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Motivate

Definition (Ultrahomogeneity)
A is ultrahomogeneous if every isomorphism 0,

f : A — B between finite substructures 9 € Aut(G)

A, B C A can be extended into automorphism a f=yla
How far structures from homogeneity
> Relational complexity r (Cherlin, Martin, Saracino 1996) i.e.
expand language with relations of arity < r s.t.
autmomorphism group remains and this lift is homogeneous

» For graphs (H., Hubitka, NeZet¥il, 2015) used result of
(Hubitka, Neset¥il, 2014) to homogenize graphs
with forbidden homomorphism.

» Relax definition of homogeneity
Use homomorphism instead of isomorphism
It also have Fraissé type results



(Ultra) Homogeneity of structures
Considered structures a
> relational structure A = (A, Ra) where Ra = (Riy;i € 1)
» Usually interpreted as colored graphs
(consider just binary relations - see later)

Classifications usually differs depending on
» Finite or infinite domains



(Ultra) Homogeneity of structures
Considered structures a
> relational structure A = (A, Ra) where Ra = (R};i € 1)
» Usually interpreted as colored graphs
(consider just binary relations - see later)

Classifications usually differs depending on
» Finite or infinite domains

Classification for finite graphs (Gardiner 1976)
» Combinatorial argument utilizing finiteness of structures

Cs: L(K3,3): U:;le:

<7 AU
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Ultrahomogeneity of countable graphs
Rado graph R

» Countably infinite random graph
> Useful property
(%) VX,Y finite 3zst. z~xVxeXandzw y Vy €Y
» Useful properties
» Uniqueness: All countably graphs having it are isomorphic to R
» Universality: All finite graphs can be embedded into R
» Homogeneity: Graph with this property is homogeneous

> Idea of proof(s)
» Start with A, B finite and isomorphism f : A— B
> lIteratively construct one vertex extension of f using (x)
» Automorphism is the union of partial maps

Important notes
» It is, of course, a Fraissé limit for class of all graphs
» Showing this gives us all properties above
> Part of complete classification (Lachlan, Woodrow 1980)
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Homomorphism-homogeneity
Variants of homogeneity (Cameron, Nesetfil 2006)
» homomorphism-homogeneity (HH)
» local homomorphism — homomorphism
» monomorphism-homogeneity (MH)
> local monomorphism — homomorphism

Infinite HH graphs
» For inifinite graphs having Rado as spanning subgraph are HH

» Original homogeneity can be abbreviated as Il H
as well as others (MM, IH, ...); hierarchy —

Problems
» Classification beyond finite graphs
» Finite HH Graphs (Cameron, NeZetfil 2006)

» HH € MH, HH = MH ?
» For countable graphs YES! (Rusinov, Schweitzer 2010)
» For general structures NO!
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P, Q-colored graphs

Define P, Q-colored graph on vertex set V
» With two finite posets having minimal element 0 uses as
» coloration of vertices x : V — P
» coloration of edges ¢ : V2 Q

» any homomorphism is required to follow
x(v) <p x(f(v)) and &(x,y) <q &(f(x), f(y))
> Notation
» Corresponding classes HHp o and HHq

Theorems (H., Hubi¢ka, Masulovi¢, 2014)

For finite Q-colored graphs HH¢c, = MH¢, (Q is a chain C,) and
HHp, = MHp, (Q is a diamond D,,)

Basic idea Use extended pumping argument and structure finiteness
For general P, Q classes are distinct e

» Determine borderline property for equality.
> Is it vertex coloring?
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Towards equality in infinite case

Important property
(>): Any finite set of vertices has a common neighbour.

Proposition (Cameron, Neset¥il, 2006))

A countable graph contains R as a spanning subgraph if and only if
it has the (>) property. Moreover any such graph is HH and MH.

