UNIQUENESS AND EXISTENCE RESULTS

MORSE INDEX

FOR LANE-EMDEN PROBLEMS

Francesca De Marchis

Università degli Studi di Roma Sapienza

Physical Geometrical and Analytical Aspects of Mean Field Systems of Liouville Type Banff International Research Station, April 1-6, 2018

Francesca De Marchis

Uniqueness and existence for Lane-Emden

Banff, April 1-6

э

A D N A B N A B N

The Lane Emden problem

We consider the classical Lane-Emden problem

$$\begin{cases} -\Delta u = |u|^{p-1}u & \text{in } \Omega\\ u = 0 & \text{on } \partial \Omega \end{cases}$$

where Ω is a smooth bounded domain in \mathbb{R}^2 and p > 1.

イロト イポト イヨト イヨト

∃ <2 <</p>

The Lane Emden problem

We consider the classical Lane-Emden problem

$$\begin{cases} -\Delta u = |u|^{p-1}u & \text{in } \Omega\\ u = 0 & \text{on } \partial\Omega \end{cases}$$
(*)

where Ω is a smooth bounded domain in \mathbb{R}^2 and p > 1.

We will see as suitable rescalings of solutions u_p of (*) converge to a solution of (*RL*) or (*SL*) as $p \to +\infty$, where

$$(RL) \quad \left\{ \begin{array}{l} -\Delta \mathcal{U} = e^{\mathcal{U}} & \text{in } \mathbb{R}^2 \\ \int_{\mathbb{R}^2} e^{\mathcal{U}} dx < +\infty \end{array} \right. \qquad (SL) \quad \left\{ \begin{array}{l} -\Delta \mathcal{V} = e^{\mathcal{V}} - 4\pi\eta\delta_0 & \text{in } \mathbb{R}^2 \\ \int_{\mathbb{R}^2} e^{\mathcal{V}} dx < +\infty \end{array} \right.$$

3

イロト イボト イヨト イヨト

Theorem [Ren - Wei, Trans. Amer. Math. Soc. 1994]

For any family $(u_p)_p$ of nontrivial solutions

$$\liminf_{p\to+\infty} p \int_{\Omega} |\nabla u_p|^2 dx \ge 8\pi e.$$

イロト イロト イヨト

Theorem [Ren - Wei, Trans. Amer. Math. Soc. 1994]

For any family $(u_p)_p$ of nontrivial solutions

$$\liminf_{p\to+\infty} p \int_{\Omega} |\nabla u_p|^2 dx \ge 8\pi e.$$

Finite energy condition (which is NOT known to hold in general domains)

We will assume that given $p_0 > 1$ there exists $C = C(p_0, \Omega) > 0$ such that for any $p \ge p_0$

$$p\int_{\Omega} |\nabla u_p|^2 dx \le C. \tag{F}$$

글 🖒 🖂 글

イロト イロト イヨト イ

Theorem [Ren - Wei, Trans. Amer. Math. Soc. 1994]

For any family $(u_p)_p$ of nontrivial solutions

$$\liminf_{p\to+\infty} p \int_{\Omega} |\nabla u_p|^2 dx \ge 8\pi e.$$

Finite energy condition (which is NOT known to hold in general domains)

We will assume that given $p_0 > 1$ there exists $C = C(p_0, \Omega) > 0$ such that for any $p \ge p_0$

$$p\int_{\Omega} |\nabla u_p|^2 dx \le C. \tag{F}$$

FIRST EXAMPLES

▷ Least energy positive solutions: $p \int_{\Omega} |\nabla u_p|^2 dx \rightarrow 8\pi e$ as $p \rightarrow +\infty$ [Ren - Wei, Trans. Amer. Math. Soc. 1994]

э.

イロト 不得 とくほ とくほ とう

Theorem [Ren - Wei, Trans. Amer. Math. Soc. 1994]

For any family $(u_p)_p$ of nontrivial solutions

$$\liminf_{p\to+\infty} p \int_{\Omega} |\nabla u_p|^2 dx \ge 8\pi e.$$

Finite energy condition (which is NOT known to hold in general domains)

We will assume that given $p_0 > 1$ there exists $C = C(p_0, \Omega) > 0$ such that for any $p \ge p_0$

$$p\int_{\Omega} |\nabla u_p|^2 dx \le C. \tag{F}$$

FIRST EXAMPLES

- ▷ Least energy positive solutions: $p \int_{\Omega} |\nabla u_p|^2 dx \rightarrow 8\pi e$ as $p \rightarrow +\infty$ [Ren - Wei, Trans. Amer. Math. Soc. 1994]
- ▷ Least energy sign-changing solutions: $p \int_{\Omega} |\nabla u_p|^2 dx \rightarrow 16\pi e$ as $p \rightarrow +\infty$ [Castro - Cossio - Neuberger, Rocky Mount. J. of Math 1997]

No vanishing - No blow-up

Lemma [Ren - Wei, Trans. Amer. Math. Soc. 1994]

For any family $(u_p)_p$ of nontrivial solutions satisfying (F)

$$\lim_{p\to+\infty} \lim_{u_p} \|u_p\|_{L^{\infty}(\Omega)} \geq 1;$$

▷
$$||u_p||_{L^{\infty}(\Omega)} \leq C$$
, for some *C* independent of *p*.

< ∃→

ж

イロト イロト イヨト

A first bubble

Let us assume w.l.o.g. that

 $\|u_p\|_{L^{\infty}(\Omega)} = \|u_p^+\|_{L^{\infty}(\Omega)}$

æ

イロト イロト イヨト イヨト

A first bubble

Let us assume w.l.o.g. that

 $\|u_p\|_{L^{\infty}(\Omega)} = \|u_p^+\|_{L^{\infty}(\Omega)}$

Theorem [Adimurthi - Grossi, Proc. Amer. Math. Soc. 2004]

Let $(u_p)_p$ be a family of nontrivial solutions to (*), satisfying (*F*). Let $x_p^+ \in \Omega$ be such that $u_p(x_p^+) = ||u_p||_{L^{\infty}(\Omega)}$ and let us define the scaling parameter

$$\varepsilon_p^+ = \frac{1}{\sqrt{p \left(u_p(x_p^+)\right)^{p-1}}}$$

ж

イロト イポト イヨト イヨト

A first bubble

Let us assume w.l.o.g. that

 $\|u_p\|_{L^{\infty}(\Omega)} = \|u_p^+\|_{L^{\infty}(\Omega)}$

Theorem [Adimurthi - Grossi, Proc. Amer. Math. Soc. 2004]

