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Motivate

Definition (Ultrahomogeneity)

A is ultrahomogeneous if every isomorphism
f : A→ B between finite substructures
A,B ⊂ A can be extended into automorphism

How far structures from homogeneity
I Relational complexity r (Cherlin, Martin, Saracino 1996) i.e.

expand language with relations of arity ≤ r s.t.
autmomorphism group remains and this lift is homogeneous

I For graphs (H., Hubička, Nešeťril, 2015) used result of
(Hubička, Nešeťril, 2014) to homogenize graphs
with forbidden homomorphism.

I Relax definition of homogeneity
Use homomorphism instead of isomorphism
It also have Fräıssé type results

f g ∈ Aut(G)

f = g|A

A

B

G

Gardiner, A. (1976): J.Comb.Theory B 20, 94–102
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(Ultra) Homogeneity of structures
Considered structures a

I relational structure A = (A,RA) where RA = (R i
A; i ∈ I )

I Usually interpreted as colored graphs
(consider just binary relations - see later)

Classifications usually differs depending on

I Finite or infinite domains

Classification for finite graphs (Gardiner 1976)

I Combinatorial argument utilizing finiteness of structures

C5: L(K3,3):
⋃̇n

i=1
Km: Kn,n,...,n:

Gardiner, A. (1976): J.Comb.Theory B 20, 94–102
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Ultrahomogeneity of countable graphs
Rado graph R
I Countably infinite random graph

I Useful property
(∗) ∀X ,Y finite ∃z s.t. z ∼ x ∀x ∈ X and z � y ∀y ∈ Y

I Useful properties
I Uniqueness: All countably graphs having it are isomorphic to R
I Universality: All finite graphs can be embedded into R
I Homogeneity: Graph with this property is homogeneous

I Idea of proof(s)
I Start with A,B finite and isomorphism f : A→ B
I Iteratively construct one vertex extension of f using (∗)
I Automorphism is the union of partial maps

Important notes
I It is, of course, a Fräıssé limit for class of all graphs

I Showing this gives us all properties above
I Part of complete classification (Lachlan, Woodrow 1980)

Lachlan, A. H. and Woodrow, R. E. (1980): Trans. Amer. Math. Soc. 262 51–94.
G. Cherlin. in: Mem. Amer. Math. Soc., 621, Amer. Math. Soc., Providence, RI, 1998.
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Homomorphism-homogeneity
Variants of homogeneity (Cameron, Nešeťril 2006)
I homomorphism-homogeneity (HH)

I local homomorphism → homomorphism
I monomorphism-homogeneity (MH)

I local monomorphism → homomorphism

Infinite HH graphs
I For inifinite graphs having Rado as spanning subgraph are HH
I Original homogeneity can be abbreviated as II

as well as others (MM, IH, . . .); hierarchy →

Problems
I Classification beyond finite graphs

I Finite HH Graphs (Cameron, Nešeťril 2006)

I HH ⊆ MH, HH = MH ?
I For countable graphs YES! (Rusinov, Schweitzer 2010)
I For general structures NO!

IH

IM MH

II MM HH

Cameron, P. J. and Nešeťril J. (2006): Combin. Probab. Comput. 15(1–2), 91–103.

M. Rusinov and P. Schweitzer (2010): Journal of Graph Theory, 65(3), 253–262.
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HH = MH using pumping argument
Simple extension: Bicolored graphs
I graphs without loops having red/blue edges
I Are classes HH and MH equal?

Proposition (H., Mašulović, 2011)

Finite MH bicolored graph is a disjoint union of either complete
bicolored graphs or graphs each one composed of homogeneous
graph in one color and its complement in the other.

Basic idea: GF /∈ finite HH graph

I Local homomorphism - can only be extended into a new vertex

I Extend original local homomorphism by fixing new vertex

I Again only extension is possible into new vertex

I This process can be repeated . . .

?

GF

?

? ?

DH and D. Mašulović (2011): Electronic Notes in Discrete Mathematics, 38(0):443 – 448.
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DH and D. Mašulović (2011): Electronic Notes in Discrete Mathematics, 38(0):443 – 448.



