On non-topological solutions for planar Liouville Systems of Toda-type

Arkady Poliakovsky

Ben-Gurion University of the Negev

A class of systems arising from the study of vortex configurations in self-dual gauge field theories

A class of systems arising from the study of vortex configurations in self-dual gauge field theories

- Consider the problem:

$$
\left\{\begin{array}{l}
-\Delta w_{i}=\sum_{j=1}^{m} a_{i j} e^{w_{j}}-4 \pi N_{i} \delta_{0} \quad \text { in } \mathbb{R}^{2} \tag{1}\\
\int_{\mathbb{R}^{2}} e^{w_{i}}<\infty
\end{array}\right.
$$

A class of systems arising from the study of vortex configurations in self-dual gauge field theories

- Consider the problem:

$$
\left\{\begin{array}{l}
-\Delta w_{i}=\sum_{j=1}^{m} a_{i j} e^{w_{j}}-4 \pi N_{i} \delta_{0} \quad \text { in } \mathbb{R}^{2} \tag{1}\\
\int_{\mathbb{R}^{2}} e^{w_{i}}<\infty
\end{array}\right.
$$

- Here $N_{j}>-1, j=1, \ldots, m$ and $A=\left\{a_{i j}\right\}$ is a symmetric matrix.

A class of systems arising from the study of vortex configurations in self-dual gauge field theories

- Consider the problem:

$$
\left\{\begin{array}{l}
-\Delta w_{i}=\sum_{j=1}^{m} a_{i j} e^{w_{j}}-4 \pi N_{i} \delta_{0} \quad \text { in } \mathbb{R}^{2} \tag{1}\\
\int_{\mathbb{R}^{2}} e^{w_{i}}<\infty
\end{array}\right.
$$

- Here $N_{j}>-1, j=1, \ldots, m$ and $A=\left\{a_{i j}\right\}$ is a symmetric matrix.
- By setting: $w_{i}(x)=u_{i}(x)+2 N_{i} \ln |x|$, we reduce (1) to:

$$
\left\{\begin{array}{l}
-\Delta u_{i}=\sum_{j=1}^{m} a_{i j}|x|^{2 N_{j}} e^{u_{j}} \quad \text { in } \mathbb{R}^{2} \tag{2}\\
\frac{1}{2 \pi} \int_{\mathbb{R}^{2}}|x|^{2 N_{i}} e^{u_{i}} d x<+\infty
\end{array}\right.
$$

A class of systems arising from the study of vortex configurations in self-dual gauge field theories

- Consider the problem:

$$
\left\{\begin{array}{l}
-\Delta w_{i}=\sum_{j=1}^{m} a_{i j} e^{w_{j}}-4 \pi N_{i} \delta_{0} \quad \text { in } \mathbb{R}^{2} \tag{1}\\
\int_{\mathbb{R}^{2}} e^{w_{i}}<\infty
\end{array}\right.
$$

- Here $N_{j}>-1, j=1, \ldots, m$ and $A=\left\{a_{i j}\right\}$ is a symmetric matrix.
- By setting: $w_{i}(x)=u_{i}(x)+2 N_{i} \ln |x|$, we reduce (1) to:

$$
\left\{\begin{array}{l}
-\Delta u_{i}=\sum_{j=1}^{m} a_{i j}|x|^{2 N_{j}} e^{u_{j}} \quad \text { in } \mathbb{R}^{2} \tag{2}\\
\frac{1}{2 \pi} \int_{\mathbb{R}^{2}}|x|^{2 N_{i}} e^{u_{i}} d x<+\infty
\end{array}\right.
$$

- Clearly If u_{i} solves (2) and for every $R>0$ we define

A class of systems arising from the study of vortex configurations in self-dual gauge field theories

- Consider the problem:

$$
\left\{\begin{array}{l}
-\Delta w_{i}=\sum_{j=1}^{m} a_{i j} e^{w_{j}}-4 \pi N_{i} \delta_{0} \quad \text { in } \mathbb{R}^{2} \tag{1}\\
\int_{\mathbb{R}^{2}} e^{w_{i}}<\infty
\end{array}\right.
$$

- Here $N_{j}>-1, j=1, \ldots, m$ and $A=\left\{a_{i j}\right\}$ is a symmetric matrix.
- By setting: $w_{i}(x)=u_{i}(x)+2 N_{i} \ln |x|$, we reduce (1) to:

$$
\left\{\begin{array}{l}
-\Delta u_{i}=\sum_{j=1}^{m} a_{i j}|x|^{2 N_{j}} e^{u_{j}} \quad \text { in } \mathbb{R}^{2} \tag{2}\\
\frac{1}{2 \pi} \int_{\mathbb{R}^{2}}|x|^{2 N_{i}} e^{u_{i}} d x<+\infty
\end{array}\right.
$$

- Clearly If u_{i} solves (2) and for every $R>0$ we define

$$
\begin{equation*}
u_{i}^{(R)}(x):=u_{i}(x / R)-2\left(N_{i}+1\right) \ln (R) \quad \forall i=1, \ldots, m \tag{3}
\end{equation*}
$$

A class of systems arising from the study of vortex configurations in self-dual gauge field theories

- Consider the problem:

$$
\left\{\begin{array}{l}
-\Delta w_{i}=\sum_{j=1}^{m} a_{i j} e^{w_{j}}-4 \pi N_{i} \delta_{0} \quad \text { in } \mathbb{R}^{2} \tag{1}\\
\int_{\mathbb{R}^{2}} e^{w_{i}}<\infty
\end{array}\right.
$$

- Here $N_{j}>-1, j=1, \ldots, m$ and $A=\left\{a_{i j}\right\}$ is a symmetric matrix.
- By setting: $w_{i}(x)=u_{i}(x)+2 N_{i} \ln |x|$, we reduce (1) to:

$$
\left\{\begin{array}{l}
-\Delta u_{i}=\sum_{j=1}^{m} a_{i j}|x|^{2 N_{j}} e^{u_{j}} \quad \text { in } \mathbb{R}^{2} \tag{2}\\
\frac{1}{2 \pi} \int_{\mathbb{R}^{2}}|x|^{2 N_{i}} e^{u_{i}} d x<+\infty
\end{array}\right.
$$

- Clearly If u_{i} solves (2) and for every $R>0$ we define

$$
\begin{equation*}
u_{i}^{(R)}(x):=u_{i}(x / R)-2\left(N_{i}+1\right) \ln (R) \quad \forall i=1, \ldots, m \tag{3}
\end{equation*}
$$

then $u_{i}^{(R)}$ also solves (2) and moreover

A class of systems arising from the study of vortex configurations in self-dual gauge field theories

- Consider the problem:

$$
\left\{\begin{array}{l}
-\Delta w_{i}=\sum_{j=1}^{m} a_{i j} e^{w_{j}}-4 \pi N_{i} \delta_{0} \quad \text { in } \mathbb{R}^{2} \tag{1}\\
\int_{\mathbb{R}^{2}} e^{w_{i}}<\infty
\end{array}\right.
$$

- Here $N_{j}>-1, j=1, \ldots, m$ and $A=\left\{a_{i j}\right\}$ is a symmetric matrix.
- By setting: $w_{i}(x)=u_{i}(x)+2 N_{i} \ln |x|$, we reduce (1) to:

$$
\left\{\begin{array}{l}
-\Delta u_{i}=\sum_{j=1}^{m} a_{i j}|x|^{2 N_{j}} e^{u_{j}} \quad \text { in } \mathbb{R}^{2} \tag{2}\\
\frac{1}{2 \pi} \int_{\mathbb{R}^{2}}|x|^{2 N_{i}} e^{u_{i}} d x<+\infty
\end{array}\right.
$$

- Clearly If u_{i} solves (2) and for every $R>0$ we define

$$
\begin{equation*}
u_{i}^{(R)}(x):=u_{i}(x / R)-2\left(N_{i}+1\right) \ln (R) \quad \forall i=1, \ldots, m \tag{3}
\end{equation*}
$$

then $u_{i}^{(R)}$ also solves (2) and moreover

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{\mathbb{R}^{2}}|x|^{2 N_{i}} e^{u_{i}^{(R)}} d x=\frac{1}{2 \pi} \int_{\mathbb{R}^{2}}|x|^{2 N_{i}} e^{u_{i}} d x \tag{4}
\end{equation*}
$$

