let H_{φ} be the standard representation arising from M via φ . M acts naturally on H_{φ} on the left.
- We say that $a \in M$ is φ -right K-bounded if

$$\langle ba, ba \rangle_{\varphi} \leq K \langle b, b \rangle$$
 for all $b \in M$.

• Fact: If (M, φ) is a σ -finite vNa then the set of φ -right bounded elements of M is strongly dense.

The Ocneanu ultraproduct

- Fix σ -finite vNa's (M_i, φ_i) for $i \in I$ and \mathcal{U} , an ultrafilter on I.
- For a state φ on a σ -finite vNa, write $\|x\|_{\varphi}^{\#}$ for

$$\sqrt{arphi(x^*x)+arphi(xx^*)}$$
 and let $\ell^\infty(M_i,I)=\{(a_i)\in\prod_I M_i:\sup_I\|a_i\|<\infty\}$ and $J=\{(a_i)\in\ell^\infty(M_i,I):\lim_{\mathcal U}\|a_i\|_{arphi_i}^\#=0\}.$

• Then the Ocneanu ultraproduct is M(J)/J with faithful normal state given by $\lim_{\mathcal{U}} \varphi_i$.

σ -finite von Neumann algebras - the language

Fix a σ -finite (M, φ) .

- We will have sorts $S_{K,N}(M)$ for the set of all $x \in M$ such that $\|x\| \le N$ and both x and x^* are φ -right K-bounded. The norm on these sorts is $\|\cdot\|_{\varphi}^{\#}$. The sorts are complete with respect to this norm.
- This leads to a natural notion of the dissection of (M, φ) where we restrict all the algebraic operations to the sorts.
- Let S be the class of all such dissections.

σ -finite von Neumann algebras - the theorem

Theorem

- 1. (Dabrowski) The class σ -vNa is categorically equivalent to an elementary class.
- 2. The class S is an elementary class which is categorically equivalent to σ -vNa. Write T_{σ} for the theory of S.

If (M,φ) is a σ -finite let Δ_{φ} be the modular operator with respect to φ and let

$$\sigma_t(x) = \Delta^{it} x \Delta^{-it}$$
 for $t \in \mathbb{R}$.

Corollary

For each $t \in \mathbb{R}$, σ_t restricted to any sort S is T_{σ} -definable. If this restriction is given by a formula ψ_t^S then the map $t \mapsto \psi_t^S$ is continuous in the logic topology.

