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Homogeneous structures

A (not necessarily relational) structure A is homogeneous if every
isomorphism of its finite substructures can be extended to an
automorphism of A.

Definition
A class of finite structures C is an amalgamation class if it is the
class of all finite substructures of some homogeneous structure.



Homogeneous structures
A (not necessarily relational) structure A is homogeneous if every
isomorphism of its finite substructures can be extended to an
automorphism of A.

Example (Countably infinite homogeneous graphs,
Lachlan–Woodrow 1980)

If G is a countably infinite homogenous graph, then G or its
complement G is one of the following:

1. the random (Rado) graph,

2. the generic Kn-free graph for 3 ≤ n <∞,

3. the disjoint union of infinitely many Kn’s for 1 ≤ n ≤ ω or the
disjoint union of finitely many Kω’s.

Example

The class MZ of all finite integer-valued metric spaces is an
amalgamation class, the corresponding homogeneous structure is
called the integer Urysohn’s space.
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Ramsey classes

Class K of finite structures has the Ramsey property (is Ramsey) if
for every A,B ∈ K there is C ∈ K such that for every colouring
c :

(C
A

)
→ {0, 1} there is B′ ∈

(C
B

)
such that c |B′ is constant.

A B C

Theorem (Nešeťril, 2005)

Every Ramsey class with JEP is an amalgamation class.
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EPPA

Class K of finite structures has EPPA (extension property for
partial automorphisms, also Hrushovski property) if for every
A ∈ K there is B ∈ K such that A ⊆ B and every partial
automorphism of A extends to an automorphism of B.
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Examples of binary symmetric Ramsey classes

I All ordered graphs and Kn-free graphs (Nešeťril–Rödl 1977).

I Convexly ordered metric spaces with distances from S ⊆ R>0

whenever they form an amalgamation class (Sauer 2013;
Hubička–Nešeťril 2016).

I Convexly ordered generalised metric spaces with distances
from a linearly ordered monoid (Conant 2015;
Hubička–K–Nešeťril 2017).

I Cherlin’s ordered metrically homogeneous graphs (Cherlin
2011; AB-WHHKKKP 2017).

I Convexly ordered lattice-like nested equivalences (Braunfeld
2017).



The completion problem for edge-labelled graphs

L is a set, C a class of finite complete L-edge-labelled graphs. For
G an L-edge-labelled graph, can we add the remaining edges and
their labels to get G ∈ C?
We call such G a completion of G. If Aut(G) = Aut(G), G is an
automorphism-preserving completion of G

Example (Graphs)

L = {N,E}, G is the class of all finite complete L-edge-labelled
graphs. Then every G has an automorphism-preserving completion
in G.
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Metric spaces
L = R>0, M ∈MR>0 ⇐⇒ every triangle of M satisfies the
triangle inequality.

Proposition

G has a completion inMR>0 ⇐⇒ it contains no non-metric cycle:

a1
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: : :
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Shortest path completion

G = (V ,E , `), ` : E → L. Define d :
(V
2

)
→ L as

d(x , y) := min{‖P‖ : P is a path from x to y in G},

where ‖P‖ is the sum of labels of P.
We call G = (V ,

(V
2

)
, d) the shortest path completion of G.



Shortest path completion

G = (V ,E , `), ` : E → L. d(x , y) := min{‖P‖ : P path x → y}.

Lemma
G = (V ,

(V
2

)
, d) ∈MR>0 .

Proof.

x y

z

d(x; z) d(y; z)

≤ d(x; z) + d(y; z)



Shortest path completion

G = (V ,E , `), ` : E → L. d(x , y) := min{‖P‖ : P path x → y}.

Lemma
d |E = ` if and only if G contains no non-metric cycle.

Lemma
If d |E = ` then G is an automorphism-preserving completion of G.

Corollary

Let O be the family of all non-metric L-edge-labelled cycles. Then
G has an automorphism-preserving completion in MR>0 if and
only if G ∈ Forb(O), that is, there is no O ∈ O with a
homomorphism O→ G.



Shortest path completion

G = (V ,E , `), ` : E → L. d(x , y) := min{‖P‖ : P path x → y}.