- We focus on the radial solvability of the problem

$$
\left\{\begin{array}{l}
-\Delta u_{i}=\sum_{j=1}^{m} a_{i j}|x|^{2 N_{j}} e^{u_{j}} \quad \text { in } \mathbb{R}^{2} \tag{5}\\
\frac{1}{2 \pi} \int_{\mathbb{R}^{2}}|x|^{2 N_{i}} e^{u_{i}} d x=\beta_{i} .
\end{array}\right.
$$

- We focus on the radial solvability of the problem

$$
\left\{\begin{array}{l}
-\Delta u_{i}=\sum_{j=1}^{m} a_{i j}|x|^{2 N_{j}} e^{u_{j}} \quad \text { in } \mathbb{R}^{2} \tag{5}\\
\frac{1}{2 \pi} \int_{\mathbb{R}^{2}}|x|^{2 N_{i}} e^{u_{i}} d x=\beta_{i} .
\end{array}\right.
$$

- It is well known that any solution to (5) satisfies Pohozaev identity:
- We focus on the radial solvability of the problem

$$
\left\{\begin{array}{l}
-\Delta u_{i}=\sum_{j=1}^{m} a_{i j}|x|^{2 N_{j}} e^{u_{j}} \quad \text { in } \mathbb{R}^{2} \tag{5}\\
\frac{1}{2 \pi} \int_{\mathbb{R}^{2}}|x|^{2 N_{i}} e^{u_{i}} d x=\beta_{i} .
\end{array}\right.
$$

- It is well known that any solution to (5) satisfies Pohozaev identity:

$$
\begin{equation*}
\sum_{i=1}^{m} \sum_{j=1}^{m} \frac{1}{2} a_{i j} \beta_{i} \beta_{j}-\sum_{k=1}^{m} 2\left(N_{k}+1\right) \beta_{k}=0 . \tag{6}
\end{equation*}
$$

- We focus on the radial solvability of the problem

$$
\left\{\begin{array}{l}
-\Delta u_{i}=\sum_{j=1}^{m} a_{i j}|x|^{2 N_{j}} e^{u_{j}} \quad \text { in } \mathbb{R}^{2} \tag{5}\\
\frac{1}{2 \pi} \int_{\mathbb{R}^{2}}|x|^{2 N_{i}} e^{u_{i}} d x=\beta_{i} .
\end{array}\right.
$$

- It is well known that any solution to (5) satisfies Pohozaev identity:

$$
\begin{equation*}
\sum_{i=1}^{m} \sum_{j=1}^{m} \frac{1}{2} a_{i j} \beta_{i} \beta_{j}-\sum_{k=1}^{m} 2\left(N_{k}+1\right) \beta_{k}=0 . \tag{6}
\end{equation*}
$$

So (6) is one of the necessary conditions of solvability of problem (5).

- We focus on the radial solvability of the problem

$$
\left\{\begin{array}{l}
-\Delta u_{i}=\sum_{j=1}^{m} a_{i j}|x|^{2 N_{j}} e^{u_{j}} \quad \text { in } \mathbb{R}^{2} \tag{5}\\
\frac{1}{2 \pi} \int_{\mathbb{R}^{2}}|x|^{2 N_{i}} e^{u_{i}} d x=\beta_{i} .
\end{array}\right.
$$

- It is well known that any solution to (5) satisfies Pohozaev identity:

$$
\begin{equation*}
\sum_{i=1}^{m} \sum_{j=1}^{m} \frac{1}{2} a_{i j} \beta_{i} \beta_{j}-\sum_{k=1}^{m} 2\left(N_{k}+1\right) \beta_{k}=0 . \tag{6}
\end{equation*}
$$

So (6) is one of the necessary conditions of solvability of problem (5).

- Moreover, the following condition, arising from the finiteness of integrals in (5):
- We focus on the radial solvability of the problem

$$
\left\{\begin{array}{l}
-\Delta u_{i}=\sum_{j=1}^{m} a_{i j}|x|^{2 N_{j}} e^{u_{j}} \quad \text { in } \mathbb{R}^{2} \tag{5}\\
\frac{1}{2 \pi} \int_{\mathbb{R}^{2}}|x|^{2 N_{i}} e^{u_{i}} d x=\beta_{i} .
\end{array}\right.
$$

- It is well known that any solution to (5) satisfies Pohozaev identity:

$$
\begin{equation*}
\sum_{i=1}^{m} \sum_{j=1}^{m} \frac{1}{2} a_{i j} \beta_{i} \beta_{j}-\sum_{k=1}^{m} 2\left(N_{k}+1\right) \beta_{k}=0 . \tag{6}
\end{equation*}
$$

So (6) is one of the necessary conditions of solvability of problem (5).

- Moreover, the following condition, arising from the finiteness of integrals in (5):

$$
\begin{equation*}
\sum_{j=1}^{m} a_{i j} \beta_{j}>2\left(N_{i}+1\right) \quad \forall i=1, \ldots, m \tag{7}
\end{equation*}
$$

- We focus on the radial solvability of the problem

$$
\left\{\begin{array}{l}
-\Delta u_{i}=\sum_{j=1}^{m} a_{i j}|x|^{2 N_{j}} e^{u_{j}} \quad \text { in } \mathbb{R}^{2} \tag{5}\\
\frac{1}{2 \pi} \int_{\mathbb{R}^{2}}|x|^{2 N_{i}} e^{u_{i}} d x=\beta_{i} .
\end{array}\right.
$$

- It is well known that any solution to (5) satisfies Pohozaev identity:

$$
\begin{equation*}
\sum_{i=1}^{m} \sum_{j=1}^{m} \frac{1}{2} a_{i j} \beta_{i} \beta_{j}-\sum_{k=1}^{m} 2\left(N_{k}+1\right) \beta_{k}=0 . \tag{6}
\end{equation*}
$$

So (6) is one of the necessary conditions of solvability of problem (5).

- Moreover, the following condition, arising from the finiteness of integrals in (5):

$$
\begin{equation*}
\sum_{j=1}^{m} a_{i j} \beta_{j}>2\left(N_{i}+1\right) \quad \forall i=1, \ldots, m \tag{7}
\end{equation*}
$$

is also one of the necessary conditions of radial solvability of problem (5).

The "classical" Liouville equation

The "classical" Liouville equation

- In the case of $m=1$, and $N=0$ problem (2) reduces to:

$$
\left\{\begin{array}{l}
-\Delta v=\lambda e^{v} \quad \text { in } \mathbb{R}^{2} \tag{8}\\
\int_{\mathbb{R}^{2}} e^{v} d x<+\infty
\end{array}\right.
$$

The "classical" Liouville equation

- In the case of $m=1$, and $N=0$ problem (2) reduces to:

$$
\left\{\begin{array}{l}
-\Delta v=\lambda e^{v} \quad \text { in } \mathbb{R}^{2} \tag{8}\\
\int_{\mathbb{R}^{2}} e^{v} d x<+\infty
\end{array}\right.
$$

Theorem (Chen-Li)

$$
\begin{equation*}
\text { If } \lambda>0 \text { then Eq.(8) } \Rightarrow \frac{\lambda}{2 \pi} \int_{\mathbb{R}^{2}} e^{v} d x=4 \tag{9}
\end{equation*}
$$

The "classical" Liouville equation

- In the case of $m=1$, and $N=0$ problem (2) reduces to:

$$
\left\{\begin{array}{l}
-\Delta v=\lambda e^{v} \quad \text { in } \mathbb{R}^{2} \tag{8}\\
\int_{\mathbb{R}^{2}} e^{v} d x<+\infty
\end{array}\right.
$$

Theorem (Chen-Li)

$$
\begin{equation*}
\text { If } \lambda>0 \text { then Eq.(8) } \Rightarrow \frac{\lambda}{2 \pi} \int_{\mathbb{R}^{2}} e^{v} d x=4 \tag{9}
\end{equation*}
$$

and all the solutions are fully classified.

