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We are going to discuss the Approximate Ramsey Property (ARP) of a family
of finite dimensional Banach spaces. We will:
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® Graham-Leeb Rothschild for the field R;
® “multidimensional" Borsuk-Ulam Theorem;

® Extreme amenability.
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We are going to discuss the Approximate Ramsey Property (ARP) of a family
of finite dimensional Banach spaces. We will:

e Relate (ARP) with well-known properties;
® Sketch proofs of known results.

This presentation is based on joint works with Dana BartoSov4, J. LA,
Martino Lupini and Brice Mbombo, and with Valentin Ferenczi, Brice
Mbombo and Stevo Todorcevic.
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FF denotes a finite field. Given d, n € N, let (g) be the d-Grassmannians of
the vector space F".
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Grassmannians over the field R

I denotes a finite field. Given d,n € N, let (g) be the d-Grassmannians of
the vector space F".

Theorem (Graham-Leeb-Rothschild)

For everyd,m € N and r € N there exists n > k such that every r-coloring of
(gd) has a monochromatic set of the form (]gfi) for some 'V € (gm).

Question
What if F = R?
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values) there is the bad coloring “shape”. Given a plane 7 € (%z) we consider
its section with the centered cube, and we record its shape
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Grassmannians over the field R

We write

(&)

to denote the metric space of all d-dimensional subspaces of R” endowed with
the p-opening (or gap) A, metric.
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Grassmannians over the field R

We write

()

to denote the metric space of all d-dimensional subspaces of R” endowed with
the p-opening (or gap) A, metric.

Similarly, for a f.d. normed space X of dimension d, we write (EX;) to denote
the set of all d-dimensional subspaces of £}, that are isometric to X.



What is the Approximate Ramsey Property Grassmannians over the field R

In the nextp # 4,6,8,....

Theorem (GLR Theorem for R, p-version)

For every d,m e > 0 and every (K, dg) compact metric there is n such that for

every 1-Lipschitz coloring c : (Hi%) — (K, dg) there is some V € (ﬁé) and a

1-Lipschitz ¢ : (13,,7,) — (K,dg) such that
ko T
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What is the Approximate Ramsey Property Grassmannians over the field R

* B =isometric types of subspaces of L,|0, 1];
® this is a compactum, endowed with the Banach-Mazur metric;

® the metric ), is the Gromov-Hausdorff metric associated to Ag, that is
uniformly equivalent to the Banach-Mazur metric
every 1-LIPSCUZ COLOFINE & = \gy) — \IS, AK ) LNETe 1S SOme v < \ ;) and a
4

1-Lipschitz¢ : (B.7,) — (K,dg) such that

(e
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Grassmannians over the field R

n-dimensional normed spaces have almost Hilbertian subspaces of dimension
uniformly proportional to log(n).

It follows from Dvoretzky theorem



Grassmannians over the field R

It follows from Dvoretzky theorem

Theorem
For every d,m, € > 0 and every KC compact metric there is n > k such that for
every norm M on R”, every I-Lipschitz coloring of ( (R M)) — K e-stabilizes

in (Rd) for some E((R M)) such that

diamg (c (@;)) <e
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The definition

Let F be a collection of finite dimensional normed spaces.
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The definition

Let F be a collection of finite dimensional normed spaces.

Definition

® F has the Approximate Structural Ramsey Property when for every
F,G € F and ¢ > 0 there exists H € F such that every continuous
coloring ¢ : (I;) — [0, 1] e-stabilizes on ((F;) for some G € (g)

® F has the Approximate Ramsey Property when for every F, G € F and
€ > 0 there exists H € F such that every continuous coloring
¢ : Emb(F,H) — [0, 1] e-stabilizes on p o Emb(X, Y) for some
0 € Emb(G,H).



The definition

Let F be a collection of finite dimensional normed spaces.

Definition
i ' S T o Drevery
Emb(F,H) is the space of isometric linear embeddings L nuous
from F into H endowed with the norm metric d(v,n) := "H)
G
max x — nx||g-
, maxyyp<t [ — x| & 7 and

€ > 0 thereexists H € F such that every continuous coloring

c:Emb(F,H) — [0, 1] e-stabilizes on p o Emb(X, Y) for some
o0 € Emb(G, H).
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(ARP) and Extreme amenability

Theorem (KPT correspondence)

For E approximately ultrahomogeneous the following are equivalent:
® Iso(E) is extremely amenable.

o Age(E) has the approximate Ramsey property.
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® Polyhedral spaces.



Examples

o {3},
* Age(L,(0,1)) forallp #4,6,8,....

