Uniqueness and Existence Results

VIA

Morse Index

FOR
 Lane-Emden Problems

Francesca De Marchis
Università degli Studi di Roma Sapienza

Physical Geometrical and Analytical Aspects of Mean Field Systems of Liouville Type Banff International Research Station, April 1-6, 2018

The Lane Emden problem

We consider the classical Lane-Emden problem

$$
\begin{cases}-\Delta u=|u|^{p-1} u & \text { in } \Omega \tag{*}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where Ω is a smooth bounded domain in \mathbb{R}^{2} and $p>1$.

The Lane Emden problem

We consider the classical Lane-Emden problem

$$
\begin{cases}-\Delta u=|u|^{p-1} u & \text { in } \Omega \tag{*}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where Ω is a smooth bounded domain in \mathbb{R}^{2} and $p>1$.

We will see as suitable rescalings of solutions u_{p} of $(*)$ converge to a solution of $(R L)$ or $(S L)$ as $p \rightarrow+\infty$, where

$$
(R L) \quad\left\{\begin{array} { l l }
{ - \Delta \mathcal { U } = e ^ { \mathcal { U } } } & { \text { in } \mathbb { R } ^ { 2 } } \\
{ \int _ { \mathbb { R } ^ { 2 } } e ^ { \mathcal { U } } d x < + \infty } & { }
\end{array} \quad (S L) \quad \left\{\begin{array}{l}
-\Delta \mathcal{V}=e^{\mathcal{V}}-4 \pi \eta \delta_{0} \\
\int_{\mathbb{R}^{2}} e^{\mathcal{V}} d x<+\infty
\end{array} \quad \text { in } \mathbb{R}^{2}\right.\right.
$$

Finite energy solutions

Theorem [Ren - Wei, Trans. Amer. Math. Soc. 1994]
For any family $\left(u_{p}\right)_{p}$ of nontrivial solutions

$$
\liminf _{p \rightarrow+\infty} p \int_{\Omega}\left|\nabla u_{p}\right|^{2} d x \geq 8 \pi e
$$

Finite energy solutions

Theorem [Ren - Wei, Trans. Amer. Math. Soc. 1994]
For any family $\left(u_{p}\right)_{p}$ of nontrivial solutions

$$
\liminf _{p \rightarrow+\infty} p \int_{\Omega}\left|\nabla u_{p}\right|^{2} d x \geq 8 \pi e
$$

Finite energy condition (which is NOT known to hold in general domains)

We will assume that given $p_{0}>1$ there exists $C=C\left(p_{0}, \Omega\right)>0$ such that for any $p \geq p_{0}$

$$
\begin{equation*}
p \int_{\Omega}\left|\nabla u_{p}\right|^{2} d x \leq C \tag{F}
\end{equation*}
$$

Finite energy solutions

Theorem [Ren - Wei, Trans. Amer. Math. Soc. 1994]
For any family $\left(u_{p}\right)_{p}$ of nontrivial solutions

$$
\liminf _{p \rightarrow+\infty} p \int_{\Omega}\left|\nabla u_{p}\right|^{2} d x \geq 8 \pi e
$$

Finite energy condition (which is NOT known to hold in general domains)

We will assume that given $p_{0}>1$ there exists $C=C\left(p_{0}, \Omega\right)>0$ such that for any $p \geq p_{0}$

$$
\begin{equation*}
p \int_{\Omega}\left|\nabla u_{p}\right|^{2} d x \leq C \tag{F}
\end{equation*}
$$

First Examples

\triangleright Least energy positive solutions: $\quad p \int_{\Omega}\left|\nabla u_{p}\right|^{2} d x \rightarrow 8 \pi e \quad$ as $p \rightarrow+\infty$ [Ren - Wei, Trans. Amer. Math. Soc. 1994]

Finite energy solutions

Theorem [Ren - Wei, Trans. Amer. Math. Soc. 1994]
For any family $\left(u_{p}\right)_{p}$ of nontrivial solutions

$$
\liminf _{p \rightarrow+\infty} p \int_{\Omega}\left|\nabla u_{p}\right|^{2} d x \geq 8 \pi e
$$

Finite energy condition (which is NOT known to hold in general domains)

We will assume that given $p_{0}>1$ there exists $C=C\left(p_{0}, \Omega\right)>0$ such that for any $p \geq p_{0}$

$$
\begin{equation*}
p \int_{\Omega}\left|\nabla u_{p}\right|^{2} d x \leq C \tag{F}
\end{equation*}
$$