Approach
» Homogeneous graph helps constructing HH graphs

» Find homogeneous P, Q-colored graphs as a starting point

Structure R,

> Let C, be a class of finite graphs with edges colored by F,
(F, is antichain extended by minimal element 0)

» R, is universal for C,, and homogeneous
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Properties of R,
Let G be F,-colored graph

(On) Let Gi, Gy, ..., Gyp1 be finite disjoint subsets of G then there
exists x € G \ Gp41 s.t. each vertex of G; ~; x for 1 < <n
and for each y € G, 1 a pair xy is non-edge.

Graph R,
» unique countable graph satisfying (0), up to isomorphism
» not HH:
for any non-edge uv there exists a s.t. .
following homomorphism cannot be extended C}/\?
U — — —9 V
> is MH:

Using extension property (¢,) to find one vertex extension

Lesson learned: Vertex coloring is not needed!
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Extend the example
Show that MHp g = HHp ¢ implies
» Q is directed set (upper bound for any pair)
> ¢, A colors of edges between v and u € A

Lemma (Aranda, H., 2018+)
For any m > 1 there exists partition of R, into C1, Co, ..., Cp s.t.
1. Each C; is isomorphic to R, and o

Cz

2. for any finite AC R, ¥ : A— F, 6 -=
Ny
¥

and k <m3dxe Cstp,a=7

Idea: Start with countable infinite set X
> partitioned into infinite sets Ci, Gy, ..., Cy
> lIdea is to impose structure given by conditions
» Enumerate

> all finite subsets of Xas {Yi:i € w}
> all functions t/ : Y; — F, - there are j € {2,...,(n+1)"}
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Lemma (Aranda, H., 2018+)
For any m > 1 there exists partition of R, into G, G, .. ., s.t.
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We have enumerated subsets {Y; : i € w} and colorings tj : Yi — F,
Step 0: Iterate Y;

» in each class C; choose vertex vﬁ,

1. Each C; is isomorphic to R, and
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For any m > 1 there exists partition of R, into G, Gy, ..., G, s.t.
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We have enumerated subsets {Y; : i € w} and colorings tj : Yi — F,
Step 0: Iterate Y;

» in each class C; choose vertex vﬁ,

1. Each C; is isomorphic to R, and
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and k< mdx e C; st (pr:'lﬂ

> insert edges s.t. P vy = t?

> continue for j € {2,...,(n+1)IMil}
Step s + 1 We have done constructions up to s
» corresponding to functions over Y

» Continue the same way with Ys;1 and ts+1



Extend the example dtto

Lemma (Aranda, H., 2018+)
For any m > 1 there exists partition of R, into G, Gy, ..., G, s.t.

Cs

S

Cy
S —
v

We have enumerated subsets {Y; : i € w} and colorings tj : Yi — F,
Step 0: Iterate Y;

» in each class C; choose vertex vl({,

1. Each C; is isomorphic to R, and

2. for any finite AC R, ¥ : A— Fp,
and k < m3dxe Cestp,a=1

> insert edges s.t. P vy = tf

> continue for j € {2,...,(n+1)IMil}
Step s + 1 We have done constructions up to s
» corresponding to functions over Ys
» Continue the same way with Ys;1 and tjs+1
Note that
» Each point of construction uses only finitely many elements - it's possible

» Condition 2. satisfied by construction and 1. follows
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MHp o-colored graph being MH but not HH

Lemma (Aranda, H., 2018)

Let P and Q be finite partially ordered sets. If MHp g = HHp @,
then @ is a directed set.

Basic idea: Prove contrapositive: @ is not directed set

» @ has maximal elements Ry,..., R,
| 4 ‘P‘ = m
» Let My be Fraissé limit of graphs colored by F,

v

Partition My as in previous lemma

> Elements of P are ei,...,en and assign e — C;
» Add edges of non-maximal colors s.t.

» > 1 non-edge between vertices of equal color remains
» This contradicts HH

» extension property (¢,) imply MH

What about sufficient condition for equality of classes?
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1.