Let $(u_p)_p$ be a family of nontrivial solutions to (*), satisfying (*F*). Let $x_p^+ \in \Omega$ be such that $u_p(x_p^+) = ||u_p||_{L^{\infty}(\Omega)}$ and let us define the scaling parameter

$$\varepsilon_p^+ = \frac{1}{\sqrt{p \left(u_p(x_p^+)\right)^{p-1}}}.$$

Then, up to a subsequence, the following scaled function about x_v^+ verifies

$$w_p^+(x) = p \frac{u_p(x_p^+ + \varepsilon_p^+ x) - u_p(x_p^+)}{u_p(x_p^+)} \xrightarrow[p \to +\infty]{} \mathcal{U}(x) \quad \text{in } C^1_{loc}(\mathbb{R}^2)$$

$$\begin{cases} -\Delta \mathcal{U} = e^{\mathcal{U}} & \text{in } \mathbb{R}^2 \\ \int_{\mathbb{R}^2} e^{\mathcal{U}} = 8\pi \\ \mathcal{U}(0) = 0, \mathcal{U} < 0 \end{cases} \qquad \overbrace{\qquad } \mathcal{U}(x) = 2 \log\left(\frac{1}{1 + \frac{1}{8}|x|^2}\right)$$

where

э

イロト イポト イヨト イヨト

Let (u_p) be positive/sign-changing solutions to (*) satisfying (F). Then there exists $k \in \mathbb{N} \setminus \{0\}$ and k families of points $x_{1,p} := x_p^+, x_{2,p}, \ldots, x_{k,p}$ in Ω such that, after passing to a subsequence,

- $\begin{aligned} (\mathcal{P}_{0}^{k}) & (\varepsilon_{i,p})^{-2} := p |u_{p}(x_{i,p})|^{p-1} \to +\infty \qquad (\text{ hence } |u_{p}(x_{i,p})| \ge 1 \delta) \\ (\mathcal{P}_{1}^{k}) & \lim_{p} \frac{|x_{i,p} x_{j,p}|}{\varepsilon_{i,p}} = +\infty \quad \text{for } i \neq j \\ (\mathcal{P}_{2}^{k}) & w_{i,p}(x) := p \frac{u_{p}(x_{i,p} + \varepsilon_{i,p}x) u_{p}(x_{i,p})}{u_{p}(x_{i,p})} \underset{p \to +\infty}{\longrightarrow} \mathcal{U}(x) \quad \text{in } C^{1}_{loc}(\mathbb{R}^{2}) \end{aligned}$
- $\begin{array}{ll} (\mathcal{P}_3^k) & \text{ there exists } C > 0 \text{ such that:} \\ & \min_{i=1,\ldots,k} |x x_{i,p}|^2 \, p |u_p(x)|^{p-1} \leq C & \text{ for all } x \in \Omega \end{array}$

* Inspired by [Druet, Duke Math J. 2006]

Francesca De Marchis

э

・ロト ・四ト ・ヨト ・ヨト

Let (u_p) be positive/sign-changing solutions to (*) satisfying (F). Then there exists $k \in \mathbb{N} \setminus \{0\}$ and k families of points $x_{1,p} := x_p^+, x_{2,p}, \ldots, x_{k,p}$ in Ω such that, after passing to a subsequence,

$$\begin{aligned} (\mathcal{P}_{0}^{k}) & (\varepsilon_{i,p})^{-2} := p|u_{p}(x_{i,p})|^{p-1} \to +\infty & (\text{ hence } |u_{p}(x_{i,p})| \ge 1-\delta) \\ (\mathcal{P}_{1}^{k}) & \lim_{p} \frac{|x_{i,p} - x_{j,p}|}{\varepsilon_{i,p}} = +\infty & \text{for } i \neq j \\ (\mathcal{P}_{2}^{k}) & w_{i,p}(x) := p\frac{u_{p}(x_{i,p} + \varepsilon_{i,p}x) - u_{p}(x_{i,p})}{u_{p}(x_{i,p})} \underset{p \to +\infty}{\longrightarrow} \mathcal{U}(x) & \text{in } C_{loc}^{1}(\mathbb{R}^{2}) \\ (\mathcal{P}_{3}^{k}) & \text{there exists } C > 0 \text{ such that:} \\ & \min_{i=1,\dots,k} |x - x_{i,p}|^{2} p|u_{p}(x)|^{p-1} \le C & \text{for all } x \in \Omega \end{aligned}$$

Moreover, given any other family of points $x_{k+1,p}$ it is impossible to extract a new sequence such that $(\mathcal{P}_0^{k+1}), (\mathcal{P}_1^{k+1}), (\mathcal{P}_2^{k+1})$ and (\mathcal{P}_3^{k+1}) hold.

* Inspired by [Druet, Duke Math J. 2006]

Francesca De Marchis

イロト イポト イヨト イヨト

Let (u_p) be positive/sign-changing solutions to (*) satisfying (F). Then there exists $k \in \mathbb{N} \setminus \{0\}$ and k families of points $x_{1,p} := x_p^+, x_{2,p}, \dots, x_{k,p}$ in Ω such that, after passing to a subsequence,

$$\begin{aligned} (\mathcal{P}_{0}^{k}) & (\varepsilon_{i,p})^{-2} := p|u_{p}(x_{i,p})|^{p-1} \to +\infty \qquad (\text{ hence } |u_{p}(x_{i,p})| \ge 1 - \delta) \\ (\mathcal{P}_{1}^{k}) & \lim_{p} \frac{|x_{i,p} - x_{j,p}|}{\varepsilon_{i,p}} = +\infty \quad \text{for } i \neq j \\ (\mathcal{P}_{2}^{k}) & w_{i,p}(x) := p\frac{u_{p}(x_{i,p} + \varepsilon_{i,p}x) - u_{p}(x_{i,p})}{u_{p}(x_{i,p})} \underset{p \to +\infty}{\longrightarrow} \mathcal{U}(x) \quad \text{in } C_{loc}^{1}(\mathbb{R}^{2}) \\ (\mathcal{P}_{3}^{k}) & \text{there exists } C > 0 \text{ such that:} \\ \min_{i=1,\dots,k} |x - x_{i,p}|^{2} p|u_{p}(x)|^{p-1} \le C \quad \text{for all } x \in \Omega \end{aligned}$$