The "singular" Liouville equation

- In the case of $m=1$, and $N \neq 0$ problem (2) reduces to:

$$
\left\{\begin{array}{l}
-\Delta v=|x|^{2 N} e^{v} \quad \text { in } \mathbb{R}^{2} \tag{10}\\
\int_{\mathbb{R}^{2}}|x|^{2 N} e^{v} d x<+\infty
\end{array}\right.
$$

The "singular" Liouville equation

- In the case of $m=1$, and $N \neq 0$ problem (2) reduces to:

$$
\left\{\begin{array}{l}
-\Delta v=|x|^{2 N} e^{v} \quad \text { in } \mathbb{R}^{2} \tag{10}\\
\int_{\mathbb{R}^{2}}|x|^{2 N} e^{v} d x<+\infty
\end{array}\right.
$$

Theorem (Prajapat-Tarantello)

$$
\begin{equation*}
\text { Eq. }(10) \Rightarrow \frac{1}{2 \pi} \int_{\mathbb{R}^{2}}|x|^{2 N} e^{v} d x=4(N+1) \tag{11}
\end{equation*}
$$

The "singular" Liouville equation

- In the case of $m=1$, and $N \neq 0$ problem (2) reduces to:

$$
\left\{\begin{array}{l}
-\Delta v=|x|^{2 N} e^{v} \quad \text { in } \mathbb{R}^{2} \tag{10}\\
\int_{\mathbb{R}^{2}}|x|^{2 N} e^{v} d x<+\infty
\end{array}\right.
$$

Theorem (Prajapat-Tarantello)

$$
\begin{equation*}
\text { Eq. }(10) \Rightarrow \frac{1}{2 \pi} \int_{\mathbb{R}^{2}}|x|^{2 N} e^{v} d x=4(N+1) \tag{11}
\end{equation*}
$$

and all the solutions are fully classified.

The system (2) when $a_{i j}>0$.

The system (2) when $a_{i j}>0$.
Consider the conditions:

$$
\left\{\begin{array}{l}
\beta_{i}>0 \quad i \in\{1, \ldots, m\} \tag{12}\\
\left(\sum_{i=1}^{m} \sum_{j=1}^{m} \frac{1}{2} a_{i j} \beta_{i} \beta_{j}\right)-\sum_{i=1}^{m} 2\left(N_{i}+1\right) \beta_{i}=0 \\
\left(\sum_{i \in J} \sum_{j \in J} \frac{1}{2} a_{i j} \beta_{i} \beta_{j}\right)-\sum_{i \in J} 2\left(N_{i}+1\right) \beta_{i}<0 \quad \forall J, 1 \leq|J|<m
\end{array}\right.
$$

The system (2) when $a_{i j}>0$.
Consider the conditions:

$$
\left\{\begin{array}{l}
\beta_{i}>0 \quad i \in\{1, \ldots, m\} \\
\left(\sum_{i=1}^{m} \sum_{j=1}^{m} \frac{1}{2} a_{i j} \beta_{i} \beta_{j}\right)-\sum_{i=1}^{m} 2\left(N_{i}+1\right) \beta_{i}=0 \tag{12}\\
\left(\sum_{i \in J} \sum_{j \in J} \frac{1}{2} a_{i j} \beta_{i} \beta_{j}\right)-\sum_{i \in J} 2\left(N_{i}+1\right) \beta_{i}<0 \forall J, 1 \leq|J|<m
\end{array}\right.
$$

Theorem (Chipot-Shafrir-Wolanski)

If $a_{i j}>0, \operatorname{det} A \neq 0$ and $N_{i}=0$ then (12) are necessary and sufficient condition for radial solvability of (5).

The system (2) when $a_{i j}>0$.

Consider the conditions:

$$
\left\{\begin{array}{l}
\beta_{i}>0 \quad i \in\{1, \ldots, m\} \\
\left(\sum_{i=1}^{m} \sum_{j=1}^{m} \frac{1}{2} a_{i j} \beta_{i} \beta_{j}\right)-\sum_{i=1}^{m} 2\left(N_{i}+1\right) \beta_{i}=0 \tag{12}\\
\left(\sum_{i \in J} \sum_{j \in J} \frac{1}{2} a_{i j} \beta_{i} \beta_{j}\right)-\sum_{i \in J} 2\left(N_{i}+1\right) \beta_{i}<0 \quad \forall J, 1 \leq|J|<m
\end{array}\right.
$$

Theorem (Chipot-Shafrir-Wolanski)

If $a_{i j}>0, \operatorname{det} A \neq 0$ and $N_{i}=0$ then (12) are necessary and sufficient condition for radial solvability of (5).

Theorem (C.S.Lin-Zhang)

In the settings of previous theorem a radial solution to (5) is unique (up to scaling (3)).

Theorem (P-Tarantello)

If $a_{i j}>0$ and $N_{i}>-1$ then (12) are necessary and sufficient condition for radial solvability of (5). Moreover, such a solution is unique (up to scaling (3)).

Theorem (P-Tarantello)

If $a_{i j}>0$ and $N_{i}>-1$ then (12) are necessary and sufficient condition for radial solvability of (5). Moreover, such a solution is unique (up to scaling (3)).

Here A can be degenerate. The particular case when $\operatorname{det} A \neq 0$ was treated independently by C.S.Lin and Zhang.

A degenerate system arisen in the study of selfgravitating strings

A degenerate system arisen in the study of selfgravitating

 strings- For $b>0$ and $N>-1$ consider the problem:

$$
\left\{\begin{array}{l}
-\Delta v=e^{b v}+|x|^{2 N} e^{v} \quad \text { in } \mathbb{R}^{2} \tag{13}\\
\frac{1}{2 \pi} \int_{\mathbb{R}^{2}}\left(e^{b v}+|x|^{2 N} e^{v}\right) d x=\alpha
\end{array}\right.
$$

A degenerate system arisen in the study of selfgravitating

 strings- For $b>0$ and $N>-1$ consider the problem:

$$
\left\{\begin{array}{l}
-\Delta v=e^{b v}+|x|^{2 N} e^{v} \quad \text { in } \mathbb{R}^{2} \tag{13}\\
\frac{1}{2 \pi} \int_{\mathbb{R}^{2}}\left(e^{b v}+|x|^{2 N} e^{v}\right) d x=\alpha .
\end{array}\right.
$$

- It can be easily verified that if $b=1 /(N+1)$ then $\alpha=4(N+1)$.

A degenerate system arisen in the study of selfgravitating strings

- For $b>0$ and $N>-1$ consider the problem:

$$
\left\{\begin{array}{l}
-\Delta v=e^{b v}+|x|^{2 N} e^{v} \quad \text { in } \mathbb{R}^{2} \tag{13}\\
\frac{1}{2 \pi} \int_{\mathbb{R}^{2}}\left(e^{b v}+|x|^{2 N} e^{v}\right) d x=\alpha .
\end{array}\right.
$$

- It can be easily verified that if $b=1 /(N+1)$ then $\alpha=4(N+1)$.
- Then by setting $u_{1}=b v-\ln b, u_{2}=v$ we reduce (13) to the degenerate system of the form (5):

A degenerate system arisen in the study of selfgravitating strings

- For $b>0$ and $N>-1$ consider the problem:

$$
\left\{\begin{array}{l}
-\Delta v=e^{b v}+|x|^{2 N} e^{v} \quad \text { in } \mathbb{R}^{2} \tag{13}\\
\frac{1}{2 \pi} \int_{\mathbb{R}^{2}}\left(e^{b v}+|x|^{2 N} e^{v}\right) d x=\alpha .
\end{array}\right.
$$

- It can be easily verified that if $b=1 /(N+1)$ then $\alpha=4(N+1)$.
- Then by setting $u_{1}=b v-\ln b, u_{2}=v$ we reduce (13) to the degenerate system of the form (5):

$$
\begin{cases}-\Delta u_{1}=b^{2} e^{u_{1}}+b|x|^{2 N} e^{u_{2}} & \text { in } \mathbb{R}^{2} \tag{14}\\ -\Delta u_{2}=b e^{u_{1}}+|x|^{2 N} e^{u_{2}} & \text { in } \mathbb{R}^{2} \\ \frac{1}{2 \pi} \int_{\mathbb{R}^{2}} e^{u_{1}} d x=\beta_{1} & \\ \frac{1}{2 \pi} \int_{\mathbb{R}^{2}}|x|^{2 N} e^{u_{2}} d x=\beta_{2} \\ b \beta_{1}+\beta_{2}=\alpha & \end{cases}
$$

Theorem (P-Tarantello)

Assume that v is a radial solution of (13).

$$
\begin{aligned}
\text { if } b & >\frac{1}{N+1} \text { then } \max \left\{\frac{4}{b}, 4(N+1)-\frac{4}{b}\right\}<\alpha<4(N+1) \text {, } \\
\text { if } 0<b & <\frac{1}{N+1} \text { then } \max \left\{4(N+1), \frac{4}{b}-4(N+1)\right\}<\alpha<\frac{4}{b} \text {. }
\end{aligned}
$$

Moreover, in the later cases there exist the unique radial solution to (13).