First Examples

\triangleright Least energy positive solutions: $\quad p \int_{\Omega}\left|\nabla u_{p}\right|^{2} d x \rightarrow 8 \pi e \quad$ as $p \rightarrow+\infty$ [Ren - Wei, Trans. Amer. Math. Soc. 1994]
\triangleright Least energy sign-changing solutions: $\quad p \int_{\Omega}\left|\nabla u_{p}\right|^{2} d x \rightarrow 16 \pi e \quad$ as $p \rightarrow+\infty$ [Castro - Cossio - Neuberger, Rocky Mount. J. of Math 1997]

No vanishing - No blow-up

Lemma [Ren - Wei, Trans. Amer. Math. Soc. 1994]
For any family $\left(u_{p}\right)_{p}$ of nontrivial solutions satisfying (F)
$\triangleright \liminf _{p \rightarrow+\infty}\left\|u_{p}\right\|_{L^{\infty}(\Omega)} \geq 1 ;$
$\triangleright\left\|u_{p}\right\|_{L^{\infty}(\Omega)} \leq C, \quad$ for some C independent of p.

A first bubble

Let us assume w.l.o.g. that

$$
\left\|u_{p}\right\|_{L^{\infty}(\Omega)}=\left\|u_{p}^{+}\right\|_{L^{\infty}(\Omega)}
$$

A first bubble

Let us assume w.l.o.g. that

$$
\left\|u_{p}\right\|_{L^{\infty}(\Omega)}=\left\|u_{p}^{+}\right\|_{L^{\infty}(\Omega)}
$$

Theorem [Adimurthi - Grossi, Proc. Amer. Math. Soc. 2004]
Let $\left(u_{p}\right)_{p}$ be a family of nontrivial solutions to $(*)$, satisfying (F).
Let $x_{p}^{+} \in \Omega$ be such that $u_{p}\left(x_{p}^{+}\right)=\left\|u_{p}\right\|_{L^{\infty}(\Omega)}$ and let us define the scaling parameter

$$
\varepsilon_{p}^{+}=\frac{1}{\sqrt{p\left(u_{p}\left(x_{p}^{+}\right)\right)^{p-1}}} .
$$

A first bubble

Let us assume w.l.o.g. that

$$
\left\|u_{p}\right\|_{L^{\infty}(\Omega)}=\left\|u_{p}^{+}\right\|_{L^{\infty}(\Omega)}
$$

Theorem [Adimurthi - Grossi, Proc. Amer. Math. Soc. 2004]
Let $\left(u_{p}\right)_{p}$ be a family of nontrivial solutions to $(*)$, satisfying (F).
Let $x_{p}^{+} \in \Omega$ be such that $u_{p}\left(x_{p}^{+}\right)=\left\|u_{p}\right\|_{L^{\infty}(\Omega)}$ and let us define the scaling parameter

$$
\varepsilon_{p}^{+}=\frac{1}{\sqrt{p\left(u_{p}\left(x_{p}^{+}\right)\right)^{p-1}}} .
$$

Then, up to a subsequence, the following scaled function about x_{p}^{+}verifies

$$
w_{p}^{+}(x)=p \frac{u_{p}\left(x_{p}^{+}+\varepsilon_{p}^{+} x\right)-u_{p}\left(x_{p}^{+}\right)}{u_{p}\left(x_{p}^{+}\right)} \underset{p \rightarrow+\infty}{\longrightarrow} \mathcal{U}(x) \quad \text { in } C_{l o c}^{1}\left(\mathbb{R}^{2}\right)
$$

where

$$
\left\{\begin{array}{l}
-\Delta \mathcal{U}=e^{\mathcal{U}} \\
\int_{\mathbb{R}^{2} e^{\mathcal{U}}=8 \pi}^{\mathcal{U}(0)=0, \mathcal{U} \leq 0}
\end{array}\right.
$$

$$
\int^{0} \mathcal{U}(x)=2 \log \left(\frac{1}{1+\frac{1}{8}|x|^{2}}\right)
$$

Theorem [D - Ianni - Pacella, J. Eur. Math. Soc. 2015]
Let $\left(u_{p}\right)$ be positive/sign-changing solutions to $(*)$ satisfying (F).
Then there exists $k \in \mathbb{N} \backslash\{0\}$ and k families of points $x_{1, p}:=x_{p}^{+}, x_{2, p}, \ldots, x_{k, p}$ in Ω such that, after passing to a subsequence,

