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Infinite-dimensional Ramsey theory and the pigeonhole
principle

Infinite-dimensional Ramsey theory is about coloring infinite sequences of
objects, and finding monochromatic subspaces.

Theorem (Silver)

Let X be an analytic set of infinite subsets of N. Then there exists
M � N infinite such that:

either for every infinite A � M, we have A P X ;

or for every infinite A � M, we have A R X .

Here, the set M is generally viewed as a element of a forcing poset,
whereas the set A is viewed as an increasing sequence of integers.
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Infinite-dimensional Ramsey theory and the pigeonhole
principle

Fix k an at most countable field. Let E � kpNq be the countably
infinite-dimensional vector space over k , with canonical basis pei qiPN.
Recall that a block-sequence of E is a sequence pxnqnPN of nonzero
successive vectors of E , i.e. such that supppx0q   supppx1q   . . .
(where suppp

°
iPN aiei q � ti P N | ai � 0u).

Theorem (Milliken)

Suppose k � F2. Let X be an analytic set of block-sequences of E . Then
there exists an infinite-dimensional subspace F of E such that:

either every block-sequence of F belongs to X ;

or every block-sequence of F belongs to X c .
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A pigeonhole principle is a one-dimensional Ramsey result, i.e. a Ramsey
result where you color objects.

Every infinite-dimensional Ramsey result
has an associated pigeonhole principle, which is obtained by coloring
sequences according to their first term.

The pigeonhole principle associated to Silver’s theorem is the following:
for every coloring of the integers with two colors, there exists an infinite
monochromatic subset.

The pigeonhole principle associated to Milliken’s theorem is:

Theorem (Hindman)

Suppose k � F2. For every A � Ezt0u, there exists an
infinite-dimensional subspace F of E such that either F zt0u � A, or
F zt0u � Ac .

Can we still get something interesting without pigeonhole principle?
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The formalism of Gowers spaces

Let P be a set (the set of subspaces) and ¤ and ¤� be two
quasi-orderings on P, satisfying:

1 for every p, q P P, if p ¤ q, then p ¤� q;

2 for every p, q P P, if p ¤� q, then there exists r P P such that
r ¤ p, r ¤ q and p ¤� r ;

3 for every ¤-decreasing sequence ppi qiPN of elements of P, there
exists p� P P such that for all i P N, we have p� ¤� pi ;

Write p Æ q for p ¤ q and q ¤� p.

Let X be an at most countable set (the set of points) and � � X � P a
binary relation, satisfying:

4 for every p P P, there exists x P X such that x � p.

5 for every x P X and every p, q P P, if x � p and p ¤ q, then x � q.

The quintuple G � pP,X ,¤,¤�,�q is called a Gowers space.
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The formalism of Gowers spaces
Two examples

1 The Silver space:

X � N;
P is the set of infinite subsets of N;
¤ is the inclusion;
¤
� is the inclusion-by-finite;

� the membership relation.

2 The Rosendal space over an at most countable field k:

X � E is a countably-infinite-dimensional vector space over k;
P is the set of infinite-dimensional subspaces of E ;
¤ is the inclusion;
¤
� is the inclusion up to finite dimension (F ¤� G iff F X G has

finite codimension in F );
� is the membership relation.
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The formalism of Gowers spaces
The pigeonhole principle

Definition

The space G is said to satisfy the pigeonhole principle if for every A � X
and every p P P, there exists q ¤ p such that either for all x � q, we
have x P A, or for all x � q, we have x P Ac .
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Asymptotic games

Definition

Let p P P. The asymptotic game below p, denoted by Fp, is the following
two-players game:
I p0 Æ p p1 Æ p . . .
II x0 � p0 x1 � p1 . . .,

The outcome of the game is the sequence pxi qiPN P XN.

Saying that I has a strategy to reach X � XN in Fp means that “almost
every” sequence below p belongs to X .

In the Silver space, we have the following:

Proposition

If X � NN is such that I has a strategy to reach X in FM , then there
exists N � M infinite such that every increasing sequence of elements of
N belongs to X .
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The abstract Silver’s theorem

So this is an equivalent formulation of Silver’s theorem:

Theorem

For every analytic X � NN, there exists M � N infinite such that:

either I has a strategy in FM to reach X c ;

or I has a strategy in FM to reach X .

In general, we have:

Theorem (Abstract Silver’s)

Suppose that the space G satisfies the pigeonhole principle. Let p P P
and X � XN be analytic. Then there exists q ¤ p such that:

either I has a strategy in Fq to reach X c ;

or I has a strategy in Fq to reach X .
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Gowers’ games and the abstract Rosendal’s theorem

Definition

Let p P P. Gowers’ game below p, denoted by Gp, is the following
two-players game:
I p0 ¤ p p1 ¤ p . . .
II x0 � p0 x1 � p1 . . .,

The outcome of the game is the sequence pxi qiPN P XN.