A system (5) with positively defined matrix A

A system (5) with positively defined matrix A

- What can we say about solvability of (5) if A is positively defined but can contain negative entries.

A system (5) with positively defined matrix A

- What can we say about solvability of (5) if A is positively defined but can contain negative entries.
- We focus on the case $m=2$.

A system (5) with positively defined matrix A

- What can we say about solvability of (5) if A is positively defined but can contain negative entries.
- We focus on the case $m=2$.
- Then (5) reeds as:

$$
\left\{\begin{array}{l}
-\Delta \psi=a_{11}|x|^{2 N_{1}} e^{\psi}+a_{12}|x|^{2 N_{2}} e^{\varphi} \quad \text { in } \mathbb{R}^{2} \tag{15}\\
-\Delta \varphi=a_{22}|x|^{2 N_{2}} e^{\varphi}+a_{12}|x|^{2 N_{1}} e^{\psi} \quad \text { in } \mathbb{R}^{2} \\
\frac{1}{2 \pi} \int_{\mathbb{R}^{2}}|x|^{2 N_{1}} e^{\psi} d x=\beta \\
\frac{1}{2 \pi} \int_{\mathbb{R}^{2}}|x|^{2 N_{2}} e^{\varphi} d x=\alpha
\end{array}\right.
$$

A system (5) with positively defined matrix A

- What can we say about solvability of (5) if A is positively defined but can contain negative entries.
- We focus on the case $m=2$.
- Then (5) reeds as:

$$
\left\{\begin{array}{l}
-\Delta \psi=a_{11}|x|^{2 N_{1}} e^{\psi}+a_{12}|x|^{2 N_{2}} e^{\varphi} \quad \text { in } \mathbb{R}^{2} \tag{15}\\
-\Delta \varphi=a_{22}|x|^{2 N_{2}} e^{\varphi}+a_{12}|x|^{2 N_{1}} e^{\psi} \quad \text { in } \mathbb{R}^{2} \\
\frac{1}{2 \pi} \int_{\mathbb{R}^{2}}|x|^{2 N_{1}} e^{\psi} d x=\beta \\
\frac{1}{2 \pi} \int_{\mathbb{R}^{2}}|x|^{2 N_{2}} e^{\varphi} d x=\alpha
\end{array}\right.
$$

and positive definiteness reeds as:

A system (5) with positively defined matrix A

- What can we say about solvability of (5) if A is positively defined but can contain negative entries.
- We focus on the case $m=2$.
- Then (5) reeds as:

$$
\left\{\begin{array}{l}
-\Delta \psi=a_{11}|x|^{2 N_{1}} e^{\psi}+a_{12}|x|^{2 N_{2}} e^{\varphi} \quad \text { in } \mathbb{R}^{2} \tag{15}\\
-\Delta \varphi=a_{22}|x|^{2 N_{2}} e^{\varphi}+a_{12}|x|^{2 N_{1}} e^{\psi} \quad \text { in } \mathbb{R}^{2} \\
\frac{1}{2 \pi} \int_{\mathbb{R}^{2}}|x|^{2 N_{1}} e^{\psi} d x=\beta \\
\frac{1}{2 \pi} \int_{\mathbb{R}^{2}}|x|^{2 N_{2}} e^{\varphi} d x=\alpha
\end{array}\right.
$$

and positive definiteness reeds as:

$$
\begin{equation*}
a_{11}>0, \quad a_{22}>0, \quad \text { and } \quad a_{12}^{2}<a_{11} a_{22} \tag{16}
\end{equation*}
$$

- Defining in (15):

$$
\begin{equation*}
u_{1}(x)=\psi(x)-\ln \left(a_{11}\right) \quad \text { and } \quad u_{2}(x)=\varphi(x)-\ln \left(a_{22}\right) \tag{17}
\end{equation*}
$$

- Defining in (15):

$$
\begin{equation*}
u_{1}(x)=\psi(x)-\ln \left(a_{11}\right) \quad \text { and } \quad u_{2}(x)=\varphi(x)-\ln \left(a_{22}\right) \tag{17}
\end{equation*}
$$

we rewrite (15) as:

- Defining in (15):

$$
\begin{equation*}
u_{1}(x)=\psi(x)-\ln \left(a_{11}\right) \quad \text { and } \quad u_{2}(x)=\varphi(x)-\ln \left(a_{22}\right) \tag{17}
\end{equation*}
$$

we rewrite (15) as:

$$
\begin{cases}-\Delta u_{1}=|x|^{2 N_{1}} e^{u_{1}}-\tau_{1}|x|^{2 N_{2}} e^{u_{2}} & \text { in } \mathbb{R}^{2} \tag{18}\\ -\Delta u_{2}=|x|^{2 N_{2}} e^{u_{2}}-\tau_{2}|x|^{2 N_{1}} e^{u_{1}} & \text { in } \mathbb{R}^{2} \\ \frac{1}{2 \pi} \int_{\mathbb{R}^{2}}|x|^{2 N_{1}} e^{u_{1}} d x=\beta_{1}, & \\ \frac{1}{2 \pi} \int_{\mathbb{R}^{2}}|x|^{2 N_{2}} e^{u_{2}} d x=\beta_{2}, & \end{cases}
$$

- Defining in (15):

$$
\begin{equation*}
u_{1}(x)=\psi(x)-\ln \left(a_{11}\right) \quad \text { and } \quad u_{2}(x)=\varphi(x)-\ln \left(a_{22}\right) \tag{17}
\end{equation*}
$$

we rewrite (15) as:

$$
\begin{cases}-\Delta u_{1}=|x|^{2 N_{1}} e^{u_{1}}-\tau_{1}|x|^{2 N_{2}} e^{u_{2}} & \text { in } \mathbb{R}^{2} \tag{18}\\ -\Delta u_{2}=|x|^{2 N_{2}} e^{u_{2}}-\tau_{2}|x|^{2 N_{1}} e^{u_{1}} & \text { in } \mathbb{R}^{2} \\ \frac{1}{2 \pi} \int_{\mathbb{R}^{2}}|x|^{2 N_{1}} e^{u_{1}} d x=\beta_{1}, & \\ \frac{1}{2 \pi} \int_{\mathbb{R}^{2}}|x|^{2 N_{2}} e^{u_{2}} d x=\beta_{2}, & \end{cases}
$$

where

$$
\begin{equation*}
\tau_{1}:=-\frac{a_{12}}{a_{22}}, \quad \tau_{2}:=-\frac{a_{12}}{a_{11}} \quad \text { and } \quad \beta_{1}=\frac{\beta}{a_{11}}, \quad \beta_{2}=\frac{\alpha}{a_{22}} . \tag{19}
\end{equation*}
$$