Moreover, given any other family of points $x_{k+1,p}$ it is impossible to extract a new sequence such that $(\mathcal{P}_0^{k+1}), (\mathcal{P}_1^{k+1}), (\mathcal{P}_2^{k+1})$ and (\mathcal{P}_3^{k+1}) hold. Last, defining the concentration set as

$$\mathcal{S} = \{\lim_{p \to +\infty} x_{i,p} \mid i = 1, \dots, k\} = \{x_{1,\infty}, \dots, x_{N,\infty}\} \subset \overline{\Omega}$$

$$\sqrt{p} u_p \to 0 \quad \text{in } C^2_{loc}(\overline{\Omega} \setminus S), \quad \text{as } p \to +\infty.$$

* Inspired by [Druet, Duke Math J. 2006]

Francesca De Marchis

イロト イポト イヨト イヨト

Positive solutions

Theorem [D.- Ianni - Pacella, Lond. Math. Soc. L.N. 2017], [D.- Grossi - Ianni - Pacella, 2018]

Let $(u_p)_p$ be a family of positive solutions of (*) satisfying (*F*). Then there exist a sequence $p_n \to +\infty$ such that one has:

▷ $x_{1,\infty}, \ldots x_{k,\infty}$ are distinct (N = k) simple, isolated concentration points;

$$\triangleright$$
 $-\nabla_x H(x_{i,\infty}, x_{i,\infty}) + \sum_{i \neq \ell} \nabla_x G(x_{i,\infty}, x_{\ell,\infty}) = 0$

- $\triangleright \ u_{p_n}(x_{i,p_n}) \to \sqrt{e} \quad \text{for any } i, \quad (\text{in particular } \|u_{p_n}\|_{\infty} \to \sqrt{e}) \quad \text{as } n \to +\infty$
- $\triangleright \ p_n \int_{\Omega} |\nabla u_{p_n}|^2 dx \to k \cdot 8\pi e \qquad \text{as } n \to +\infty$
- ▷ there exists C > 0 such that $\min_{i=1...,k} |x x_{i,p_n}| p_n |\nabla u_{p_n}(x)| \le C$ for all $x \in \Omega$.

Positive solutions

Theorem [D.- Ianni - Pacella, Lond. Math. Soc. L.N. 2017], [D.- Grossi - Ianni - Pacella, 2018]

Let $(u_p)_p$ be a family of positive solutions of (*) satisfying (*F*). Then there exist a sequence $p_n \to +\infty$ such that one has:

▷ $x_{1,\infty}, \ldots x_{k,\infty}$ are distinct (N = k) simple, isolated concentration points;

$$\triangleright$$
 $-\nabla_x H(x_{i,\infty}, x_{i,\infty}) + \sum_{i \neq \ell} \nabla_x G(x_{i,\infty}, x_{\ell,\infty}) = 0$

- $\triangleright \ u_{p_n}(x_{i,p_n}) \to \sqrt{e} \quad \text{for any } i, \quad (\text{in particular } \|u_{p_n}\|_{\infty} \to \sqrt{e}) \quad \text{as } n \to +\infty$
- $\triangleright \ p_n \int_{\Omega} |\nabla u_{p_n}|^2 dx \to k \cdot 8\pi e \qquad \text{as } n \to +\infty$
- ▷ there exists C > 0 such that $\min_{i=1...,k} |x x_{i,p_n}| p_n |\nabla u_{p_n}(x)| \le C$ for all $x \in \Omega$.

EXAMPLES

If Ω is not simply connected: there exist solutions with an arbitrary large number k of concentration points
 [Esposito - Musso - Pistoia, J. Diff. Equ. 2006]

A priori estimates

Theorem [Kamburov-Sirakov, 2018]

Let $p_0 > 1$. There exists a constant $C = C(p_0, \Omega)$ such that for all $p \ge p_0$ ANY solution u_p of (*) satisfies:

 $\|u_p\|_{L^{\infty}(\Omega)} \leq C.$

ж.

イロト 不得 とくほ とくほとう

A priori estimates

Theorem [Kamburov-Sirakov, 2018]

Let $p_0 > 1$. There exists a constant $C = C(p_0, \Omega)$ such that for all $p \ge p_0$ ANY solution u_p of (*) satisfies:

 $\|u_p\|_{L^{\infty}(\Omega)} \leq C.$

Corollary [Kamburov-Sirakov, 2018]

Let $p_0 > 1$. If Ω is star-shaped, then for any $p \ge p_0$ there exists $C = C(p_0, \Omega) > 0$ such that ANY solution u_p of (*) satisfies

$$p\int_{\Omega}|\nabla u_p|^2dx\leq C,$$

namely condition (F).

A priori estimates

Theorem [Kamburov-Sirakov, 2018]

Let $p_0 > 1$. There exists a constant $C = C(p_0, \Omega)$ such that for all $p \ge p_0$ ANY solution u_p of (*) satisfies:

 $\|u_p\|_{L^{\infty}(\Omega)} \leq C.$

Corollary [Kamburov-Sirakov, 2018]

Let $p_0 > 1$. If Ω is star-shaped, then for any $p \ge p_0$ there exists $C = C(p_0, \Omega) > 0$ such that ANY solution u_p of (*) satisfies

$$\nu\int_{\Omega}|\nabla u_p|^2dx\leq C,$$

namely condition (F).

Remark

In starshaped domains (in particular in convex domains) the asymptotic analysis holds without any further assumption.

Francesca De Marchis

Uniqueness and existence for Lane-Emden

Banff, April 1-6

イロト イヨト イヨト イヨト

Conjecture [Gidas - Ni - Nirenberg, Comm. Math. Phys. 1979]

If Ω is convex, there is only one positive solution to (*) for any p > 1.

ж

イロト イポト イヨト イヨト

Conjecture [Gidas - Ni - Nirenberg, Comm. Math. Phys. 1979]

If Ω is convex, there is only one positive solution to (*) for any p > 1.

This uniqueness conjecture holds:

- in a ball (uniqueness can be easily established by rescaling in view of the uniqueness for the initial value problem of the associated ODE)
 [Gidas Ni Nirenberg, Comm. Math. Phys. 1979]
- in domains close to a ball
 [Zou, Annali SNS 1994]
- ▷ if $p \in (1, p_1)$, p_1 close to 1 [Lin, Manuscripta Math. 1994]
- ▷ (+ nondegeneracy) for least energy solutions in convex domains of R²
 [Lin, Manuscripta Math. 1994]
- if Ω is convex w.r.t. two orthogonal directions (not necessarily convex)
 [Dancer, J. Differential Equations 1988], [Damascelli Grossi Pacella, Ann. IHP 1999]

э

ヘロト 人間 とくほとく ほど

Conjecture [Gidas - Ni - Nirenberg, Comm. Math. Phys. 1979]

If Ω is convex, there is only one positive solution to (*) for any p > 1.