Lemma
d |E = ` if and only if G contains no non-metric cycle.

Lemma
If d |E = ` then G is an automorphism-preserving completion of G.

Corollary

Let O be the family of all non-metric L-edge-labelled cycles. Then
G has an automorphism-preserving completion in MR>0 if and
only if G ∈ Forb(O), that is, there is no O ∈ O with a
homomorphism O→ G.



Shortest path completion

G = (V ,E , `), ` : E → L. d(x , y) := min{‖P‖ : P path x → y}.

Lemma
d |E = ` if and only if G contains no non-metric cycle.

Lemma
If d |E = ` then G is an automorphism-preserving completion of G.

Corollary

Let O be the family of all non-metric L-edge-labelled cycles. Then
G has an automorphism-preserving completion in MR>0 if and
only if G ∈ Forb(O), that is, there is no O ∈ O with a
homomorphism O→ G.



Why should one care?

Definition (Finite obstacles)

K is an amalgamation class of finite L-structures. K has finite
obstacles if there is a family O of L-structures s.t.

1. for every finite S ⊆ L there are only finitely many S-structures
in O,

2. A has a completion in K ⇐⇒ A ∈ Forb(O).

Theorem (Herwig–Lascar, 2000)

Every relational amalgamation class which has finite obstacles and
an automorphism-preserving completion has EPPA.

Theorem (Hubička–Nešeťril, 2015; imprecise statement)

Every “reasonable” ordered amalgamation class whose orderless
reduct has finite obstacles is Ramsey.
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EPPA for metric spaces

Theorem (Herwig–Lascar, 2000)

Every relational amalgamation class which has finite obstacles and
an automorphism-preserving completion has EPPA.

Theorem (Solecki, 2005; Vershik, 2007)

MR>0 has EPPA.

Proof.

I If S = {s1 < s2 < . . . < sk} ⊂ R>0 then each non-metric
cycle with edges from S has at most d sks1 e vertices.

I The shortest path completion preserves automorphisms.

Advertisement
A combinatorial proof of the extension property for partial
isometries (Hubička–K–Nešeťril, 2018, arXiv:1807.10976). 7 pages.
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isometries (Hubička–K–Nešeťril, 2018, arXiv:1807.10976). 7 pages.



Examples of classes “with finite obstacles”
(after eliminating imaginaries)

I All graphs and Kn-free graphs

I Metric spaces with distances from S ⊆ R>0 whenever they
form an amalgamation class

I Generalised metric spaces with distances from a linearly
ordered monoid

I Cherlin’s metrically homogeneous graphs

I Lattice-like nested equivalences



M-valued metric spaces

Definition (Partially ordered commutative semigroup (POCS))

M = (M,⊕,�) is a partially ordered commutative semigroup if:

1. (M,⊕) is a commutative and associative operation,

2. (M,�) is a partial order, and

3. ⊕ is monotone in � (a � b ⇒ a⊕ c � b ⊕ c).

Definition (M-valued metric space)

Let M = (M,⊕,�) be a POCS. A complete M-edge-labelled
graph G = (V , d) with d :

(V
2

)
→M is an M-valued metric space

if for every x 6= y 6= z ∈ V it holds that

d(x , y)⊕ d(y , z) � d(x , z).

We denote by MM the class of all finite M-valued metric spaces.
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Examples

I If M = (R>0,+,≤) then MM is the class of all finite metric
spaces.

I If M = (N, ·, |), then the M-valued metric spaces are the
divisibility metric spaces.

I If Λ = (Λ,∨,≤) is a distributive lattice, then Λ-valued metric
spaces are Braunfeld’s nested equivalences.

I If S ⊆ R>0 is one of Sauer’s subset,
x ⊕S y := sup{s ∈ S : s ≤ x + y} and M = (S ,⊕S ,≤), then
MM is one of Sauer’s classes.



Our result

Theorem
Let M = (M,⊕,�) be a POCS and let F be a “sufficiently nice”
family of M-edge-labelled cycles. Then the class MM ∩ Forb(F)
is an amalgamation class, has EPPA and a precompact Ramsey
expansion.