$$
\begin{array}{ll}
\left(\mathcal{P}_{0}^{k}\right) & \left.\left(\varepsilon_{i, p}\right)^{-2}:=p\left|u_{p}\left(x_{i, p}\right)\right|^{p-1} \rightarrow+\infty \quad \text { (hence }\left|u_{p}\left(x_{i, p}\right)\right| \geq 1-\delta\right) \\
\left(\mathcal{P}_{1}^{k}\right) & \lim _{p} \frac{\left|x_{i, p}-x_{j, p}\right|}{\varepsilon_{i, p}}=+\infty \quad \text { for } i \neq j \\
\left(\mathcal{P}_{2}^{k}\right) & w_{i, p}(x):=p \frac{u_{p}\left(x_{i, p}+\varepsilon_{i, p} x\right)-u_{p}\left(x_{i, p}\right)}{u_{p}\left(x_{i, p}\right)} \underset{p \rightarrow+\infty}{\longrightarrow} \mathcal{U}(x) \quad \text { in } C_{l o c}^{1}\left(\mathbb{R}^{2}\right) \\
\left(\mathcal{P}_{3}^{k}\right) & \text { there exists } C>0 \text { such that: } \\
& \min _{i=1 \ldots, k}\left|x-x_{i, p}\right|^{2} p\left|u_{p}(x)\right|^{p-1} \leq C \quad \text { for all } x \in \Omega
\end{array}
$$

Theorem [D - Ianni - Pacella, J. Eur. Math. Soc. 2015]
Let $\left(u_{p}\right)$ be positive/sign-changing solutions to $(*)$ satisfying (F).
Then there exists $k \in \mathbb{N} \backslash\{0\}$ and k families of points $x_{1, p}:=x_{p}^{+}, x_{2, p}, \ldots, x_{k, p}$ in Ω such that, after passing to a subsequence,

$$
\begin{array}{ll}
\left(\mathcal{P}_{0}^{k}\right) & \left.\left(\varepsilon_{i, p}\right)^{-2}:=p\left|u_{p}\left(x_{i, p}\right)\right|^{p-1} \rightarrow+\infty \quad \text { (hence }\left|u_{p}\left(x_{i, p}\right)\right| \geq 1-\delta\right) \\
\left(\mathcal{P}_{1}^{k}\right) & \lim _{p} \frac{\left|x_{i, p}-x_{j, p}\right|}{\varepsilon_{i, p}}=+\infty \quad \text { for } i \neq j \\
\left(\mathcal{P}_{2}^{k}\right) & w_{i, p}(x):=p \frac{u_{p}\left(x_{i, p}+\varepsilon_{i, p} x\right)-u_{p}\left(x_{i, p}\right)}{u_{p}\left(x_{i, p}\right)} \underset{p \rightarrow+\infty}{\longrightarrow} \mathcal{U}(x) \quad \text { in } C_{l o c}^{1}\left(\mathbb{R}^{2}\right) \\
\left(\mathcal{P}_{3}^{k}\right) & \text { there exists } C>0 \text { such that: } \\
& \min _{i=1 \ldots, k}\left|x-x_{i, p}\right|^{2} p\left|u_{p}(x)\right|^{p-1} \leq C \quad \text { for all } x \in \Omega
\end{array}
$$

Moreover, given any other family of points $x_{k+1, p}$ it is impossible to extract a new sequence such that $\left(\mathcal{P}_{0}^{k+1}\right),\left(\mathcal{P}_{1}^{k+1}\right),\left(\mathcal{P}_{2}^{k+1}\right)$ and $\left(\mathcal{P}_{3}^{k+1}\right)$ hold.

Theorem [D - Ianni - Pacella, J. Eur. Math. Soc. 2015]
Let $\left(u_{p}\right)$ be positive/sign-changing solutions to $(*)$ satisfying (F).
Then there exists $k \in \mathbb{N} \backslash\{0\}$ and k families of points $x_{1, p}:=x_{p}^{+}, x_{2, p}, \ldots, x_{k, p}$ in Ω such that, after passing to a subsequence,