This uniqueness conjecture holds:

- in a ball (uniqueness can be easily established by rescaling in view of the uniqueness for the initial value problem of the associated ODE)
 [Gidas Ni Nirenberg, Comm. Math. Phys. 1979]
- in domains close to a ball
 [Zou, Annali SNS 1994]
- ▷ if $p \in (1, p_1)$, p_1 close to 1 [Lin, Manuscripta Math. 1994]
- (+ nondegeneracy) for least energy solutions in convex domains of R²
 [Lin, Manuscripta Math. 1994]
 (the same proof guarantees uniq. and nondeg. of solutions having Morse index 1)
- if Ω is convex w.r.t. two orthogonal directions (not necessarily convex)
 [Dancer, J. Differential Equations 1988], [Damascelli Grossi Pacella, Ann. IHP 1999]

э

ヘロト 人間 とくほとく ほど

Conjecture [Gidas - Ni - Nirenberg, Comm. Math. Phys. 1979]

If Ω is convex, there is only one positive solution to (*) for any p > 1.

This uniqueness conjecture holds:

- in a ball (uniqueness can be easily established by rescaling in view of the uniqueness for the initial value problem of the associated ODE)
 [Gidas Ni Nirenberg, Comm. Math. Phys. 1979]
- in domains close to a ball
 [Zou, Annali SNS 1994]
- ▷ if $p \in (1, p_1)$, p_1 close to 1 [Lin, Manuscripta Math. 1994]
- (+ nondegeneracy) for least energy solutions in convex domains of R²
 [Lin, Manuscripta Math. 1994]
 (the same proof guarantees uniq. and nondeg. of solutions having Morse index 1)
- if Ω is convex w.r.t. two orthogonal directions (not necessarily convex)
 [Dancer, J. Differential Equations 1988], [Damascelli Grossi Pacella, Ann. IHP 1999]

э

ヘロト 人間 とくほとく ほど

The conjecture holds for *p* large

Theorem [D - Grossi - Ianni - Pacella, 2018]

If Ω is convex, then there exists $p^* = p^*(\Omega) > 1$ s.t. for any $p \ge p^*$ (*) admits a unique positive solution.

3.5 3

A D N A B N A B N

The conjecture holds for *p* large

Theorem [D - Grossi - Ianni - Pacella, 2018]

If Ω is convex, then there exists $p^* = p^*(\Omega) > 1$ s.t. for any $p \ge p^*$ (*) admits a unique positive solution.

Main point of the proof

It is enough to show that:

there exists $p^* = p^*(\Omega) > 1$ such that for any $p \ge p^*$ any solution u_p of (*) satisfies

 $m(u_p) = 1$

because then the thesis follows directy from the uniqueness of the Morse index-1 solution

Theorem [Grossi - Takahashi, J. Funct. Anal. 2018]

In convex domains

$$-\nabla H(x_{i,\infty}, x_{i,\infty}) + \sum_{i \neq \ell} \nabla_x G(x_{i,\infty}, x_{\ell,\infty}) = 0 \quad \text{for any } i = 1, \dots, k$$

is solvable only if k = 1 and $x_{1,\infty}$ is a critical point of the Robin function.

$$G(x,y) = \frac{1}{2\pi} \log \frac{1}{|x-y|} - H(x,y), \qquad R(x) = H(x,x)$$

ж

イロト イポト イヨト イヨト

Theorem [Grossi - Takahashi, J. Funct. Anal. 2018]

In convex domains

$$-\nabla H(x_{i,\infty}, x_{i,\infty}) + \sum_{i \neq \ell} \nabla_x G(x_{i,\infty}, x_{\ell,\infty}) = 0 \quad \text{for any } i = 1, \dots, k$$

is solvable only if k = 1 and $x_{\infty} := x_{1,\infty}$ is a critical point of the Robin function.

$$G(x,y) = \frac{1}{2\pi} \log \frac{1}{|x-y|} - H(x,y), \qquad R(x) = H(x,x)$$

э.

イロト 不得 とくほ とくほとう

Theorem [Grossi - Takahashi, J. Funct. Anal. 2018]

In convex domains

$$-\nabla H(x_{i,\infty}, x_{i,\infty}) + \sum_{i \neq \ell} \nabla_x G(x_{i,\infty}, x_{\ell,\infty}) = 0 \quad \text{for any } i = 1, \dots, k$$

is solvable only if k = 1 and $x_{\infty} := x_{1,\infty}$ is a critical point of the Robin function.

$$G(x,y) = \frac{1}{2\pi} \log \frac{1}{|x-y|} - H(x,y), \qquad R(x) = H(x,x)$$

As a consequence in convex domains for a family u_p of solutions to (*) satisfying (F) we have:

- ▶ *k* = 1,
- $\triangleright \ \mathcal{S} = \{x_{\infty}\},$
- ▷ x_{∞} is a critical point of the Robin function.

ж

イロト 不得 とくほ とくほ とう

* It is enough to prove that

there exists $p^* = p^*(\Omega) > 1$ such that for any $p \ge p^*$ any solution u_p of (*) satisfies

 $\mathrm{m}(u_p)=1.$

 $\equiv \mathbf{b}$

э

* It is enough to prove that

there exists $p^* = p^*(\Omega) > 1$ such that for any $p \ge p^*$ any solution u_p of (*) satisfies

 $\mathrm{m}(u_p)=1.$

* Let us suppose by contradiction that there exists a family $(u_p)_p$, $p \to +\infty$, of solutions of (*) such that $m(u_p) \neq 1$.