® Age(+ The unit ball has only finitely many extreme points
® {{}nall0<p<oo.

e {lotn
® Polyhedral spaces.
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o {2}
* Age(L,(0,1)) forallp #4,6,8,....
® Age(/,(0,1)) forall p #4,6,8,....
o {£}nall0<p<oo.

* {loctn

® Polyhedral spaces.

e All f.d. normed spaces.
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Theorem
For every p € 2N, p > 2, the family Age(L,|0, 1]) does not have the (ARP)

The reason is that on those L,,’s there are X = Y subspaces of L, such that X is
C-complemented
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Examples

Theorem
For every p € 2N, p > 2, the family Age(L,[0, 1]) does not have the (ARP)

The reason is that on those L,,’s there are X = Y subspaces of L, such that X is
C-complemented and Y is not 2C complemented. The coloring “being
C-complemented or not” is a bad one.
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Theorem (Lusternik and Shnirel’man)

When the unit sphere S"* of E;H is covered by n + 1 many open sets, one of
them contains a point x and its antipodal —x.
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Borsuk-Ulam

Recall that one sions of the Borsuk-Ulam theorem

states that
Theorem (Lu:

When the unit .
them contains

v n + 1 many open sets, one of
‘.

Definition

Let (X, d) be a me ic space, € > 0. We say that an open covering U of X is
e-fat when {U_.}yey s still a covering of X.

It is not difficult to see that if X is compact, then every open covering is e-fat
for some € > 0.
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What is the Approximate Ramsey Property Borsuk-Ulam

Theorem

The (ARP) of {£,}, states that

forevery 1 < p < o0, every integers d,m and r and every ¢ > 0 there is some
n such that for every e-fat open covering U of Emb(ﬁg , E;) with cardinality at
most r there is an open set of U containing o o Emb(ﬁg, KZ) for some

0 € Emb(£}, £7). Denote by n,(d,m,r,¢) the minimal such n.
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What is the Approximate Ramsey Property Borsuk-Ulam

Theorem

The (ARP) of {£,}, states that

forevery 1 < p < o0, every integers d,m and r and every ¢ > 0 there is some
n such that for every e-fat open covering U of Emb(ﬁg , E;) with cardinality at
most r there is an.onen cot af1d containina an Rmh(0d 00 far cnmo

o € Emb(¢}, £7). because Emb(¢),07) = S;~!, and Emb(£}, £)) = {£Id p}
Borsuk-Ulam Theorem is the statement
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What is the Approximate Ramsey Property Borsuk-Ulam

Theorem

The (ARP) of {£,}, states that

forevery 1 < p < o0, every integers d,m and r and every ¢ > 0 there is some
n such that for every e-fat open covering U of Emb(ﬁg , E;) with cardinality at
most r there is an open set of U containing o o Emb(ﬁg, KZ) for some

0 € Emb(£}, £7). Denote by n,(d,m,r,¢) the minimal such n.

Borsuk-Ulam Theorem is the statement

m(1,1,r,e) =rforall = > 0,

Problem

Isn,(d,m,r,e) independent of ?
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The case of d = 1 (i.e. coloring points of spheres) was proved independently
by E. Odell, H. Rosenthal and Th. Schlumprecht



Using tools from Banach space theory (like uncon-
ditionality) to find many symmetries

The case of d = 1 (i.e. coloring points of spkeres) was proved independently
by E. Odell, H. Rosenthal and Th. Schlumprecht



The case of d = 1 (i.e. coloring points of spheres) was proved independently
by E. Odell, H. Rosenthal and Th. Schlumprecht and by J. Matousek and V.
Ro6dl combinatorially using the notion of spread: Given a vector

a = (aj)j<m € R™,and aset s = {ko < k; < --- < ky,} of integers, let

Spread(a, s) Zajukj

j<m



The case of d = 1 (i.e. coloring points of spheres) was nroved independentlv
by E. Odell, H. Rosenth: u; is the vector with 1 in position s and O everywhere
R&dl combinatorially us else

a = (aj)j<m € R™,and aset s = {ko < k; < --- < <, } of integers, let
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The case of d = 1 (i.e. coloring points of spheres) was proved independently
by E. Odell, H. Rosenthal and Th. Schlumprecht and by J. MatouSek and V.
Ro6dl combinatorially using the notion of spread: Given a vector

a = (aj)j<m € R",and aset s = {ko < k; < --- < ky,} of integers, let

Spread(a, s) := Zajukj

j<m

Theorem

For every p < 0o, m € N and € > 0 there is some vector a and n € N such
that every Lipschitz coloring of the unit sphere Ser e-stabilizes on the unit
sphere of the span of Spread(a, so), . . . , Spread(a, sy—1 ) for some pairwise
disjoint sequence sy, . . . , S;—1 of subsets of n.
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It is a consequence of Dual Ramsey