$$
\begin{array}{ll}
\left(\mathcal{P}_{0}^{k}\right) & \left.\left(\varepsilon_{i, p}\right)^{-2}:=p\left|u_{p}\left(x_{i, p}\right)\right|^{p-1} \rightarrow+\infty \quad \text { (hence }\left|u_{p}\left(x_{i, p}\right)\right| \geq 1-\delta\right) \\
\left(\mathcal{P}_{1}^{k}\right) & \lim _{p} \frac{\left|x_{i, p}-x_{j, p}\right|}{\varepsilon_{i, p}}=+\infty \quad \text { for } i \neq j \\
\left(\mathcal{P}_{2}^{k}\right) & w_{i, p}(x):=p \frac{u_{p}\left(x_{i, p}+\varepsilon_{i, p} x\right)-u_{p}\left(x_{i, p}\right)}{u_{p}\left(x_{i, p}\right)} \underset{p \rightarrow+\infty}{\longrightarrow} \mathcal{U}(x) \quad \text { in } C_{l o c}^{1}\left(\mathbb{R}^{2}\right) \\
\left(\mathcal{P}_{3}^{k}\right) & \text { there exists } C>0 \text { such that: } \\
& \min _{i=1 \ldots, k}\left|x-x_{i, p}\right|^{2} p\left|u_{p}(x)\right|^{p-1} \leq C \quad \text { for all } x \in \Omega
\end{array}
$$

Moreover, given any other family of points $x_{k+1, p}$ it is impossible to extract a new sequence such that $\left(\mathcal{P}_{0}^{k+1}\right),\left(\mathcal{P}_{1}^{k+1}\right),\left(\mathcal{P}_{2}^{k+1}\right)$ and $\left(\mathcal{P}_{3}^{k+1}\right)$ hold.
Last, defining the concentration set as

$$
\begin{gathered}
\mathcal{S}=\left\{\lim _{p \rightarrow+\infty} x_{i, p} \mid i=1, \ldots, k\right\}=\left\{x_{1, \infty}, \ldots, x_{N, \infty}\right\} \subset \bar{\Omega} \\
\sqrt{p} u_{p} \rightarrow 0 \quad \text { in } C_{l o c}^{2}(\bar{\Omega} \backslash \mathcal{S}), \text { as } p \rightarrow+\infty
\end{gathered}
$$

Positive solutions

Theorem [D.- Ianni - Pacella, Lond. Math. Soc. L.N. 2017], [D.- Grossi - Ianni - Pacella, 2018]
Let $\left(u_{p}\right)_{p}$ be a family of positive solutions of $(*)$ satisfying (F). Then there exist a sequence $p_{n} \rightarrow+\infty$ such that one has:
$\triangleright x_{1, \infty}, \ldots x_{k, \infty}$ are distinct $(N=k)$ simple, isolated concentration points;
$\triangleright-\nabla_{x} H\left(x_{i, \infty}, x_{i, \infty}\right)+\sum_{i \neq \ell} \nabla_{x} G\left(x_{i, \infty}, x_{\ell, \infty}\right)=0$
$\triangleright u_{p_{n}}\left(x_{i, p_{n}}\right) \rightarrow \sqrt{e}$ for any i, (in particular $\left\|u_{p_{n}}\right\|_{\infty} \rightarrow \sqrt{e}$) as $n \rightarrow+\infty$
$\triangleright p_{n} \int_{\Omega}\left|\nabla u_{p_{n}}\right|^{2} d x \rightarrow k \cdot 8 \pi e \quad$ as $n \rightarrow+\infty$
\triangleright there exists $C>0$ such that $\min _{i=1 \ldots, k}\left|x-x_{i, p_{n}}\right| p_{n}\left|\nabla u_{p_{n}}(x)\right| \leq C \quad$ for all $x \in \Omega$.

Positive solutions

Theorem [D.- Ianni - Pacella, Lond. Math. Soc. L.N. 2017], [D.- Grossi - Ianni - Pacella, 2018]
Let $\left(u_{p}\right)_{p}$ be a family of positive solutions of $(*)$ satisfying (F).
Then there exist a sequence $p_{n} \rightarrow+\infty$ such that one has:
$\triangleright x_{1, \infty}, \ldots x_{k, \infty}$ are distinct $(N=k)$ simple, isolated concentration points;
$\triangleright-\nabla_{x} H\left(x_{i, \infty}, x_{i, \infty}\right)+\sum_{i \neq \ell} \nabla_{x} G\left(x_{i, \infty}, x_{\ell, \infty}\right)=0$
$\triangleright u_{p_{n}}\left(x_{i, p_{n}}\right) \rightarrow \sqrt{e}$ for any i, (in particular $\left\|u_{p_{n}}\right\|_{\infty} \rightarrow \sqrt{e}$) as $n \rightarrow+\infty$
$\triangleright p_{n} \int_{\Omega}\left|\nabla u_{p_{n}}\right|^{2} d x \rightarrow k \cdot 8 \pi e \quad$ as $n \rightarrow+\infty$
\triangleright there exists $C>0$ such that $\min _{i=1 \ldots, k}\left|x-x_{i, p_{n}}\right| p_{n}\left|\nabla u_{p_{n}}(x)\right| \leq C \quad$ for all $x \in \Omega$.