3.5 3

* It is enough to prove that

there exists $p^* = p^*(\Omega) > 1$ such that for any $p \ge p^*$ any solution u_p of (*) satisfies

 $\mathbf{m}(u_p)=1.$

- * Let us suppose by contradiction that there exists a family $(u_p)_p$, $p \to +\infty$, of solutions of (*) such that $m(u_p) \neq 1$.
- * By the asymptotic analysis and the fact that $\Omega \subset \mathbb{R}^2$ is convex we have: there exist a point $x_{\infty} \in \Omega$ and a subsequence $p_n \to +\infty$ such that:

$$\begin{array}{l} \triangleright \ x_{p_n}^+ \to x_{\infty} \text{ is a critical point of the Robin function;} \\ \triangleright \ \|u_{p_n}\|_{\infty} \to \sqrt{e} \quad \text{ as } n \to +\infty \\ \triangleright \ p_n \int_{\Omega} |\nabla u_{p_n}|^2 dx \to 8\pi e \quad \text{ as } n \to +\infty; \\ \triangleright \ \sqrt{p_n} u_{p_n} \to 0 \quad \text{ in } C^2_{loc}(\bar{\Omega} \setminus \{x_{\infty}\}) \quad \text{ as } n \to +\infty; \\ \triangleright \ \text{ suitable rescalings of } u_{p_n} (\text{about } x_{p_n}^+) \text{ converge to } \mathcal{U} \text{ solution to (RL)} \\ \triangleright \ \exists C > 0 \text{ such that for all } x \in \Omega \quad |x - x_{p_n}^+|^2 p_n|u_{p_n}(x)|^{p_n - 1} \leq C; \\ \triangleright \ \exists C > 0 \text{ such that for all } x \in \Omega \quad |x - x_{p_n}^+|p_n|\nabla u_{p_n}(x)| \leq C. \end{array}$$

* Next we consider the linearized problem at u_{p_n}

$$\begin{cases} -\Delta v = \mu p_n u_{p_n}^{p_n - 1} v & \text{in } \Omega & \mu_{i,p_n} & \text{eigenvalues (counted with multiplicity)} \\ v = 0 & \text{on } \partial \Omega & v_{i,p_n} & \text{eigenfunctions} \\ \|v\|_{\infty} = 1 & \mathbf{m}(u_{i,p_n}) = \#\{i \in \mathbb{N} : \mu_{i,p_n} < 1\} \end{cases}$$

* It is immediate to see that:

$$\mu_{1,p_n} = \frac{1}{p_n} < 1 \quad (\text{with } v_{1,p_n} = u_{p_n});$$

* The core of the proof consists in showing that:

$$\mu_{2,p_n} = 1 + 24\pi\eta_1\varepsilon_{p_n}^2 + o(\varepsilon_{p_n}^2), \quad \text{as } n \to +\infty$$

where η_1 is the first eigenvalue of the Hessian of the Robin function at x_{∞} ;

* Since $\Omega \subset \mathbb{R}^2$ is convex x_∞ is the unique critical point of the Robin function and in particular it is a nondegenerate minimum point [Caffarelli-Friedman, 1985], so $\eta_1 > 0$ and in turn $\mu_{2,p_n} > 1$ for any $n \ge n^*$. Therefore

$$m(u_{p_n}) = 1$$
 for $n \ge n^*$,

which gives the desired contradiction.

Without any assumption on Ω

Theorem [D.- Grossi - Ianni - Pacella, 2018]

Let (u_{p_n}) be a sequence of *1-peak solutions* concentrating about a critical point x_{∞} of the Robin function, then for $n \ge n^*$

 $1\leq \mathrm{m}(u_{p_n})\leq 2.$

Moreover if x_{∞} is nondegenerate, then u_{p_n} is nondegenerate and $m(u_{p_n}) = 1 + m(x_{\infty})$.

э

Without any assumption on Ω

Theorem [D.- Grossi - Ianni - Pacella, 2018]

Let (u_{p_n}) be a sequence of 1-peak solutions concentrating about a critical point x_{∞} of the Robin function, then for $n \ge n^*$

 $1\leq \mathrm{m}(u_{p_n})\leq 2.$

Moreover if x_{∞} is nondegenerate, then u_{p_n} is nondegenerate and $m(u_{p_n}) = 1 + m(x_{\infty})$.

Some previous analogous results

- *N* ≥ 3: [Bahri-Li-Rey, Calc. Var. PDE, 1995], [Grossi-Pacella, 2005]
- *N* = 2, Liouville equation: [Gladiali-Grossi, 2009]

3

イロト 人間 とくほ とくほ とう

Let (u_p) be positive/sign-changing solutions to (*) satisfying (F). Then there exists $k \in \mathbb{N} \setminus \{0\}$ and k families of points $x_{1,p} := x_p^+, x_{2,p}, \ldots, x_{k,p}$ in Ω such that, after passing to a subsequence,

$$\begin{aligned} & (\mathcal{P}_0^k) \qquad (\varepsilon_{i,p})^{-2} := p |u_p(x_{i,p})|^{p-1} \to +\infty \\ & (\mathcal{P}_1^k) \qquad \lim_p \frac{|x_{i,p} - x_{j,p}|}{\varepsilon_{i,p}} = +\infty \quad \text{for } i \neq j \\ & (\mathcal{P}_2^k) \qquad w_{i,p}(x) := p \frac{u_p(x_{i,p} + \varepsilon_{i,p}x) - u_p(x_{i,p})}{u_p(x_{i,p})} \xrightarrow[p \to +\infty]{} \mathcal{U}(x) \quad \text{in } C^1_{loc}(\mathbb{R}^2) \\ & (\mathcal{P}_3^k) \qquad \text{there exists } C > 0 \text{ such that:} \\ & \min_{i=1,\dots,k} |x - x_{i,p}|^2 |pu_p(x)|^{p-1} \leq C \quad \text{for all } x \in \Omega \end{aligned}$$

Moreover, given any other family of points $x_{k+1,p}$ it is impossible to extract a new sequence such that $(\mathcal{P}_0^{k+1}), (\mathcal{P}_1^{k+1}), (\mathcal{P}_2^{k+1})$ and (\mathcal{P}_3^{k+1}) hold. Last, defining the concentration set as

$$\mathcal{S} = \{\lim_{p \to +\infty} x_{i,p} \mid i = 1, \dots, k\} = \{x_{1,\infty}, \dots, x_{N,\infty}\} \subset \bar{\Omega}$$

$$\sqrt{p} u_p \to 0 \quad \text{in } C^2_{loc}(\overline{\Omega} \setminus S), \quad \text{as } p \to +\infty.$$

Least energy sign-changing solutions

Theorem [Grossi - Grumiau -Pacella, Ann. IHP 2012]

Let u_p be a family of least energy sign-changing solutions to (\mathcal{E}_p) . Then:

- $||u_p||_{L^{\infty}} \rightarrow \sqrt{e}$
- $p \int_{\Omega} |\nabla u_p|^2 dx \to 16\pi e$

Under an extra assumption:

- $x_{1,p} = x_p^+$, $x_{2,p} = x_p^-$ and $x_{1,\infty} \neq x_{2,\infty}$.