An linear y : ¢4 — " represented in the unit basis by a matrix A is an
isometry if and only if the rows of rows(A) C Bya, and each

uj € £rows(A).
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It is a conseque:

An linear y : ¢4 — _:_represented in the unit basis by a matrix A is an
isometry if and oriy if the rows of rows(A) C Bya, and each
uj € £rows(A).
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It is a consequence of Dual Ramsey

An linear y : ¢4 — " represented in the unit basis by a matrix A is an
isometry if and only if the rows of rows(A) C B (> and each
uj € £rows(A).

Given D C Be’f a (rigid) surjection o : n — D we can define the
d x n-matrix A, whose j-row is o(j). When {u;};<q C £D, A
represents an isometric embedding.
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Hints on proofs | EEA

It is a consequence of Dual Ramsey

An linear 7 : £¢, — ¢"_ represented in the unit basis by a matrix A is an
isometry if and only if the rows of rows(4) C Bﬁ, and each

uj € rows(A).

Given D C Bezli a (rigid) surjection o : n — D we can define the
d x n-matrix A, whose j-row is o(j). When {u;};<4 C £D, A
represents an isometric embedding.

After proving (ARP) of {¢_},, one proves the (ARP) of the f.d. polyhedral
spaces, and then of all of f.d. normed spaces.
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We want to prove that for every d, m and r, and every € > 0 there is n such
that r-colorings of Emb(¢4, #4) have e-monochromatic sets of the form
0o Emb((‘zi, 7).
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0o Emb(ﬁ‘zi, ).
Since every Hilbert space is ultrahomogeneous, we may assume that
d = m; Let D be a finite £/2 dense subset of U, such that D = D~ !and
containing the identity.
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Since every Hilbert space is ultrahomogeneous, we may assume that
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We want to prove that for every d, m and r, and every € > 0 there is n such
that r-colorings of Emb(¢4, #4) have e-monochromatic sets of the form
0o Emb(ﬁ‘zi, ).
Since every Hilbert space is ultrahomogeneous, we may assume that
d = m; Let D be a finite £/2 dense subset of U, such that D = D~ !and
containing the identity.

We use now that (U,, dy, tin)n is Lévy to find n such that if 1,(A) > 1/r,
then 11, ((A)c/2) > 1 — 1/9£D. Then n works

For suppose that ¢ : Emb(¢4, 2) — r; We define ¢ : U, — r by
c(A) :== c(Ay).



We want to prove that for every d, m and r, and every € > 0 there is n such

that r-colorings n* Fm=( 74 M\ born o monacheamatic sets of the form
QoEmb(f‘zi,fg). pERT 2SS HH
Since every » . = |/, wemay assume that
d=m; Le ; Bl e - such that D = D! and
containing

We use now uiac \U .y Uny Mp)n 1D Lovy w nuarl such that lfﬂn(A) > 1/7",
then 11, ((A)e/2) > 1 — 1/9£D. Then n works

For suppose that ¢ : Emb(¢4, 4) — r; We define ¢ : U, — r by
c(A) :==c(Ay).
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Leti < r be such that g, (¢~!(i)) > 1/r. Then,
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pn((€7H(D)ep2) > 1= D
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Hints on proofs [ERANM

Leti < r be such that g, (¢~!(i)) > 1/r. Then,

(€1 (D)opa) > 1 - #11)'

Consider the embedding A € Uy, — A, := U,.

J. Lopez-Abad (UNED) ARP Banach 20/25



Leti < r be such that y,(c~1(i))

(€7 (@))epp) > 1= uD’

Consider the embedding A € U,,, — A, := U,.



Hints on proofs [ERANM

Leti < r be such that g, (¢~!(i)) > 1/r. Then,

_1. 1
pn((€7(0))e0) > 1 = D’
Consider the embedding A € U,,, — A, := U,. Since
m A, 5/2) >0,

AeD

Id €D, (A™"), = (A,)"' and D = D!, we can pick B € (¢!

such that A, - B € (¢7'(i))., forall A € D.
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Hints on proofs [ERANM

Leti < r be such that g, (¢~!(i)) > 1/r. Then,

_1. 1
pn((€7(0))e0) > 1 = D’
Consider the embedding A € U,,, — A, := U,. Since
m A, 5/2) >0,

AeD

Id €D, (A™"), = (A,)"' and D = D!, we can pick B € (¢!

such that A, - B € (¢7'(i))., forall A € D.
@ A simple analysis shows that A, - U, C (¢7!(i))e.