Examples

\triangleright If Ω is not simply connected: there exist solutions with an arbitrary large number k of concentration points
[Esposito - Musso - Pistoia, J. Diff. Equ. 2006]

A priori estimates

Theorem [Kamburov-Sirakov, 2018]
Let $p_{0}>1$. There exists a constant $C=C\left(p_{0}, \Omega\right)$ such that for all $p \geq p_{0}$ ANY solution u_{p} of ($*$) satisfies:

$$
\left\|u_{p}\right\|_{L^{\infty}(\Omega)} \leq C
$$

A priori estimates

Theorem [Kamburov-Sirakov, 2018]
Let $p_{0}>1$. There exists a constant $C=C\left(p_{0}, \Omega\right)$ such that for all $p \geq p_{0}$ ANY solution u_{p} of ($*$) satisfies:

$$
\left\|u_{p}\right\|_{L^{\infty}(\Omega)} \leq C
$$

Corollary [Kamburov-Sirakov, 2018]
Let $p_{0}>1$. If Ω is star-shaped, then for any $p \geq p_{0}$ there exists $C=C\left(p_{0}, \Omega\right)>0$ such that ANY solution u_{p} of $(*)$ satisfies

$$
p \int_{\Omega}\left|\nabla u_{p}\right|^{2} d x \leq C
$$

namely condition (F).

A priori estimates

Theorem [Kamburov-Sirakov, 2018]
Let $p_{0}>1$. There exists a constant $C=C\left(p_{0}, \Omega\right)$ such that for all $p \geq p_{0}$ ANY solution u_{p} of ($*$) satisfies:

$$
\left\|u_{p}\right\|_{L^{\infty}(\Omega)} \leq C
$$

Corollary [Kamburov-Sirakov, 2018]
Let $p_{0}>1$. If Ω is star-shaped, then for any $p \geq p_{0}$ there exists $C=C\left(p_{0}, \Omega\right)>0$ such that ANY solution u_{p} of $(*)$ satisfies

$$
p \int_{\Omega}\left|\nabla u_{p}\right|^{2} d x \leq C
$$

namely condition (F).

Remark

In starshaped domains (in particular in convex domains) the asymptotic analysis holds without any further assumption.

Positive solutions in convex domains

Conjecture [Gidas - Ni - Nirenberg, Comm. Math. Phys. 1979]
If Ω is convex, there is only one positive solution to $(*)$ for any $p>1$.

Positive solutions in convex domains

Conjecture [Gidas - Ni - Nirenberg, Comm. Math. Phys. 1979]

If Ω is convex, there is only one positive solution to $(*)$ for any $p>1$.

This uniqueness conjecture holds:
\triangleright in a ball (uniqueness can be easily established by rescaling in view of the uniqueness for the initial value problem of the associated ODE)
[Gidas - Ni - Nirenberg, Comm. Math. Phys. 1979]
\triangleright in domains close to a ball
[Zou, Annali SNS 1994]
\triangleright if $p \in\left(1, p_{1}\right), p_{1}$ close to 1
[Lin, Manuscripta Math. 1994]
$\triangleright(+$ nondegeneracy $)$ for least energy solutions in convex domains of \mathbb{R}^{2}
[Lin, Manuscripta Math. 1994]
\triangleright if Ω is convex w.r.t. two orthogonal directions (not necessarily convex) [Dancer, J. Differential Equations 1988], [Damascelli - Grossi - Pacella, Ann. IHP 1999]

Positive solutions in convex domains

Conjecture [Gidas - Ni - Nirenberg, Comm. Math. Phys. 1979]

If Ω is convex, there is only one positive solution to $(*)$ for any $p>1$.