Least energy sign-changing solutions

Theorem [Grossi - Grumiau -Pacella, Ann. IHP 2012]

Let u_p be a family of least energy sign-changing solutions to (\mathcal{E}_p) . Then:

- $||u_p||_{L^{\infty}} \rightarrow \sqrt{e}$
- $p \int_{\Omega} |\nabla u_p|^2 dx \rightarrow 16\pi e$

Under an extra assumption:

- $x_{1,p} = x_p^+$, $x_{2,p} = x_p^-$ and $x_{1,\infty} \neq x_{2,\infty}$.

EXAMPLES

 Solutions of this kind have been constructed in [Esposito - Musso - Pistoia, Proc. Lond. Math. Soc. 2007]

3

イロト イポト イヨト イヨト

Bubble tower phenomenon in the radial case

Theorem [Grossi - Grumiau - Pacella, J. Math. Pures Appl. 2014]

Let $(u_p)_p$ be a family of least en. sign-changing radial solutions of (\mathcal{E}_p) in $B_1(0) \subset \mathbb{R}^2$. Then

$$\begin{split} w_p^+(x) &= p \frac{u_p(\varepsilon_p^+ x) - u_p(0)}{u_p(0)} \xrightarrow[p \to +\infty]{} \mathcal{U}(x) & \text{ in } C^1_{loc}(\mathbb{R}^2) \\ w_p^-(x) &= p \frac{u_p(\varepsilon_p^- x) - u_p(x_p^-)}{u_p(x_p^-)} \xrightarrow[p \to +\infty]{} \mathcal{V}_\ell(x) & \text{ in } C^1_{loc}(\mathbb{R}^2 \setminus \{0\}) \end{split}$$

where

$$\begin{cases} -\Delta \mathcal{V}_{\ell} = e^{\mathcal{V}_{\ell}} - 4\pi\eta\delta_{0} \quad \text{in } \mathbb{R}^{2} \quad \mathcal{V}_{\ell}(x) := \log\left(\frac{2\alpha^{2}\beta^{\alpha}|x|^{\alpha-2}}{(\beta^{\alpha}+|x|^{\alpha})^{2}}\right) \\ \int_{\mathbb{R}^{2}} e^{\mathcal{V}_{\ell}} = 8\pi(1+\eta) \\ \mathcal{V}_{\ell}(x_{\ell}) = 0, \mathcal{V}_{\ell} \leq 0 \\ \text{for a certain } \eta = \eta(\ell) \qquad \alpha = \sqrt{2\ell^{2}+4}, \ \beta = \ell\left(\frac{\alpha+2}{\alpha-2}\right)^{1/\alpha}. \end{cases}$$

3

イロト イポト イヨト イヨト

Bubble tower phenomenon in the radial case

Theorem [Grossi - Grumiau - Pacella, J. Math. Pures Appl. 2014]

Let $(u_p)_p$ be a family of least en. sign-changing radial solutions of (\mathcal{E}_p) in $B_1(0) \subset \mathbb{R}^2$. Then

$$w_p^+(x) = p \frac{u_p(\varepsilon_p^+ x) - u_p(0)}{u_p(0)} \xrightarrow{p \to +\infty} \mathcal{U}(x) \quad \text{in } C^1_{loc}(\mathbb{R}^2)$$

$$w_p^-(x) = p \frac{u_p(\varepsilon_p^- x) - u_p(x_p^-)}{u_p(x_p^-)} \xrightarrow{p \to +\infty} \mathcal{V}_\ell(x) \quad \text{in } C^1_{loc}(\mathbb{R}^2 \setminus \{0\})$$

where

$$\begin{cases} -\Delta \mathcal{V}_{\ell} = e^{\mathcal{V}_{\ell}} - 4\pi\eta\delta_{0} \quad \text{in } \mathbb{R}^{2} \quad \mathcal{V}_{\ell}(x) := \log\left(\frac{2\alpha^{2}\beta^{\alpha}|x|^{\alpha}-2}{(\beta^{\alpha}+|x|^{\alpha})^{2}}\right) \\ \int_{\mathbb{R}^{2}} e^{\mathcal{V}_{\ell}} = 8\pi(1+\eta) \quad x_{\ell} = \lim_{p} x_{p}^{-}/\varepsilon_{p}^{-}, \ \ell = |x_{\ell}|, \\ \mathcal{V}_{\ell}(x_{\ell}) = 0, \mathcal{V}_{\ell} \leq 0 \quad x_{\ell} = \lim_{p} x_{p}^{-}/\varepsilon_{p}^{-}, \ \ell = |x_{\ell}|, \\ \text{for a certain } \eta = \eta(\ell) \quad \alpha = \sqrt{2\ell^{2}+4}, \ \beta = \ell\left(\frac{\alpha+2}{\alpha-2}\right)^{1/\alpha}. \end{cases}$$

Moreover if r_p is the nodal radius of u_p , then

$$\frac{r_p}{\varepsilon_p^+} \to +\infty, \qquad \frac{r_p}{\varepsilon_p^-} \to 0 \qquad \text{ as } p \to +\infty.$$

э

イロト イポト イヨト イヨト

0

Bubble tower phenomenon in the symmetric case

Theorem [D - Ianni - Pacella, J. Eur. Math. Soc. 2015]

A bubble tower with two different bubbles appears also in *G*-symmetric domains by studying the asymptotic behavior of a special class of sign-changing solutions constructed in [D - Ianni - Pacella, J. Differ. Equ. 2013] and having two nodal regions and an interior nodal line.

A D N A B N A B N

Morse index of nodal radial solutions

Theorem [D - Ianni - Pacella, Math. Ann. 2017]

Let u_p be the least energy sign-changing radial solution of (*) in $B_1(0) \subset \mathbb{R}^2$. Then, for *p* sufficiently large, the Morse index:

 $m(u_p)=12.$

4 E b

3

Morse index of nodal radial solutions

Theorem [D - Ianni - Pacella, Math. Ann. 2017]

Let u_p be the least energy sign-changing radial solution of (*) in $B_1(0) \subset \mathbb{R}^2$. Then, for *p* sufficiently large, the Morse index:

 $m(u_p)=12.$

Remark

$$m(u_p) = 12 = 1 + 11 = m(\mathcal{U}) + m(\mathcal{V}_{\ell}),$$

where $m(\mathcal{U})$ and $m(\mathcal{V}_{\ell})$ are respectively the Morse indexes of the regular solution of (RL) and of the singular solution of (SL) [Chen - Lin, Comm. Pure Appl. Math 2010], to which w_p^{\pm} converge.