. M2 connect clockwise to T

Start with infinite clique K, in color 1

2. Subdivide it into 3 infinite cliques My; x € {a, b, c}

3. Add T ={a, b, c} and connect it to “adjacent” M, (using 1)
4.
5
6

Subdivide each clique M, into two infinite cliques M2 and M}

. M2 connect counter-clockwise to T

M,
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Construction of example structure M

1.

© N o oA W

Start with infinite clique K, in color 1

Subdivide it into 3 infinite cliques M,; x € {a, b, c}

Add T = {a, b, c} and connect it to “adjacent” M, (using 1)
Subdivide each clique M, into two infinite cliques M2 and M}
M? connect counter-clockwise to T

M? connect clockwise to T M,

M} connect clockwise to T

M} connect counter-clockwise to T

M,
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Homomorphism-homogeneity of M

Proposition
M is MH and not HH.

» M is not HH
note that the homomorphism

ar—ab—ac—c

not extendable to d € M2
(would have to be common neighbor of a and ¢)

> M is MH
Look at image of monomorphism f : H — H’
1. Any finite A with at most 1 vertex from {a, b, c}
A have infinitely many cones
2. For f | {a, b, c} bijection
Sets M, are mapped to M,

Assume image of f to have exactly 2 elements
> from {a, b,c} - say b, c
> study effect of f on {a, b, c}
(case analysis)
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Sufficient condition

Theorem (Aranda, H., 2018+)

Let P and Q be finite partially ordered sets. MHp o = HHp ¢ iff
Q is a linear order.

Forward idea: Q is a linear order:
> Take arbitrary MHp o-colored graph G U
Let f : H— H’ be homomorphism to H’

>
» Let H; be enumeration of preimages
» Let u€ G\ H and Let S be all transversals and

» Choose s° such that Vs € S s.t. @, = Py 50
» Note that Q is linear order

v

Each function of the form f [ s with s € S is a monomorphism

> Can be extended as G is MHp o
» use another realization of s° so f U {(u, (f | s°)(w0)}
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Extended example

Backward idea: If Q is not linear then IM s.t. M is MHp ¢ but not HHp
We know that Q is finite directed set

> Let top element be 1 and let Py,..., P, be top elements Q \ 1

Construct M which is connected in 1 as well as P;
> Start with My Rado graph in maximal color

» Partition M; into n! sets and fill all non-edges with colors from @ s.t.
all are used (meeting condition from lemma)

» Create n+ 1 such M;

> Add new vertices x1, X2, . . ., Xn+1
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Extended example

Backward idea: If Q is not linear then IM s.t. M is MHp ¢ but not HHp g
We know that Q@ is finite directed set

> Let top element be 1 and let P, ..

Construct M which is connected in 1 as well as P;

>
>

., Pn be top elements Q \ 1

Start with M; Rado graph in maximal color

Partition M; into n! sets and fill all non-edges with colors from @ s.t.

all are used (meeting condition from lemma)

Create n+ 1 such M;

Add new vertices x1, X2, . . ., Xp+1
Connect M; ~y M;,j # i and

Xj ~1 Vv, v € M;

M,

T2



Extended example
Backward idea: If Q is not linear then IM s.t. M is MHp ¢ but not HHp g
We know that Q@ is finite directed set

>

Let top element be 1 and let Py, ..

., Pn be top elements Q \ 1

Construct M which is connected in 1 as well as P;

>
>

Start with M; Rado graph in maximal color

Partition M; into n! sets and fill all non-edges with colors from @ s.t.
all are used (meeting condition from lemma)

Create n+ 1 such M;

Add new vertices x1, X2, . . ., Xp+1
Connect M; ~y M;,j # i and

Xj ~1 V,V E M;

Connect x; to parititions of M; s.t.
X; is connected in any combination
of colors to all M;,j # i

M,

Py Py Py1| Py
Ty Ty &3 Tn Tn41



Connect x; and M;
Coloring edges between x; and M;
> Indices of parts of M; corresponds to o € S,,, i.e.