HH = MH using pumping argument
Simple extension: Bicolored graphs
I graphs without loops having red/blue edges
I Are classes HH and MH equal?

Proposition (H., Mašulović, 2011)

Finite MH bicolored graph is a disjoint union of either complete
bicolored graphs or graphs each one composed of homogeneous
graph in one color and its complement in the other.

Basic idea: GF /∈ finite HH graph

I Local homomorphism - can only be extended into a new vertex

I Extend original local homomorphism by fixing new vertex

I Again only extension is possible into new vertex

I This process can be repeated . . .

?

GF

?

? ?
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P ,Q-colored graphs
Define P,Q-colored graph on vertex set V
I With two finite posets having minimal element 0 uses as

I coloration of vertices χ : V → P
I coloration of edges ξ : V 2 → Q

I any homomorphism is required to follow

χ(v) ≤P χ(f (v)) and ξ(x , y) ≤Q ξ(f (x), f (y))

I Notation
I Corresponding classes HHP,Q and HHQ

Theorems (H., Hubička, Mašulović, 2014)

For finite Q-colored graphs HHCn = MHCn (Q is a chain Cn) and
HHDn = MHDn (Q is a diamond Dn)

Basic idea Use extended pumping argument and structure finiteness

For general P,Q classes are distinct
I Determine borderline property for equality.
I Is it vertex coloring?

a

b

c

d

DH, J. Hubička and D. Mašulović (2014): European Journal of Combinatorics, 35(0):313–323.
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Towards equality in infinite case

Important property

(.): Any finite set of vertices has a common neighbour.

Proposition (Cameron, Nešeťril, 2006))

A countable graph contains R as a spanning subgraph if and only if
it has the (.) property. Moreover any such graph is HH and MH.

Approach

I Homogeneous graph helps constructing HH graphs

I Find homogeneous P,Q-colored graphs as a starting point

Structure Rn

I Let Cn be a class of finite graphs with edges colored by Fn
(Fn is antichain extended by minimal element 0)

I Rn is universal for Cn and homogeneous
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A countable graph contains R as a spanning subgraph if and only if
it has the (.) property. Moreover any such graph is HH and MH.

Approach

I Homogeneous graph helps constructing HH graphs

I Find homogeneous P,Q-colored graphs as a starting point

Structure Rn

I Let Cn be a class of finite graphs with edges colored by Fn
(Fn is antichain extended by minimal element 0)

I Rn is universal for Cn and homogeneous



Towards equality in infinite case

Important property

(.): Any finite set of vertices has a common neighbour.

Proposition (Cameron, Nešeťril, 2006))
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Properties of Rn

Let G be Fn-colored graph

(♦n) Let G1,G2, . . . ,Gn+1 be finite disjoint subsets of G then there
exists x ∈ G \ Gn+1 s.t. each vertex of Gi ∼i x for 1 ≤ i ≤ n
and for each y ∈ Gn+1 a pair xy is non-edge.

Graph Rn

I unique countable graph satisfying (♦n), up to isomorphism

I not HH:
for any non-edge uv there exists a s.t.
following homomorphism cannot be extended

I is MH:
Using extension property (♦n) to find one vertex extension

Lesson learned: Vertex coloring is not needed!

u v

a

c1 c2
u v

a

c1 c2
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Extend the example
Show that MHP,Q = HHP,Q implies

I Q is directed set (upper bound for any pair)
I ϕv ,A colors of edges between v and u ∈ A

Lemma (Aranda, H., 2018+)

For any m ≥ 1 there exists partition of Rn into C1,C2, . . . ,Cm s.t.

1. Each Ci is isomorphic to Rn and

2. for any finite A ⊂ Rn, ψ : A→ Fn,
and k ≤ m ∃x ∈ Ck s.t ϕv ,A = ψ

Idea: Start with countable infinite set X

I partitioned into infinite sets C1,C2, . . . ,Cm

I Idea is to impose structure given by conditions

I Enumerate

I all finite subsets of X as {Yi : i ∈ ω}
I all functions t ij : Yi → Fn - there are j ∈ {2, . . . , (n + 1)|Yi |}

Rn
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C2
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Cm
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xmψ
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Extend the example dtto

Lemma (Aranda, H., 2018+)

For any m ≥ 1 there exists partition of Rn into C1,C2, . . . ,Cm s.t.