Corollary: new (unexpected!) solutions

For *p* large there exist symmetric (but NOT radial) sign-changing solutions in the ball with interior nodal line.

▷ By a decomposition of the spectrum of the linearized operator

$$L_p = -\Delta - p|u_p|^{p-1}$$

at the radial solution u_p , we prove that, for p large, among its negative eigenvalues there are at least:

- 3 negative eigenvalues with G₄-symmetry
- 3 negative eigenvalues with G₅-symmetry

where by G_i , i = 4, 5, we mean the cyclic group of rotations by an angle of $\frac{2\pi}{i}$;

- ▷ the least energy nodal solution v_p^i in the space $H^1_{0,G_i}(B)$, i = 4, 5, has exactly two negative G_i -symmetric eigenvalues (following [Barsch Weth, TMNA 2003]);
- ▷ then $v_p^i \neq u_p$, so v_p^i are NOT radial;
- ▷ by a result in [D Ianni Pacella, JDE 2013] we know that the nodal line of v_p^i does not touch the boundary, so they are not the least energy solutions [Aftalion Pacella, C. R. Math. Acad. Sci. Paris 2004].

Bifurcation

Theorem [Gladiali - Ianni, 2017]

By analyzing the asymptotic behavior of u_p , as $p \to 1$, and its Morse index it is possible to prove that

 $m(u_p) = 6$ for *p* close to 1.

The change of Morse index from 6 to 12, as *p* increases, shows bifurcation.

イロト 人間 とくほ とくほ とう

ж

Outline of the proof

▷ The number of negative eigenvalues $\mu_i(p)$ of the linearized operator

$$L_p = -\Delta - p|u_p|^{p-1}$$

ヨトーヨ

イロト イロト イヨト

Outline of the proof

▷ The number of negative eigenvalues $\mu_i(p)$ of the linearized operator

$$L_p = -\Delta - p|u_p|^{p-1}$$

is the same as

the number of negative eigenvalues $\mu_i^n(p)$ of L_p in the annulus $A_n = \{\frac{1}{n} < |x| < n\}$

э

• • • • • • • • • •

Outline of the proof

▷ The number of negative eigenvalues $\mu_i(p)$ of the linearized operator

$$L_p = -\Delta - p|u_p|^{p-1}$$

is the same as

the number of negative eigenvalues $\mu_i^n(p)$ of L_p in the annulus $A_n = \{\frac{1}{n} < |x| < n\}$

is the same as

the number of negative eigenvalues $\tilde{\mu}_i^n(p)$ of the weighted operator

$$\tilde{L}_p^n(p) = |x|^2(-\Delta - p|u_p|^{p-1}) \qquad \text{in } A_n.$$

A D N A B N A B N

$$ilde{\mu}^n_i(p) = ilde{eta}^n_j(p) + \lambda_k, \qquad \quad i, j = 1, 2, \dots, \;\; k = 0, 1, 2, \dots \quad \quad (1$$

where $\tilde{\beta}_{i}^{n}(p)$ are the eigenvalues of the 1-dimensional weighted operator

$$ilde{L}_{p,rad}^{n} = r^{2}(-v''-rac{v'}{r}-p|u_{p}(r)|^{p-1}), \qquad r \in (rac{1}{n},1)$$

and λ_k are the eigenvalues of the Laplace-Beltrami operator $-\Delta_{S^1}$ on the unit sphere

$$\lambda_k = k^2. \tag{2}$$

$$ilde{\mu}_{i}^{n}(p) = ilde{eta}_{j}^{n}(p) + \lambda_{k}, \qquad i, j = 1, 2, \dots, \ k = 0, 1, 2, \dots$$
 (1

where $\tilde{\beta}_{j}^{n}(p)$ are the eigenvalues of the 1-dimensional weighted operator

$$ilde{L}_{p,rad}^n = r^2 (-v'' - rac{v'}{r} - p |u_p(r)|^{p-1}), \qquad r \in (rac{1}{n}, 1)$$

and λ_k are the eigenvalues of the Laplace-Beltrami operator $-\Delta_{S^1}$ on the unit sphere

$$\lambda_k = k^2. \tag{2}$$

 $\triangleright \ \widetilde{\beta}_{j}^{n}(p) \geq 0$, for any $j \geq 3$ (*u_p* is the least energy sign-ch. radial solution)

$$ilde{\mu}_{i}^{n}(p) = ilde{eta}_{j}^{n}(p) + \lambda_{k}, \qquad i, j = 1, 2, \dots, \ k = 0, 1, 2, \dots$$
 (1

where $\tilde{\beta}_{i}^{n}(p)$ are the eigenvalues of the 1-dimensional weighted operator

$$ilde{L}_{p,rad}^n = r^2 (-v'' - rac{v'}{r} - p |u_p(r)|^{p-1}), \qquad r \in (rac{1}{n}, 1)$$

and λ_k are the eigenvalues of the Laplace-Beltrami operator $-\Delta_{S^1}$ on the unit sphere

$$\lambda_k = k^2. \tag{2}$$

*β*_jⁿ(p) ≥ 0, for any j ≥ 3 (u_p is the least energy sign-ch. radial solution)

 *β*₂ⁿ(p) ∈ (-1,0), (by Sturm separation theorem for o.d.e.)

$$ilde{\mu}_{i}^{n}(p) = ilde{eta}_{j}^{n}(p) + \lambda_{k}, \qquad i, j = 1, 2, \dots, \ k = 0, 1, 2, \dots$$
 (1

where $\beta_i^n(p)$ are the eigenvalues of the 1-dimensional weighted operator

$$ilde{L}_{p,rad}^n = r^2 (-v'' - rac{v'}{r} - p |u_p(r)|^{p-1}), \qquad r \in (rac{1}{n}, 1)$$

and λ_k are the eigenvalues of the Laplace-Beltrami operator $-\Delta_{S^1}$ on the unit sphere

$$\lambda_k = k^2. \tag{2}$$

▷ $\tilde{\beta}_{j}^{n}(p) \ge 0$, for any $j \ge 3$ (u_{p} is the least energy sign-ch. radial solution) ▷ $\tilde{\beta}_{2}^{n}(p) \in (-1, 0)$, (by Sturm separation theorem for o.d.e.)