M= ] ™M

o€S,

M;




Connect x; and M;
Coloring edges between x; and M;
> Indices of parts of M; corresponds to o € S,,, i.e.

M= ] ™M

o€S,
» For edges between x; and M; define color choosing function
G {xt, .., Xi—1, Xit1, .-, %n} = {1,2,...,n}
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Connect x; and M;
Coloring edges between x; and M;
> Indices of parts of M; corresponds to o € S,,, i.e.

M= ] ™M

o€S,

» For edges between x; and M; define color choosing function

G {xt, .., Xi—1, Xit1, .-, %n} = {1,2,...,n}

> Color M and x; by Po(c(x))

Poeuay))

zj

M;




Connect x; and M;
Coloring edges between x; and M;
> Indices of parts of M; corresponds to o € S,,, i.e.

M= ] ™M

o€S,

» For edges between x; and M; define color choosing function

G {xt, .., Xi—1, Xit1, .-, %n} = {1,2,...,n}
» Color M7 and x; by P{,(C,.(X/.))

This construction generalize

Poeuay))

zj

M;




Extended example - properties

Backward idea - homomorphism-homogeneity of M:

M is not HHp o
> x; and x; are in distance 3 in 1
> Take distinct j, k, £ € {1,...,n+ 1}
» Local homomorphism
Xk > Xky Xe > Xk, Xj H> X
cannot be extended
» P, and P, has only 1 above

M,

My
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Extended example - properties
Backward idea - homomorphism-homogeneity of M:
M is not HHp o
> x; and x; are in distance 3 in 1
> Take distinct j, k, £ € {1,...,n+ 1}
» Local homomorphism
Xk > Xk, Xe }—>Xk,Xj — Xj
cannot be extended

M, M, M3

» P, and P, has only 1 above

M is MHp ¢ Let f : H — K be surjective monomorphism
> If [KN{x1,...,xn41}| <1 we have infinitely many cones
> Assume K contains at least two vertices from {xi,..., Xp41}
» Note that x;x; is only non-edge in M, i.e.
> its preimage is contained in {xi,..., X1}




Final claim finishing the proof

Claim
Given any F C M\ {x1,...,xnt1}, S C{x1,...,Xns1} and
injective t : S — {1, Py,..., Py}, there 3v € M that is connected

to all of F by edges of type 1 and satisfies t over S, i.e., ¢, s = t.




Final claim finishing the proof

Claim

Given any F C M\ {x1,...,xn+1}, S C {x1,...,Xn+1} and
injective t : S — {1, Py,..., Py}, there 3v € M that is connected
to all of F by edges of type 1 and satisfies t over S, i.e., ¢, s = t.

M, M, M M, My
e L___

| L

For vi € M; and any F r wy wy
» v; ~y ufor ue M;UF for j # i by construction of M
» v; ~q u for u € M; UF by Rado-ness of M;

For injective t

> using 1 for x; choose v from M; connected correctly (correct o)
» others similarly
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Using the claim

Claim
Given any F C M\ {x1,...,Xn+1},
S C{x1,...,%xy+1} and injective

t:S—{1,P1,...,P,}, there v e M
that is connected to all of F by edges
of type 1 and satisfies t over S, i.e., p, s = t. | l l s l l

We use this claim to proof that M is MHp o

Extending f: H — K

» Suffice to show one vertex extension, i.e.

For v being connected as ¢,y to w
> S:Kﬁ{xl,...,xn+1}, F:K\S

(note that preimages of x; are from {xi,...,Xa+1})
> funtion t given by t(x;)) = &(v, f1(x;))

Claim provides a vertex w satisfying t over S and connected by 1 to F
» Thus extending f



Thank you
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