We have the following implication : if I has a strategy to reach X in Fp,
then II has a strategy to reach X in Gp. Under the pigeonhole principle,
the converse is true up to taking a subspace.

Theorem (Abstract Rosendal’s)

Let p P P and X � XN be analytic. Then there exists q ¤ p such that:

either I has a strategy in Fq to reach X c ;

or II has a strategy in Gq to reach X .
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Noé de Rancourt An abstract formalism for strategical Ramsey theory



Local Ramsey theory in Gowers spaces

Gowers spaces are great for doing local Ramsey theory. If X is an
(algebraic) structure with a natural notion of subspaces, then you can
define a Gowers space by taking for P more or less any subfamily of the
family of subspaces provided we can diagonalize among this subfamily.

Definition

Let F be a nonempty family of infinite subsets of N. We say that:

F is a p-family if it is E0-invariant and if for every decreasing
sequence pAnqnPN of elements of F , there exists A� P F such that
for every n P N, A� �� An;

F is selective if it is a p-family and if moreover, the set A� can be
choosen in such a way that for every n P A�, A�{n � An (where
A�{n � tk P A� | k ¡ nu).
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Local Ramsey theory in Gowers spaces

Fix F a p-family of subsets of N. Then pF ,N,�,��, Pq is a Gowers
space.

Corollary

Let X � NN be analytic. Then there exists M P F such that:

either I has a strategy in FM to reach X c ;

or II has a strategy in GM to reach X .

Moreover, if F is selective, then the first possible conclusion can be
replaced by “rMs8 � X c”.

Beware, here in GM , player I can only play elements of F !

Corollary (Mathias)

Let H be a selective coideal on N, and X � rNs8 be analytic. Then
there exists M P H such that either rMs8 � X c , or rMs8 � X .
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What about Banach spaces ?

What follows is part of a common work with W. Cuellar-Carrera and V.
Ferenczi.

On N, Fσ ideals are p-ideals. The same phenomenon appears in Banach
spaces.

Fix X a Banach space. We denote by SubpX q the set of
infinite-dimensional subspaces of X . We endow SubpX q with the slice
topology, i.e. the topology such that pYλq converges to Y iff for every
equivalent norm ~ � ~ and for every x P X , the norm of x in the quotient
pX ,~ � ~q{Yλ coverges to the norm of x in the quotient pX ,~ � ~q{Y .

Theorem

Let P � SubpX q be a slice-Gδ subset, invariant under isomorphism. Then
pP,SX ,�,��, Pq is an (uncountable) Gowers space.
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What about Banach spaces ?

Definition

A finite-dimensional decomposition (FDD) of a Banach space Y is a
sequence pFi qiPN of finite-dimensional subspaces of Y such that every
x P Y can be written in a unique way as a sum x �

°8
i�0 xi , where for

every i , xi P Fi .

A block-sequence of the FDD pFi q is a sequence pxnqnPN of normalized
successive vectors for this FDD (i.e. there exists A0   A1   A2   . . . sets
of integers such that for every n, xn P `iPAnFi ).

Definition

Given X � pSX q
N and ∆ � p∆nqnPN a sequence of positive real numbers,

we let pX q∆ � tpynq P pSX q
N | Dpxnq P X @n }xn � yn} ¤ ∆nu.
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What about Banach spaces ?

Corollary

Let P � SubpX q be a slice-Gδ subset, invariant under isomorphism. Let

X � pSX q
N be analytic, and let ∆ be a sequence of positive real

numbers. Then there exists Y P P such that:

either Y has a FDD pFnq such that every subsequence of pFnq
generates an element of P, and such that every block-sequence of
pFnq is in X c ;

or II has a winning strategy in GY to reach pX q∆ (where in GY ,
player I is only allowed to play elements of P).
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An example

The condition of being slice-Gδ is typically satisfied for families of Banach
spaces that can be defined by conditions on finite-dimensional subspaces.

Lemma

A Banach space X is non-Hilbertian iff for every n P N, there exists a
finite-dimensional subspace F � X that is not n-isomorphic to a
Euclidean space. In particular, the family of non-Hilbertian spaces is
slice-Gδ.

Question

Does there exist similar examples in other areas of mathematics?
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Noé de Rancourt An abstract formalism for strategical Ramsey theory



Thank you for your attention!
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