1. Each Ci is isomorphic to Rn and

2. for any finite A ⊂ Rn, ψ : A→ Fn,
and k ≤ m ∃x ∈ Ck s.t ϕv ,A = ψ

We have enumerated subsets {Yi : i ∈ ω} and colorings t ij : Yi → Fn

Step 0: Iterate Ys

I in each class Cr choose vertex v 0
1,r

I insert edges s.t. ϕv0
1,r ,Y0

= t0
1

I continue for j ∈ {2, . . . , (n + 1)|Yi |}
Step s + 1 We have done constructions up to s

I corresponding to functions over Ys

I Continue the same way with Ys+1 and ts+1
j

Note that

I Each point of construction uses only finitely many elements - it’s possible

I Condition 2. satisfied by construction and 1. follows
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MHP,Q-colored graph being MH but not HH

Lemma (Aranda, H., 2018)

Let P and Q be finite partially ordered sets. If MHP,Q = HHP,Q ,
then Q is a directed set.

Basic idea: Prove contrapositive: Q is not directed set

I Q has maximal elements R1, . . . ,Rn

I |P| = m

I Let M0 be Fräıssé limit of graphs colored by Fn

I Partition M0 as in previous lemma

I Elements of P are e1, . . . , em and assign ei → Ci

I Add edges of non-maximal colors s.t.

I ≥ 1 non-edge between vertices of equal color remains
I This contradicts HH

I extension property (♦n) imply MH

What about sufficient condition for equality of classes?
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Coloring using diamond
Construction of example structure M

1. Start with infinite clique Kω in color 1

2. Subdivide it into 3 infinite cliques Mx ; x ∈ {a, b, c}
3. Add T = {a, b, c} and connect it to “adjacent” Mx (using 1)

4. Subdivide each clique Mx into two infinite cliques M0
x and M1

x

5. M0
x connect counter-clockwise to T

6. M0
x connect clockwise to T

7. M1
x connect clockwise to T

8. M1
x connect counter-clockwise to T
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2. Subdivide it into 3 infinite cliques Mx ; x ∈ {a, b, c}
3. Add T = {a, b, c} and connect it to “adjacent” Mx (using 1)

4. Subdivide each clique Mx into two infinite cliques M0
x and M1

x

5. M0
x connect counter-clockwise to T
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x connect clockwise to T
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Homomorphism-homogeneity of M

Proposition

M is MH and not HH.

I M is not HH
note that the homomorphism

a 7→ a, b 7→ a, c 7→ c

not extendable to d ∈ M0
c

(would have to be common neighbor of a and c)

I M is MH

Look at image of monomorphism f : H → H ′

1. Any finite A with at most 1 vertex from {a, b, c}
A have infinitely many cones

2. For f � {a, b, c} bijection

Sets Mx are mapped to Mf (x)

Assume image of f to have exactly 2 elements

I from {a, b, c} - say b, c
I study effect of f on {a, b, c}

(case analysis)

Ma

Mc
Mb

Kω

a

cb d

Ma

Mc
Mb

Kω
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b c

d

f(d)
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Sufficient condition

Theorem (Aranda, H., 2018+)

Let P and Q be finite partially ordered sets. MHP,Q = HHP,Q iff
Q is a linear order.

Forward idea: Q is a linear order:

I Take arbitrary MHP,Q -colored graph G

I Let f : H → H ′ be homomorphism to H ′

I Let Hi be enumeration of preimages

I Let u ∈ G \ H and Let S be all transversals and

I Choose s0 such that ∀s ∈ S s.t. ϕu,s � ϕu,s0

I Note that Q is linear order

I Each function of the form f � s with s ∈ S is a monomorphism

I Can be extended as G is MHP,Q

I use another realization of s0 so f ∪ {(u, (f � s0)(u0)}

H

H ′

f

H1
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H3

Hk−1

Hk

H

H ′f

H

H ′f

u
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ϕu,s0
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u
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ϕu,s

u0

ϕu,s0
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Extended example
Backward idea: If Q is not linear then ∃M s.t. M is MHP,Q but not HHP,Q