- Defining in (15):

$$
\begin{equation*}
u_{1}(x)=\psi(x)-\ln \left(a_{11}\right) \quad \text { and } \quad u_{2}(x)=\varphi(x)-\ln \left(a_{22}\right) \tag{17}
\end{equation*}
$$

we rewrite (15) as:

$$
\begin{cases}-\Delta u_{1}=|x|^{2 N_{1}} e^{u_{1}}-\tau_{1}|x|^{2 N_{2}} e^{u_{2}} & \text { in } \mathbb{R}^{2} \tag{18}\\ -\Delta u_{2}=|x|^{2 N_{2}} e^{u_{2}}-\tau_{2}|x|^{2 N_{1}} e^{u_{1}} & \text { in } \mathbb{R}^{2} \\ \frac{1}{2 \pi} \int_{\mathbb{R}^{2}}|x|^{2 N_{1}} e^{u_{1}} d x=\beta_{1}, & \\ \frac{1}{2 \pi} \int_{\mathbb{R}^{2}}|x|^{2 N_{2}} e^{u_{2}} d x=\beta_{2}, & \end{cases}
$$

where

$$
\begin{equation*}
\tau_{1}:=-\frac{a_{12}}{a_{22}}, \quad \tau_{2}:=-\frac{a_{12}}{a_{11}} \quad \text { and } \quad \beta_{1}=\frac{\beta}{a_{11}}, \quad \beta_{2}=\frac{\alpha}{a_{22}} . \tag{19}
\end{equation*}
$$

Moreover, in the case $a_{12} \neq 0$ (16) reeds as:

- Defining in (15):

$$
\begin{equation*}
u_{1}(x)=\psi(x)-\ln \left(a_{11}\right) \quad \text { and } \quad u_{2}(x)=\varphi(x)-\ln \left(a_{22}\right) \tag{17}
\end{equation*}
$$

we rewrite (15) as:

$$
\begin{cases}-\Delta u_{1}=|x|^{2 N_{1}} e^{u_{1}}-\tau_{1}|x|^{2 N_{2}} e^{u_{2}} & \text { in } \mathbb{R}^{2} \tag{18}\\ -\Delta u_{2}=|x|^{2 N_{2}} e^{u_{2}}-\tau_{2}|x|^{2 N_{1}} e^{u_{1}} & \text { in } \mathbb{R}^{2} \\ \frac{1}{2 \pi} \int_{\mathbb{R}^{2}}|x|^{2 N_{1}} e^{u_{1}} d x=\beta_{1}, & \\ \frac{1}{2 \pi} \int_{\mathbb{R}^{2}}|x|^{2 N_{2}} e^{u_{2}} d x=\beta_{2}, & \end{cases}
$$

where

$$
\begin{equation*}
\tau_{1}:=-\frac{a_{12}}{a_{22}}, \quad \tau_{2}:=-\frac{a_{12}}{a_{11}} \quad \text { and } \quad \beta_{1}=\frac{\beta}{a_{11}}, \quad \beta_{2}=\frac{\alpha}{a_{22}} . \tag{19}
\end{equation*}
$$

Moreover, in the case $a_{12} \neq 0$ (16) reeds as:

$$
\begin{equation*}
0<\tau_{1} \tau_{2}<1 \tag{20}
\end{equation*}
$$

- In the case $a_{12}<0$ we have $\tau_{1}>0, \tau_{2}>0$ and $\tau_{1} \tau_{2}<1$.
- In the case $a_{12}<0$ we have $\tau_{1}>0, \tau_{2}>0$ and $\tau_{1} \tau_{2}<1$. Then, Pohozaev identity (6) reeds as:
- In the case $a_{12}<0$ we have $\tau_{1}>0, \tau_{2}>0$ and $\tau_{1} \tau_{2}<1$.

Then, Pohozaev identity (6) reeds as:
$\tau_{2} \beta_{1}^{2}-4 \tau_{2}\left(N_{1}+1\right) \beta_{1}+\tau_{1} \beta_{2}^{2}-4 \tau_{1}\left(N_{2}+1\right) \beta_{2}-2 \tau_{1} \tau_{2} \beta_{1} \beta_{2}=0$.

- In the case $a_{12}<0$ we have $\tau_{1}>0, \tau_{2}>0$ and $\tau_{1} \tau_{2}<1$.

Then, Pohozaev identity (6) reeds as:
$\tau_{2} \beta_{1}^{2}-4 \tau_{2}\left(N_{1}+1\right) \beta_{1}+\tau_{1} \beta_{2}^{2}-4 \tau_{1}\left(N_{2}+1\right) \beta_{2}-2 \tau_{1} \tau_{2} \beta_{1} \beta_{2}=0$.
Moreover, (6) and (7) together reed as:

- In the case $a_{12}<0$ we have $\tau_{1}>0, \tau_{2}>0$ and $\tau_{1} \tau_{2}<1$.

Then, Pohozaev identity (6) reeds as:

$$
\begin{equation*}
\tau_{2} \beta_{1}^{2}-4 \tau_{2}\left(N_{1}+1\right) \beta_{1}+\tau_{1} \beta_{2}^{2}-4 \tau_{1}\left(N_{2}+1\right) \beta_{2}-2 \tau_{1} \tau_{2} \beta_{1} \beta_{2}=0 \tag{21}
\end{equation*}
$$

Moreover, (6) and (7) together reed as:

$$
\left\{\begin{array}{l}
\beta_{2}<\frac{2}{1-\tau_{1} \tau_{2}}\left(\left(N_{2}+1\right)+\tau_{2}\left(N_{1}+1\right)\right. \\
\left.+\sqrt{\left(N_{2}+1\right)^{2}+2 \tau_{2}\left(N_{2}+1\right)\left(N_{1}+1\right)+\frac{\tau_{2}}{\tau_{1}}\left(N_{1}+1\right)^{2}}\right), \\
\beta_{2}>\frac{2}{1-\tau_{1} \tau_{2}}\left(\left(N_{2}+1\right)+\tau_{2}\left(N_{1}+1\right)\right. \\
\left.+\left(\sqrt{\tau_{1} \tau_{2}}\right) \sqrt{\left(N_{2}+1\right)^{2}+2 \tau_{2}\left(N_{2}+1\right)\left(N_{1}+1\right)+\frac{\tau_{2}}{\tau_{1}}\left(N_{1}+1\right)^{2}}\right), \\
\beta_{1}=\left(2\left(N_{1}+1\right)+\tau_{1} \beta_{2}\right) \\
+\sqrt{\left(2\left(N_{1}+1\right)+\tau_{1} \beta_{2}\right)^{2}-\frac{\tau_{1}}{\tau_{2}} \beta_{2}\left(\beta_{2}-4\left(N_{2}+1\right)\right)} .
\end{array}\right.
$$

Moreover, similarly as it was done in the case $a_{12}>0$, in the case $a_{12}<0$ we also can find that the following condition

Moreover, similarly as it was done in the case $a_{12}>0$, in the case $a_{12}<0$ we also can find that the following condition

$$
\begin{equation*}
\beta_{1}>4\left(N_{1}+1\right) \quad \text { and } \quad \beta_{2}>4\left(N_{2}+1\right) \tag{23}
\end{equation*}
$$

Moreover, similarly as it was done in the case $a_{12}>0$, in the case $a_{12}<0$ we also can find that the following condition

$$
\begin{equation*}
\beta_{1}>4\left(N_{1}+1\right) \quad \text { and } \quad \beta_{2}>4\left(N_{2}+1\right) \tag{23}
\end{equation*}
$$

is also one of the necessary conditions of radial solvability of problem (18).

The following cases of system (18) are special:

The following cases of system (18) are special:

- $\tau_{1}=\tau_{2}=\frac{1}{2}$,

The following cases of system (18) are special:

- $\tau_{1}=\tau_{2}=\frac{1}{2}$,
- Either $\tau_{1}=\frac{1}{2}$ and $\tau_{2}=1$, or $\tau_{1}=1$ and $\tau_{2}=\frac{1}{2}$.

The following cases of system (18) are special:

- $\tau_{1}=\tau_{2}=\frac{1}{2}$,
- Either $\tau_{1}=\frac{1}{2}$ and $\tau_{2}=1$, or $\tau_{1}=1$ and $\tau_{2}=\frac{1}{2}$.
- Either $\tau_{1}=\frac{1}{2}$ and $\tau_{2}=\frac{3}{2}$, or $\tau_{1}=\frac{3}{2}$ and $\tau_{2}=\frac{1}{2}$.