 $\triangleright \ \ \text{Take} \ n = n_p \to +\infty \text{ as } p \to +\infty \text{ and set } \tilde{\beta}_1(p) := \tilde{\beta}_1^{n_p}(p), \text{ then}$

$$\tilde{\beta}_1(p) \xrightarrow[p \to +\infty]{} - \frac{\ell+2}{2} \simeq -26.9 \in (-36, -25)$$

$$ilde{\mu}_{i}^{n}(p) = ilde{eta}_{j}^{n}(p) + \lambda_{k}, \qquad i, j = 1, 2, \dots, \ k = 0, 1, 2, \dots$$
 (1

where $\tilde{\beta}_{i}^{n}(p)$ are the eigenvalues of the 1-dimensional weighted operator

$$ilde{L}_{p,rad}^n = r^2 (-v'' - rac{v'}{r} - p |u_p(r)|^{p-1}), \qquad r \in (rac{1}{n}, 1)$$

and λ_k are the eigenvalues of the Laplace-Beltrami operator $-\Delta_{S^1}$ on the unit sphere

$$\lambda_k = k^2. \tag{2}$$

 $\triangleright \tilde{\beta}_j^n(p) \ge 0$, for any $j \ge 3$ (u_p is the least energy sign-ch. radial solution)

- $arphi~ ilde{eta}_2^n(p)\in(-1,0)$, (by Sturm separation theorem for o.d.e.)
- $\triangleright \ \ \text{Take} \ n = n_p \to +\infty \text{ as } p \to +\infty \text{ and set } \tilde{\beta}_1(p) := \tilde{\beta}_1^{n_p}(p), \text{ then}$

$$\tilde{\beta}_1(p) \xrightarrow[p \to +\infty]{} - \frac{\ell+2}{2} \simeq -26.9 \in (-36, -25)$$

▷ The thesis follows from (1) and (2) (counting the eigenvalues with their multiplicity)

Crucial step:
$$\tilde{\beta}_1(p) \xrightarrow[p \to +\infty]{} -\frac{\ell+2}{2}$$

$$\triangleright \ \tilde{\beta}_1(p) \not\longrightarrow_{p \to +\infty} -\infty, \text{ then, up to a subsequence, } \tilde{\beta}_1(p) \to \tilde{\beta}_1$$

Crucial step: $\tilde{\beta}_1(p) \xrightarrow[p \to +\infty]{} -\frac{\ell+2}{2}$

- $\triangleright \ \tilde{\beta}_1(p) \not\longrightarrow_{p \to +\infty} -\infty, \text{ then, up to a subsequence, } \tilde{\beta}_1(p) \to \tilde{\beta}_1$
- ▷ Rescale the eigenfunctions φ_p corresponding to $\tilde{\beta}_j(p)$ as $\hat{\varphi}_p(x) = \varphi_p(\varepsilon_p^- x)$, which solve

$$\begin{cases} -\Delta \hat{\varphi}_p - \left| \frac{u_p(\varepsilon_p^- x)}{u_p(x_p^-)} \right|^{p-1} \hat{\varphi}_p = \tilde{\beta}_1(p) \frac{\hat{\varphi}_p}{|y|^2} & \text{in } \frac{A_{n_p}}{\varepsilon_p^-} \\ \hat{\varphi}_p = 0 & \text{on } \partial \left(\frac{A_{n_p}}{\varepsilon_p^-} \right); & \left\| \frac{\varphi_p}{|y|} \right\|_{L^2(A_{n_p})} = 1 \end{cases}$$

We want to pass to the limit

$$\boldsymbol{\dot{\zeta}} \qquad \hat{\varphi}_p \longrightarrow \hat{\varphi} \ge 0; \ \neq 0 \qquad \boldsymbol{?}$$

solution to

$$-\hat{\varphi}''(s) - \frac{\hat{\varphi}'(s)}{s} - e^{\mathcal{V}_{\ell}(s)}\hat{\varphi}(s) = \tilde{\beta}_1 \frac{\hat{\varphi}(s)}{s^2}, \qquad s \in (0, +\infty)$$
(3)

(MAIN DIFFICULTY: exclude that $\hat{\varphi}_p$ vanish in the limit)

≣ ▶ = ≣

Crucial step: $\tilde{\beta}_1(p) \xrightarrow[p \to +\infty]{} -\frac{\ell+2}{2}$

- $\triangleright \ \tilde{\beta}_1(p) \not\longrightarrow_{p \to +\infty} -\infty, \text{ then, up to a subsequence, } \tilde{\beta}_1(p) \to \tilde{\beta}_1$
- ▷ Rescale the eigenfunctions φ_p corresponding to $\tilde{\beta}_j(p)$ as $\hat{\varphi}_p(x) = \varphi_p(\varepsilon_p^- x)$, which solve

$$\begin{cases} -\Delta \hat{\varphi}_p - \left| \frac{u_p(\varepsilon_p^- x)}{u_p(x_p^-)} \right|^{p-1} \hat{\varphi}_p = \tilde{\beta}_1(p) \frac{\hat{\varphi}_p}{|y|^2} & \text{in } \frac{A_{n_p}}{\varepsilon_p^-} \\ \hat{\varphi}_p = 0 & \text{on } \partial \left(\frac{A_{n_p}}{\varepsilon_p^-} \right); & \left\| \frac{\varphi_p}{|y|} \right\|_{L^2(A_{n_p})} = 1 \end{cases}$$

We want to pass to the limit

$$\dot{\boldsymbol{\xi}} \qquad \hat{\varphi}_p \longrightarrow \hat{\varphi} \ge 0; \ \neq 0 \qquad ?$$

solution to

$$-\hat{\varphi}''(s) - \frac{\hat{\varphi}'(s)}{s} - e^{\mathcal{V}_{\ell}(s)}\hat{\varphi}(s) = \tilde{\beta}_1 \frac{\hat{\varphi}(s)}{s^2}, \qquad s \in (0, +\infty)$$
(3)

(MAIN DIFFICULTY: exclude that $\hat{\varphi}_p$ vanish in the limit)

From (3) we can compute $\tilde{\beta}_1$

э

A D K A B K A B K

Thank you for your attention!

æ

イロト イポト イヨト イヨト