This uniqueness conjecture holds:
\triangleright in a ball (uniqueness can be easily established by rescaling in view of the uniqueness for the initial value problem of the associated ODE)
[Gidas - Ni - Nirenberg, Comm. Math. Phys. 1979]
\triangleright in domains close to a ball
[Zou, Annali SNS 1994]
\triangleright if $p \in\left(1, p_{1}\right), p_{1}$ close to 1
[Lin, Manuscripta Math. 1994]
\triangleright (+ nondegeneracy) for least energy solutions in convex domains of \mathbb{R}^{2}
[Lin, Manuscripta Math. 1994]
(the same proof guarantees uniq. and nondeg. of solutions having Morse index 1)
\triangleright if Ω is convex w.r.t. two orthogonal directions (not necessarily convex)
[Dancer, J. Differential Equations 1988], [Damascelli - Grossi - Pacella, Ann. IHP 1999]

Positive solutions in convex domains

Conjecture [Gidas - Ni - Nirenberg, Comm. Math. Phys. 1979]

If Ω is convex, there is only one positive solution to $(*)$ for any $p>1$.

This uniqueness conjecture holds:
\triangleright in a ball (uniqueness can be easily established by rescaling in view of the uniqueness for the initial value problem of the associated ODE)
[Gidas - Ni - Nirenberg, Comm. Math. Phys. 1979]
\triangleright in domains close to a ball
[Zou, Annali SNS 1994]
\triangleright if $p \in\left(1, p_{1}\right), p_{1}$ close to 1
[Lin, Manuscripta Math. 1994]
\triangleright (+ nondegeneracy) for least energy solutions in convex domains of \mathbb{R}^{2}
[Lin, Manuscripta Math. 1994]
(the same proof guarantees uniq. and nondeg. of solutions having Morse index 1)
\triangleright if Ω is convex w.r.t. two orthogonal directions (not necessarily convex)
[Dancer, J. Differential Equations 1988], [Damascelli - Grossi - Pacella, Ann. IHP 1999]

The conjecture holds for p large

Theorem [D - Grossi - Ianni - Pacella, 2018]
If Ω is convex, then there exists $p^{\star}=p^{\star}(\Omega)>1$ s.t. for any $p \geq p^{\star}(*)$ admits a unique positive solution.

The conjecture holds for p large

Theorem [D - Grossi - Ianni - Pacella, 2018]
If Ω is convex, then there exists $p^{\star}=p^{\star}(\Omega)>1$ s.t. for any $p \geq p^{\star}(*)$ admits a unique positive solution.

Main point of the proof

It is enough to show that:
there exists $p^{\star}=p^{\star}(\Omega)>1$ such that for any $p \geq p^{\star}$ any solution u_{p} of $(*)$ satisfies

$$
\mathrm{m}\left(u_{p}\right)=1
$$

because then the thesis follows directy from the uniqueness of the Morse index-1 solution

Theorem [Grossi - Takahashi, J. Funct. Anal. 2018]
In convex domains

$$
-\nabla H\left(x_{i, \infty}, x_{i, \infty}\right)+\sum_{i \neq \ell} \nabla_{x} G\left(x_{i, \infty}, x_{\ell, \infty}\right)=0 \quad \text { for any } i=1, \ldots, k
$$

is solvable only if $k=1$ and $\quad x_{1, \infty}$ is a critical point of the Robin function.

$$
G(x, y)=\frac{1}{2 \pi} \log \frac{1}{|x-y|}-H(x, y), \quad R(x)=H(x, x)
$$

Theorem [Grossi - Takahashi, J. Funct. Anal. 2018]
In convex domains

$$
-\nabla H\left(x_{i, \infty}, x_{i, \infty}\right)+\sum_{i \neq \ell} \nabla_{x} G\left(x_{i, \infty}, x_{\ell, \infty}\right)=0 \quad \text { for any } i=1, \ldots, k
$$

is solvable only if $k=1$ and $x_{\infty}:=x_{1, \infty}$ is a critical point of the Robin function.

$$
G(x, y)=\frac{1}{2 \pi} \log \frac{1}{|x-y|}-H(x, y), \quad R(x)=H(x, x)
$$

Theorem [Grossi - Takahashi, J. Funct. Anal. 2018]
In convex domains

$$
-\nabla H\left(x_{i, \infty}, x_{i, \infty}\right)+\sum_{i \neq \ell} \nabla_{x} G\left(x_{i, \infty}, x_{\ell, \infty}\right)=0 \quad \text { for any } i=1, \ldots, k
$$

is solvable only if $k=1$ and $x_{\infty}:=x_{1, \infty}$ is a critical point of the Robin function.

$$
G(x, y)=\frac{1}{2 \pi} \log \frac{1}{|x-y|}-H(x, y), \quad R(x)=H(x, x)
$$

As a consequence in convex domains for a family u_{p} of solutions to $(*)$ satisfying (F) we have:
$\triangleright k=1$,
$\triangleright \mathcal{S}=\left\{x_{\infty}\right\}$,
$\triangleright x_{\infty}$ is a critical point of the Robin function.