We know that Q is finite directed set

I Let top element be 1 and let P1, . . . ,Pn be top elements Q \ 1

Construct M which is connected in 1 as well as Pi

I Start with M1 Rado graph in maximal color

I Partition M1 into n! sets and fill all non-edges with colors from Q s.t.
all are used (meeting condition from lemma)

I Create n + 1 such Mi

I Add new vertices x1, x2, . . . , xn+1

I Connect Mi ∼1 Mj , j 6= i and
xi ∼1 v , v ∈ Mi

I Connect xi to parititions of Mj s.t.
xi is connected in any combination
of colors to all Mj , j 6= i

MM

P1

C1

C2

C3

Cn!

M1 M2 M3 Mn Mn+1M1 M2 M3 Mn Mn+1

x1 x2 x3 xn xn+1

M1 M2 M3 Mn Mn+1

x1 x2 x3 xn xn+1

M1 M2 M3 Mn Mn+1

x1 x2 x3 xn xn+1

P1 P2 Pn−1 Pn
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Connect xj and Mi
Coloring edges between xj and Mi

I Indices of parts of Mi corresponds to σ ∈ Sn, i.e.

M =
⋃
σ∈Sn

Mσ
i

I For edges between xj and Mi define color choosing function

ci : {x1, . . . , xi−1, xi+1, . . . , xn} → {1, 2, . . . , n}

I Color Mσ
i and xj by Pσ(ci (xj ))

This construction generalize

Mi

Mσ
i

Mi

xj

Mσ
i

Mi

xj

Pσ(ci(xj))

Mσ
i

Ma

Mc
Mb

Kω

a

cb
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Extended example - properties
Backward idea - homomorphism-homogeneity of M:
M is not HHP,Q

I xi and xj are in distance 3 in 1

I Take distinct j , k, ` ∈ {1, . . . , n + 1}
I Local homomorphism

xk 7→ xk , x` 7→ xk , xj 7→ xj
cannot be extended

I Pi1 and Pi2 has only 1 above

M is MHP,Q Let f : H → K be surjective monomorphism

I If |K ∩ {x1, . . . , xn+1}| ≤ 1 we have infinitely many cones

I Assume K contains at least two vertices from {x1, . . . , xn+1}
I Note that xixj is only non-edge in M, i.e.
I its preimage is contained in {x1, . . . , xn+1}

M1 M2 M3 Mn Mn+1

x1 xk x` xj xn+1

Pi1

Pi2
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Final claim finishing the proof

Claim
Given any F ⊂ M \ {x1, . . . , xn+1}, S ⊆ {x1, . . . , xn+1} and
injective t : S → {1,P1, . . . ,Pn}, there ∃v ∈ M that is connected
to all of F by edges of type 1 and satisfies t over S , i.e., ϕv ,S = t.

For vi ∈ Mi and any F

I vi ∼1 u for u ∈ Mj ∪ F for j 6= i by construction of M

I vi ∼1 u for u ∈ Mi ∪ F by Rado-ness of Mi

For injective t

I using 1 for xi choose v from Mi connected correctly (correct σ)

I others similarly

M1 M2 M3 Mn Mn+1

x1 x2 x3 xn xn+1

F

S

v

t
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Using the claim

Claim
Given any F ⊂ M \ {x1, . . . , xn+1},
S ⊆ {x1, . . . , xn+1} and injective
t : S → {1,P1, . . . ,Pn}, there ∃v ∈ M
that is connected to all of F by edges
of type 1 and satisfies t over S , i.e., ϕv ,S = t.

We use this claim to proof that M is MHP,Q

Extending f : H → K

I Suffice to show one vertex extension, i.e.
For v being connected as ϕv,H to w

I S = K ∩ {x1, . . . , xn+1}, F = K \ S
(note that preimages of xi are from {x1, . . . , xn+1})

I funtion t given by t(xi ) = ξ(v , f −1(xi ))

Claim provides a vertex w satisfying t over S and connected by 1 to F

I Thus extending f

M1 M2 M3 Mn Mn+1

x1 x2 x3 xn xn+1

F

S

v

t
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Thank you
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