The following cases of system (18) are special:

- $\tau_{1}=\tau_{2}=\frac{1}{2}$,
- Either $\tau_{1}=\frac{1}{2}$ and $\tau_{2}=1$, or $\tau_{1}=1$ and $\tau_{2}=\frac{1}{2}$.
- Either $\tau_{1}=\frac{1}{2}$ and $\tau_{2}=\frac{3}{2}$, or $\tau_{1}=\frac{3}{2}$ and $\tau_{2}=\frac{1}{2}$.

In these cases it was proved (C.S.Lin,Wei and thair coauthors) that the set of $\left(\beta_{1}, \beta_{2}\right)$ for which we have a radial solvability of (18) reduces to a single point.

The following cases of system (18) are special:

- $\tau_{1}=\tau_{2}=\frac{1}{2}$,
- Either $\tau_{1}=\frac{1}{2}$ and $\tau_{2}=1$, or $\tau_{1}=1$ and $\tau_{2}=\frac{1}{2}$.
- Either $\tau_{1}=\frac{1}{2}$ and $\tau_{2}=\frac{3}{2}$, or $\tau_{1}=\frac{3}{2}$ and $\tau_{2}=\frac{1}{2}$.

In these cases it was proved (C.S.Lin,Wei and thair coauthors) that the set of $\left(\beta_{1}, \beta_{2}\right)$ for which we have a radial solvability of (18) reduces to a single point.
For example: if $\tau_{1}=\tau_{2}=\frac{1}{2}$ then necessarily
$\beta_{1}=\beta_{2}=4\left(N_{1}+1\right)+4\left(N_{2}+1\right)$

The following cases of system (18) are special:

- $\tau_{1}=\tau_{2}=\frac{1}{2}$,
- Either $\tau_{1}=\frac{1}{2}$ and $\tau_{2}=1$, or $\tau_{1}=1$ and $\tau_{2}=\frac{1}{2}$.
- Either $\tau_{1}=\frac{1}{2}$ and $\tau_{2}=\frac{3}{2}$, or $\tau_{1}=\frac{3}{2}$ and $\tau_{2}=\frac{1}{2}$.

In these cases it was proved (C.S.Lin,Wei and thair coauthors) that the set of $\left(\beta_{1}, \beta_{2}\right)$ for which we have a radial solvability of (18) reduces to a single point.
For example: if $\tau_{1}=\tau_{2}=\frac{1}{2}$ then necessarily
$\beta_{1}=\beta_{2}=4\left(N_{1}+1\right)+4\left(N_{2}+1\right)$
and if $\tau_{1}=\frac{1}{2}, \tau_{2}=1$ then necessarily $\beta_{1}=8\left(N_{1}+1\right)+4\left(N_{2}+1\right)$ and $\beta_{2}=8\left(N_{1}+1\right)+8\left(N_{2}+1\right)$.

The system (18) in the case $\tau_{1}=\tau_{2}$

The system (18) in the case $\tau_{1}=\tau_{2}$

For $\tau \in(0,1)$ consider the system:

$$
\begin{cases}-\Delta u_{1}=|x|^{2 N_{1}} e^{u_{1}}-\tau|x|^{2 N_{2}} e^{u_{2}} & \text { in } \mathbb{R}^{2} \\ -\Delta u_{2}=|x|^{2 N_{2}} e^{u_{2}}-\tau|x|^{2 N_{1}} e^{u_{1}} & \text { in } \mathbb{R}^{2} \tag{24}\\ \frac{1}{2 \pi} \int_{\mathbb{R}^{2}}|x|^{2 N_{1}} e^{u_{1}} d x=\beta_{1}, & \\ \frac{1}{2 \pi} \int_{\mathbb{R}^{2}}|x|^{2 N_{2}} e^{u_{2}} d x=\beta_{2}, & \end{cases}
$$

For $\tau \in(0,1)$ consider the system:

$$
\begin{cases}-\Delta u_{1}=|x|^{2 N_{1}} e^{u_{1}}-\tau|x|^{2 N_{2}} e^{u_{2}} & \text { in } \mathbb{R}^{2} \tag{24}\\ -\Delta u_{2}=|x|^{2 N_{2}} e^{u_{2}}-\tau|x|^{2 N_{1}} e^{u_{1}} & \text { in } \mathbb{R}^{2} \\ \frac{1}{2 \pi} \int_{\mathbb{R}^{2}}|x|^{2 N_{1}} e^{u_{1}} d x=\beta_{1}, & \\ \frac{1}{2 \pi} \int_{\mathbb{R}^{2}}|x|^{2 N_{2}} e^{u_{2}} d x=\beta_{2}, & \end{cases}
$$

- If $\tau=1 / 2$ then it is well known Toda system, the radial solution exists if and only if $\beta_{1}=\beta_{2}=4\left(N_{1}+N_{2}+2\right)$ and they are completely classified (C.S.Lin-Wei-Ye).

Theorem (P-Tarantello)

For every $\tau \in(0,1) \backslash\{1 / 2\}$ the necessary and sufficient conditions on $\left(\beta_{1}, \beta_{2}\right)$ for the existence of a radial solution to (24) are the following:

$$
\left\{\begin{array}{l}
\frac{1}{2} \beta_{1}^{2}-2\left(N_{1}+1\right) \beta_{1}+\frac{1}{2} \beta_{2}^{2}-2\left(N_{2}+1\right) \beta_{2}-\tau \beta_{1} \beta_{2}=0, \tag{25}\\
\underline{\beta}_{1}(\tau)<\beta_{1}<\bar{\beta}_{1}(\tau) \\
\underline{\beta}_{2}(\tau)<\beta_{2}<\bar{\beta}_{2}(\tau) .
\end{array}\right.
$$

where $\underline{\beta}_{1}(\tau), \bar{\beta}_{1}(\tau), \underline{\beta}_{2}(\tau), \bar{\beta}_{2}(\tau)$ are given by some formulas.

Definitions of $\underline{\beta}_{1}(\tau), \bar{\beta}_{1}(\tau), \underline{\beta}_{2}(\tau), \bar{\beta}_{2}(\tau)$

Definitions of $\underline{\beta}_{1}(\tau), \bar{\beta}_{1}(\tau), \underline{\beta}_{2}(\tau), \bar{\beta}_{2}(\tau)$

- There exists unique $\delta_{1} \in(0,1 / 2)$ such that

$$
\begin{equation*}
4\left(N_{2}+1\right)=2 \delta_{1}\left(4\left(N_{1}+1\right)+8 \delta_{1}\left(N_{2}+1\right)\right) \tag{26}
\end{equation*}
$$

Definitions of $\underline{\beta}_{1}(\tau), \bar{\beta}_{1}(\tau), \underline{\beta}_{2}(\tau), \bar{\beta}_{2}(\tau)$

- There exists unique $\delta_{1} \in(0,1 / 2)$ such that

$$
\begin{equation*}
4\left(N_{2}+1\right)=2 \delta_{1}\left(4\left(N_{1}+1\right)+8 \delta_{1}\left(N_{2}+1\right)\right) \tag{26}
\end{equation*}
$$

- there exists unique $\delta_{2} \in(1 / 2,1 / \sqrt{2})$ such that

$$
\begin{equation*}
8\left(N_{2}+1\right)+\frac{2}{\delta_{2}}\left(N_{1}+1\right)=2 \delta_{2}\left(8 \delta_{2}\left(N_{2}+1\right)+4\left(N_{1}+1\right)\right) \tag{27}
\end{equation*}
$$

Definitions of $\underline{\beta}_{1}(\tau), \bar{\beta}_{1}(\tau), \underline{\beta}_{2}(\tau), \bar{\beta}_{2}(\tau)$

- There exists unique $\delta_{1} \in(0,1 / 2)$ such that

$$
\begin{equation*}
4\left(N_{2}+1\right)=2 \delta_{1}\left(4\left(N_{1}+1\right)+8 \delta_{1}\left(N_{2}+1\right)\right) \tag{26}
\end{equation*}
$$

- there exists unique $\delta_{2} \in(1 / 2,1 / \sqrt{2})$ such that

$$
\begin{equation*}
8\left(N_{2}+1\right)+\frac{2}{\delta_{2}}\left(N_{1}+1\right)=2 \delta_{2}\left(8 \delta_{2}\left(N_{2}+1\right)+4\left(N_{1}+1\right)\right) \tag{27}
\end{equation*}
$$