Idea of the proof

* It is enough to prove that
there exists $p^{\star}=p^{\star}(\Omega)>1$ such that for any $p \geq p^{\star}$ any solution u_{p} of $(*)$ satisfies

$$
\mathrm{m}\left(u_{p}\right)=1
$$

Idea of the proof

* It is enough to prove that
there exists $p^{\star}=p^{\star}(\Omega)>1$ such that for any $p \geq p^{\star}$ any solution u_{p} of $(*)$ satisfies

$$
\mathrm{m}\left(u_{p}\right)=1
$$

* Let us suppose by contradiction that there exists a family $\left(u_{p}\right)_{p}, p \rightarrow+\infty$, of solutions of $(*)$ such that $\mathrm{m}\left(u_{p}\right) \neq 1$.

Idea of the proof

* It is enough to prove that
there exists $p^{\star}=p^{\star}(\Omega)>1$ such that for any $p \geq p^{\star}$ any solution u_{p} of $(*)$ satisfies

$$
\mathrm{m}\left(u_{p}\right)=1
$$

* Let us suppose by contradiction that there exists a family $\left(u_{p}\right)_{p}, p \rightarrow+\infty$, of solutions of $(*)$ such that $\mathrm{m}\left(u_{p}\right) \neq 1$.
* By the asymptotic analysis and the fact that $\Omega \subset \mathbb{R}^{2}$ is convex we have: there exist a point $x_{\infty} \in \Omega$ and a subsequence $p_{n} \rightarrow+\infty$ such that:
$\triangleright x_{p_{n}}^{+} \rightarrow x_{\infty}$ is a critical point of the Robin function;
$\triangleright\left\|u_{p_{n}}\right\|_{\infty} \rightarrow \sqrt{e} \quad$ as $n \rightarrow+\infty$
$\triangleright p_{n} \int_{\Omega}\left|\nabla u_{p_{n}}\right|^{2} d x \rightarrow 8 \pi e \quad$ as $n \rightarrow+\infty$;
$\triangleright \sqrt{p_{n}} u_{p_{n}} \rightarrow 0 \quad$ in $C_{l o c}^{2}\left(\bar{\Omega} \backslash\left\{x_{\infty}\right\}\right)$ as $n \rightarrow+\infty$;
\triangleright suitable rescalings of $u_{p_{n}}$ (about $x_{p_{n}}^{+}$) converge to \mathcal{U} solution to (RL)
$\triangleright \exists C>0$ such that for all $x \in \Omega \quad\left|x-x_{p_{n}}^{+}\right|^{2} p_{n}\left|u_{p_{n}}(x)\right|^{p_{n}-1} \leq C$;
$\triangleright \exists C>0$ such that for all $x \in \Omega \quad\left|x-x_{p_{n}}^{+}\right| p_{n}\left|\nabla u_{p_{n}}(x)\right| \leq C$.

Idea of the proof

* Next we consider the linearized problem at $u_{p_{n}}$

$$
\left\{\begin{array}{lll}
-\Delta v=\mu p_{n} u_{p_{n}}^{p_{n}-1} v & \text { in } \Omega & \mu_{i, p_{n}} \text { eigenvalues (counted with multiplicity) } \\
v=0 & \text { on } \partial \Omega & v_{i, p_{n}} \text { eigenfunctions } \\
\|v\|_{\infty}=1 & & \mathrm{~m}\left(u_{i, p_{n}}\right)=\#\left\{i \in \mathbb{N}: \mu_{i, p_{n}}<1\right\}
\end{array}\right.
$$

* It is immediate to see that:

$$
\mu_{1, p_{n}}=\frac{1}{p_{n}}<1 \quad\left(\text { with } v_{1, p_{n}}=u_{p_{n}}\right)
$$

* The core of the proof consists in showing that:

$$
\mu_{2, p_{n}}=1+24 \pi \eta_{1} \varepsilon_{p_{n}}^{2}+o\left(\varepsilon_{p_{n}}^{2}\right), \quad \text { as } n \rightarrow+\infty
$$

where η_{1} is the first eigenvalue of the Hessian of the Robin function at x_{∞};

* Since $\Omega \subset \mathbb{R}^{2}$ is convex x_{∞} is the unique critical point of the Robin function and in particular it is a nondegenerate minimum point [Caffarelli-Friedman, 1985], so $\eta_{1}>0$ and in turn $\mu_{2, p_{n}}>1$ for any $n \geq n^{*}$.
Therefore

$$
\mathrm{m}\left(u_{p_{n}}\right)=1 \quad \text { for } n \geq n^{*}
$$

which gives the desired contradiction.