J. Lopez-Abad (UNED) ARP Banach
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p=1

Observe that when for v € Emb(¢¢, ") we impose that v(1) = 1 then
necessarily d|m and y(u;) = 1, where {s;};<4 is an equipartition of m
into d-many equally sized pieces
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I Because of the Mazur map, and because vy € Emb(f;‘f , £) satisfies that
7(u;) and y(ux) are disjointly supported for j # k, all cases reduce to
p=1

Observe that when for v € Emb(¢¢, ") we impose that v(1) = 1 then
necessarily d|m and y(u;) = 1, where {s;};<4 is an equipartition of m
into d-many equally sized pieces

The proof of the (ARP) of {//}, is a consequence of the Matousek-Rodl,
and the following






Hints on proofs [EEANN

Theorem

For every d|m and every r there is n divided by m such that every r-coloring of
£Q,(n) has a monochromatic set of the form (R)5! for some R € £Q,,(n)
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Hints on proofs NS

the collection of d-equipartitions of n

For every d|m and every r there is n divided by m such that every r-coloring of
£Qu(n)  has a monochromatic set of the form (R)j! for some R € £Q,,(n)
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Hints on proofs NS

the collection of d-equipartitions of #n coarser than R

For every d|m and every r there is n divided by m such that every r-coloring of
£Q,(n) has a monochromatic set of the form (R)5!  for some R € £Q,,(n)
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Conjecture

For every d|m and every r there is n divided by m such that every r-coloring of
£Q,(n) has a monochromatic set of the form (R)! for some R € £Q,,(n)
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Hints on proofs NS

For every d|m and every r there is n divided by m such that every r-coloring of
£Q,(n) has a monochromatic set of the form (R) ! for some R € £Q,,(n)

Luckily for us, the following is true

Theorem (ARP of equipartitions)

For every d|m and every r and € > 0 there is n divided by m such that every
r-coloring of £Q4(n) has an e-monochromatic set of the form <77>Zq for some

R € EQu(n)

J. Lopez-Abad (UNED) ARP Banach 23/25
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For eve of

. with respect to the normalized Hamming metric on £Q4(n)

8Qd(l’l/

Tu -

Luckily for us, the following is true

Theorem (ARP of equipartitions)

For every d|m and every r and € > 0 there is n divided by m such that every
r-coloring of €Qq4(n) has an e-monochromatic  set of the form (P) for
some R € £Q,(n)

J. Lopez-Abad (UNED) ARP Banach 23/25
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e Note that there are very few partitions that are equipartitions. However,
asymptotically, almost all partitions are c-equipartitions
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e Note that there are very few partitions that are equipartitions. However,
asymptotically, almost all partitions are c-equipartitions
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® Note that there are very few partitions that are equipartitions. However.
asymptotically, almost all partitions are c-equipartitions

e Since the sequence of (E;(n), du, f1c)n is Lévy, we conclude that
(Equi_(n,d), du, puc)n is also Lévy.

J. Lopez-Abad (UNED) ARP Banach
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e Note that there are very few partitions that are equipartitions. However,
asymptotically, almost all partitions are c-equipartitions

e Since the sequence of (E;(n), du, f1c)n is Lévy, we conclude that
(Equi_(n,d),dy, pc), is also Lévy.

® Arguing as we did in the Hilbert case, one proves the approximate result
for e-equipartitions.

J. Lopez-Abad (UNED) ARP Banach 24/25
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Note that there are very few partitions that are equipartitions. However,
asymptotically, almost all partitions are c-equipartitions

e Since the sequence of (E;(n), du, f1c)n is Lévy, we conclude that
(Equi_(n,d), du, puc)n is also Lévy.

Arguing as we did in the Hilbert case, one proves the approximate result
for e-equipartitions.

It is easily seen that when d|n, an e-equipartition is € /2-close to a
equipartition. This and the (ARP) of e-equipartitions gives the (ARP) of
equipartitions.

J. Lopez-Abad (UNED) ARP Banach 24/25
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Thank you!

ARP Banach 25/25

J. Lopez



	What is the Approximate Ramsey Property
	Grassmannians over the field R
	The definition
	(ARP) and Extreme amenability
	Examples
	Borsuk-Ulam

	Hints on proofs
	{n}n
	{2n}n
	{pn}n