- there exists unique $\sigma_{1} \in(0,1 / 2)$ such that

$$
\begin{equation*}
4\left(N_{1}+1\right)=2 \sigma_{1}\left(4\left(N_{2}+1\right)+8 \sigma_{1}\left(N_{1}+1\right)\right) \tag{28}
\end{equation*}
$$

Definitions of $\underline{\beta}_{1}(\tau), \bar{\beta}_{1}(\tau), \underline{\beta}_{2}(\tau), \bar{\beta}_{2}(\tau)$

- There exists unique $\delta_{1} \in(0,1 / 2)$ such that

$$
\begin{equation*}
4\left(N_{2}+1\right)=2 \delta_{1}\left(4\left(N_{1}+1\right)+8 \delta_{1}\left(N_{2}+1\right)\right) \tag{26}
\end{equation*}
$$

- there exists unique $\delta_{2} \in(1 / 2,1 / \sqrt{2})$ such that

$$
\begin{equation*}
8\left(N_{2}+1\right)+\frac{2}{\delta_{2}}\left(N_{1}+1\right)=2 \delta_{2}\left(8 \delta_{2}\left(N_{2}+1\right)+4\left(N_{1}+1\right)\right) \tag{27}
\end{equation*}
$$

- there exists unique $\sigma_{1} \in(0,1 / 2)$ such that

$$
\begin{equation*}
4\left(N_{1}+1\right)=2 \sigma_{1}\left(4\left(N_{2}+1\right)+8 \sigma_{1}\left(N_{1}+1\right)\right) \tag{28}
\end{equation*}
$$

- there exists unique $\sigma_{2} \in(1 / 2,1 / \sqrt{2})$ such that

$$
8\left(N_{1}+1\right)+\frac{2}{\sigma_{2}}\left(N_{2}+1\right)=2 \sigma_{2}\left(8 \sigma_{2}\left(N_{1}+1\right)+4\left(N_{2}+1\right)\right)
$$

$$
\underline{\beta}_{1}(\tau)=\left\{\begin{array}{l}
4\left(N_{1}+1\right) \quad \forall \tau \in\left(0, \sigma_{1}\right) \\
2 \tau\left(4\left(N_{2}+1\right)+8 \tau\left(N_{1}+1\right)\right) \quad \forall \tau \in\left[\sigma_{1}, 1 / 2\right) \\
\left(4\left(N_{1}+1\right)+8 \tau\left(N_{2}+1\right)\right) \quad \forall \tau \in\left[1 / 2, \delta_{2}\right) \\
\frac{2\left(\left(N_{1}+1\right)+\tau\left(N_{2}+1\right)+\tau \sqrt{\left(N_{1}+1\right)^{2}+\left(N_{2}+1\right)^{2}+2 \tau\left(N_{1}+1\right)\left(N_{2}+1\right)}\right)}{1-\tau^{2}} \\
\forall \tau \geq \delta_{2} \tag{30}
\end{array}\right.
$$

$$
\begin{align*}
& \underline{\beta}_{1}(\tau)=\left\{\begin{array}{ll}
4\left(N_{1}+1\right) \quad \forall \tau \in\left(0, \sigma_{1}\right) \\
2 \tau\left(4\left(N_{2}+1\right)+8 \tau\left(N_{1}+1\right)\right) & \forall \tau \in\left[\sigma_{1}, 1 / 2\right) \\
\left.4\left(N_{1}+1\right)+8 \tau\left(N_{2}+1\right)\right) & \forall \tau \in\left[1 / 2, \delta_{2}\right) \\
\frac{2\left(\left(N_{1}+1\right)+\tau\left(N_{2}+1\right)+\tau \sqrt{\left(N_{1}+1\right)^{2}+\left(N_{2}+1\right)^{2}+2 \tau\left(N_{1}+1\right)\left(N_{2}+1\right)}\right)}{1-\tau^{2}} \\
\forall \tau \geq \delta_{2} & \bar{\beta}_{1}(\tau)= \begin{cases}\left(4\left(N_{1}+1\right)+8 \tau\left(N_{2}+1\right)\right) & \forall \tau \in(0,1 / 2) \\
2 \tau\left(4\left(N_{2}+1\right)+8 \tau\left(N_{1}+1\right)\right) & \forall \tau \in\left[1 / 2, \sigma_{2}\right) \\
\frac{2\left(\left(N_{1}+1\right)+\tau\left(N_{2}+1\right)+\sqrt{\left(N_{1}+1\right)^{2}+\left(N_{2}+1\right)^{2}+2 \tau\left(N_{1}+1\right)\left(N_{2}+1\right)}\right)}{1-\tau^{2}} \\
\forall \tau \geq \sigma_{2} .\end{cases}
\end{array} . \begin{array}{l}
3
\end{array}\right. \\
& \hline
\end{align*}
$$

$$
\underline{\beta}_{2}(\tau)=\left\{\begin{array}{l}
4\left(N_{2}+1\right) \quad \forall \tau \in\left(0, \delta_{1}\right) \\
2 \tau\left(4\left(N_{1}+1\right)+8 \tau\left(N_{2}+1\right)\right) \quad \forall \tau \in\left[\delta_{1}, 1 / 2\right) \\
\left(4\left(N_{2}+1\right)+8 \tau\left(N_{1}+1\right)\right) \quad \forall \tau \in\left[1 / 2, \sigma_{2}\right) \\
\frac{2\left(\left(N_{2}+1\right)+\tau\left(N_{1}+1\right)+\tau \sqrt{\left(N_{2}+1\right)^{2}+\left(N_{1}+1\right)^{2}+2 \tau\left(N_{2}+1\right)\left(N_{1}+1\right)}\right)}{1-\tau^{2}} \\
\forall \tau \geq \sigma_{2}
\end{array}\right.
$$

$$
\begin{align*}
& \underline{\beta}_{2}(\tau)= \begin{cases}4\left(N_{2}+1\right) \quad \forall \tau \in\left(0, \delta_{1}\right) \\
2 \tau\left(4\left(N_{1}+1\right)+8 \tau\left(N_{2}+1\right)\right) & \forall \tau \in\left[\delta_{1}, 1 / 2\right) \\
\left.4\left(N_{2}+1\right)+8 \tau\left(N_{1}+1\right)\right) & \forall \tau \in\left[1 / 2, \sigma_{2}\right) \\
\frac{2\left(\left(N_{2}+1\right)+\tau\left(N_{1}+1\right)+\tau \sqrt{\left(N_{2}+1\right)^{2}+\left(N_{1}+1\right)^{2}+2 \tau\left(N_{2}+1\right)\left(N_{1}+1\right)}\right)}{1-\tau^{2}} \\
\forall \tau \geq \sigma_{2} & \bar{\beta}_{2}(\tau)= \begin{cases}\left(4\left(N_{2}+1\right)+8 \tau\left(N_{1}+1\right)\right) & \forall \tau \in(0,1 / 2) \\
2 \tau\left(4\left(N_{1}+1\right)+8 \tau\left(N_{2}+1\right)\right) & \forall \tau \in\left[1 / 2, \delta_{2}\right) \\
\frac{2\left(\left(N_{2}+1\right)+\tau\left(N_{1}+1\right)+\sqrt{\left(N_{2}+1\right)^{2}+\left(N_{1}+1\right)^{2}+2 \tau\left(N_{2}+1\right)\left(N_{1}+1\right)}\right)}{1-\tau^{2}} \\
\forall \tau \geq \delta_{2}\end{cases} \end{cases}
\end{align*}
$$

For every $\tau \in(0,1) \theta \in \mathbb{R}$ consider $\left(v_{1}^{(\theta)}, v_{2}^{(\theta)}\right)$ be radial solution of

Lemma

For every $\tau \in(0,1) \theta \in \mathbb{R}$ consider $\left(v_{1}^{(\theta)}, v_{2}^{(\theta)}\right)$ be radial solution of

$$
\begin{cases}-\Delta v_{1}^{(\theta)}=|x|^{2 N_{1}} e^{v_{1}^{(\theta)}}-\tau|x|^{2 N_{2}} e^{v_{2}^{(\theta)}} & \text { in } \mathbb{R}^{2} \\ -\Delta v_{2}^{(\theta)}=|x|^{2 N_{2}} e^{v_{2}^{(\theta)}}-\tau|x|^{2 N_{1}} e^{v_{1}^{(\theta)}} & \text { in } \mathbb{R}^{2} \\ \psi^{(\theta)}(0)=\theta & \\ \varphi^{(\theta)}(0)=0, & \end{cases}
$$