Shortest path completion for M

G = (V ,E , `) is a finite M-edge-labelled graph. Define

d(x , y) := inf
�
{‖P‖ : P is a path from x to y in G},

where ‖P‖ is the ⊕-sum of the labels of P. We call
G = (V ,

(V
2

)
, d) the M-shortest path completion of G.

Definition (Sufficiently nice family F)

F is sufficiently nice if it ensures that the shortest path completion
is defined, behaves well w.r.t. it and for every finite S ⊆M there
are only finitely many S-edge-labelled cycles in F .
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Our result

Theorem
Let M = (M,⊕,�) be a POCS and let F be a “sufficiently nice”
family of M-edge-labelled cycles. Then the class MM ∩ Forb(F)
is an amalgamation class, has EPPA and a precompact Ramsey
expansion.

Example

Let M = ({1, 2},max,≤) be an ultrametric space. Then the
completion problem for MM is not easy.

Proof.
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1 1
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Proof overview

1. Prove strong amalgamation and completion — infinite O
2. Study semigroup structure

2.1 “Blocks” (subsets defining equivalences)
2.2 Approximation of block maxima

3. Elminate imaginaries

3.1 Define an expansion
3.2 Prove strong amalgamation and completion — finite O (with

unary functions)
3.3 EPPA (See Honza’s talk!)

4. Introduce an order (like Braunfeld)

4.1 Define an expansion
4.2 Prove strong amalgamation and completion
4.3 Prove Ramsey and the expansion property

5. Applications



Corollaries

Class Ramsey EPPA
S-metric spaces HN16 new (part Conant15)

Conant’s general-
ized metric spaces

HKN18 new (part Conant15)

Braunfeld’s nested
equivalences

Braunfeld17 new

Metrically homo-
geneous graphs

AB-WHHKKKP 2017 AB-WHHKKKP 2017

Cherlin’s 4-edge-
labelled graphs

new using Li 2018+ new using Li 2018+

Divisibility metric
spaces, . . .

new new



Remarks

SIR
Shortest path completion gives a SIR (stationary independence
relation). Tent and Ziegler used SIR to prove bounded simplicity of
the automorphism group of the Urysohn space.

Henson constraints
One can forbid cliques consisting of irreducible distances (i.e. not
created by the shortest path completion).
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Conjectures

Conjecture

Let C be an amalgamation class of M-edge-labelled graphs and
assume that C has finite obstacles. Then there is a partially ordered
commutative semigroup M = (M,⊕,�) and a “sufficiently nice”
family F of M-edge-labelled cycles such that C =MM ∩ Forb(F).

Conjecture

Every triangle-constrained strong amalgamation class of
(finitely-)edge-labelled graphs where all definable equivalence
relations have infinite index corresponds to a semigroup-valued
metric space as above.

Weak evidence
Probably this holds for primitive classes with at most 5 labels.
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The end!

Thank you for your attention
Questions?



Can you show more pictures of Michael?

Sure.



Tell me more about the family F

For example all odd cycles up to some diameter in MZ work.

1. F needs to be closed on homomorphisms.

2. F needs to be closed on metrically adding edges.

3. F needs to be closed on the inverse steps of the shortest path
completion.

4. F needs to ensure that all infima encountered by the SPC in
Forb(F) exist (if inf(a, b) is not defined, all cycles constisting
of P1 and P2 such that ‖P1‖ = a and ‖P2‖ = b must be
forbidden).

5. F needs to ensure that all infima encountered distribute with
the addition.



Which structures are not semigroup-valued?

Great question!

1. Bipartite metric spaces of finite diameter.

2. Bipartite metric spaces of infinite diameter.

3. Other things with equivalences with finitely many classes (or
of finite index).

4. Non-strong amalgamation classes like the antipodal spaces.



What do you mean by eliminating imaginaries?

We add new vertex for every equivalence class corresponding to
every proper meet-irreducible block, link its original vertices to it
by unary functions and link the added ball vertices representing
classes in inclusion by other unary functions.

(1; 2; 3)

(0; 2; 3)(1; 0; 0)

Bf2;3g

Bf1;2g

Bf1;3g
Bf2;3g

Bf1;2g

Bf1;3g