Lemma

For every $\tau \in(0,1) \theta \in \mathbb{R}$ consider $\left(v_{1}^{(\theta)}, v_{2}^{(\theta)}\right)$ be radial solution of

$$
\begin{align*}
& \begin{cases}-\Delta v_{1}^{(\theta)}=|x|^{2 N_{1}} e^{v_{1}^{(\theta)}}-\tau|x|^{2 N_{2}} e^{v_{2}^{(\theta)}} & \text { in } \mathbb{R}^{2} \\
-\Delta v_{2}^{(\theta)}=|x|^{2 N_{2}} e^{v_{2}^{(\theta)}}-\tau|x|^{2 N_{1}} e^{v_{1}^{(\theta)}} & \text { in } \mathbb{R}^{2} \\
\psi^{(\theta)}(0)=\theta \\
\varphi^{(\theta)}(0)=0,\end{cases} \\
& \tilde{\beta}_{1}(\theta):=\frac{1}{2 \pi} \int_{\mathbb{R}^{2}}|x|^{2 N_{1}} e^{v_{1}^{(\theta)}} d x, \quad \tilde{\beta}_{2}(\theta):=\frac{1}{2 \pi} \int_{\mathbb{R}^{2}}|x|^{2 N_{2}} e^{v_{2}^{(\theta)}} d x . \tag{34}
\end{align*}
$$

Lemma

For every $\tau \in(0,1) \theta \in \mathbb{R}$ consider $\left(v_{1}^{(\theta)}, v_{2}^{(\theta)}\right)$ be radial solution of

$$
\begin{align*}
& \begin{cases}-\Delta v_{1}^{(\theta)}=|x|^{2 N_{1}} e^{v_{1}^{(\theta)}}-\tau|x|^{2 N_{2}} e^{v_{2}^{(\theta)}} & \text { in } \mathbb{R}^{2} \\
-\Delta v_{2}^{(\theta)}=|x|^{2 N_{2}} e^{v_{2}^{(\theta)}}-\tau|x|^{2 N_{1}} e^{v_{1}^{(\theta)}} & \text { in } \mathbb{R}^{2} \\
\psi^{(\theta)}(0)=\theta \\
\varphi^{(\theta)}(0)=0,\end{cases} \\
& \tilde{\beta}_{1}(\theta):=\frac{1}{2 \pi} \int_{\mathbb{R}^{2}}|x|^{2 N_{1}} e^{v_{1}^{(\theta)}} d x, \quad \tilde{\beta}_{2}(\theta):=\frac{1}{2 \pi} \int_{\mathbb{R}^{2}}|x|^{2 N_{2}} e^{v_{2}^{(\theta)}} d x . \tag{34}
\end{align*}
$$

Furthermore, let $T_{\tau}^{(1)}$ be the open interval with endpoints $\lim _{\theta \rightarrow \pm \infty} \tilde{\beta}_{1}(\theta)$ and $T_{\tau}^{(2)}$ be the open interval with endpoints $\lim _{\theta \rightarrow \pm \infty} \tilde{\beta}_{2}(\theta)$. Then

Lemma

For every $\tau \in(0,1) \theta \in \mathbb{R}$ consider $\left(v_{1}^{(\theta)}, v_{2}^{(\theta)}\right)$ be radial solution of

$$
\begin{align*}
& \begin{cases}-\Delta v_{1}^{(\theta)}=|x|^{2 N_{1}} e^{v_{1}^{(\theta)}}-\tau|x|^{2 N_{2}} e^{v_{2}^{(\theta)}} & \text { in } \mathbb{R}^{2} \\
-\Delta v_{2}^{(\theta)}=|x|^{2 N_{2}} e^{v_{2}^{(\theta)}}-\tau|x|^{2 N_{1}} e^{v_{1}^{(\theta)}} & \text { in } \mathbb{R}^{2} \\
\psi^{(\theta)}(0)=\theta \\
\varphi^{(\theta)}(0)=0,\end{cases} \tag{34}\\
& \tilde{\beta}_{1}(\theta):=\frac{1}{2 \pi} \int_{\mathbb{R}^{2}}|x|^{2 N_{1}} e^{v_{1}^{(\theta)}} d x, \quad \tilde{\beta}_{2}(\theta):=\frac{1}{2 \pi} \int_{\mathbb{R}^{2}}|x|^{2 N_{2}} e^{v_{2}^{(\theta)}} d x .
\end{align*}
$$

Furthermore, let $T_{\tau}^{(1)}$ be the open interval with endpoints $\lim _{\theta \rightarrow \pm \infty} \tilde{\beta}_{1}(\theta)$ and $T_{\tau}^{(2)}$ be the open interval with endpoints $\lim _{\theta \rightarrow \pm \infty} \tilde{\beta}_{2}(\theta)$. Then

$$
T_{\tau}^{(1)}=\left(\underline{\beta}_{1}(\tau), \bar{\beta}_{1}(\tau)\right) \quad \text { and } \quad T_{\tau}^{(2)}=\left(\underline{\beta}_{2}(\tau), \bar{\beta}_{2}(\tau)\right) .
$$

Let $\left(\tau_{1}, \tau_{2}\right) \neq(1 / 2,1 / 2)$ be such that $\left(\tau_{1}-1 / 2\right)\left(\tau_{2}-1 / 2\right) \geq 0$ be a radial solution of

Lemma

Let $\left(\tau_{1}, \tau_{2}\right) \neq(1 / 2,1 / 2)$ be such that $\left(\tau_{1}-1 / 2\right)\left(\tau_{2}-1 / 2\right) \geq 0$ be a radial solution of

$$
\begin{cases}-\Delta u_{1}=|x|^{2 N_{1}} e^{u_{1}}-\tau_{1}|x|^{2 N_{2}} e^{u_{2}} & \text { in } \mathbb{R}^{2} \tag{35}\\ -\Delta u_{2}=|x|^{2 N_{2}} e^{U_{2}}-\tau_{2}|x|^{2 N_{1}} e^{u_{1}} & \text { in } \mathbb{R}^{2} \\ \frac{1}{2 \pi} \int_{\mathbb{R}^{2}}|x|^{2 N_{1}} e^{u_{1}} d x=\beta_{1}, & \\ \frac{1}{2 \pi} \int_{\mathbb{R}^{2}}|x|^{2 N_{2}} e^{u_{2}} d x=\beta_{2}, & \end{cases}
$$

Lemma

Let $\left(\tau_{1}, \tau_{2}\right) \neq(1 / 2,1 / 2)$ be such that $\left(\tau_{1}-1 / 2\right)\left(\tau_{2}-1 / 2\right) \geq 0$ be a radial solution of

$$
\begin{cases}-\Delta u_{1}=|x|^{2 N_{1}} e^{u_{1}}-\tau_{1}|x|^{2 N_{2}} e^{u_{2}} & \text { in } \mathbb{R}^{2} \tag{35}\\ -\Delta u_{2}=|x|^{2 N_{2}} e^{U_{2}}-\tau_{2}|x|^{2 N_{1}} e^{u_{1}} & \text { in } \mathbb{R}^{2} \\ \frac{1}{2 \pi} \int_{\mathbb{R}^{2}}|x|^{2 N_{1}} e^{u_{1}} d x=\beta_{1}, & \\ \frac{1}{2 \pi} \int_{\mathbb{R}^{2}}|x|^{2 N_{2}} e^{u_{2}} d x=\beta_{2}, & \end{cases}
$$

Then

$$
\beta_{1} \neq 4\left(N_{1}+1\right)+8 \tau_{1}\left(N_{2}+1\right) \quad \text { and } \quad \beta_{2} \neq 4\left(N_{2}+1\right)+8 \tau_{2}\left(N_{1}+1\right)
$$

Thank You!