Without any assumption on Ω

Theorem [D.- Grossi - Ianni - Pacella, 2018]
Let $\left(u_{p_{n}}\right)$ be a sequence of 1-peak solutions concentrating about a critical point x_{∞} of the Robin function, then for $n \geq n^{*}$

$$
1 \leq \mathrm{m}\left(u_{p_{n}}\right) \leq 2
$$

Moreover if x_{∞} is nondegenerate, then $u_{p_{n}}$ is nondegenerate and $\mathrm{m}\left(u_{p_{n}}\right)=1+\mathrm{m}\left(x_{\infty}\right)$.

Without any assumption on Ω

Theorem [D.- Grossi - Ianni - Pacella, 2018]
Let $\left(u_{p_{n}}\right)$ be a sequence of 1-peak solutions concentrating about a critical point x_{∞} of the Robin function, then for $n \geq n^{*}$

$$
1 \leq \mathrm{m}\left(u_{p_{n}}\right) \leq 2
$$

Moreover if x_{∞} is nondegenerate, then $u_{p_{n}}$ is nondegenerate and $\mathrm{m}\left(u_{p_{n}}\right)=1+\mathrm{m}\left(x_{\infty}\right)$.

Some previous analogous results

- $N \geq 3$: [Bahri-Li-Rey, Calc. Var. PDE, 1995], [Grossi-Pacella, 2005]
- $N=2$, Liouville equation: [Gladiali-Grossi, 2009]

Theorem [D - Ianni - Pacella, J. Eur. Math. Soc. 2015]
Let $\left(u_{p}\right)$ be positive/sign-changing solutions to $(*)$ satisfying (F).
Then there exists $k \in \mathbb{N} \backslash\{0\}$ and k families of points $x_{1, p}:=x_{p}^{+}, x_{2, p}, \ldots, x_{k, p}$ in Ω such that, after passing to a subsequence,

$$
\begin{array}{ll}
\left(\mathcal{P}_{0}^{k}\right) & \left(\varepsilon_{i, p}\right)^{-2}:=p\left|u_{p}\left(x_{i, p}\right)\right|^{p-1} \rightarrow+\infty \\
\left(\mathcal{P}_{1}^{k}\right) & \lim _{p} \frac{\left|x_{i, p}-x_{j, p}\right|}{\varepsilon_{i, p}}=+\infty \text { for } i \neq j \\
\left(\mathcal{P}_{2}^{k}\right) & w_{i, p}(x):=p \frac{u_{p}\left(x_{i, p}+\varepsilon_{i, p} x\right)-u_{p}\left(x_{i, p}\right)}{u_{p}\left(x_{i, p}\right)} \underset{p \rightarrow+\infty}{\longrightarrow} \mathcal{U}(x) \text { in } C_{l o c}^{1}\left(\mathbb{R}^{2}\right)
\end{array}
$$

$\left(\mathcal{P}_{3}^{k}\right) \quad$ there exists $C>0$ such that:

$$
\min _{i=1 \ldots, k}\left|x-x_{i, p}\right|^{2} p\left|u_{p}(x)\right|^{p-1} \leq C \quad \text { for all } x \in \Omega
$$

Moreover, given any other family of points $x_{k+1, p}$ it is impossible to extract a new sequence such that $\left(\mathcal{P}_{0}^{k+1}\right),\left(\mathcal{P}_{1}^{k+1}\right),\left(\mathcal{P}_{2}^{k+1}\right)$ and $\left(\mathcal{P}_{3}^{k+1}\right)$ hold.
Last, defining the concentration set as

$$
\begin{gathered}
\mathcal{S}=\left\{\lim _{p \rightarrow+\infty} x_{i, p} \mid i=1, \ldots, k\right\}=\left\{x_{1, \infty}, \ldots, x_{N, \infty}\right\} \subset \bar{\Omega} \\
\sqrt{p} u_{p} \rightarrow 0 \quad \text { in } C_{l o c}^{2}(\bar{\Omega} \backslash \mathcal{S}), \quad \text { as } p \rightarrow+\infty
\end{gathered}
$$

Least energy sign-changing solutions

Theorem [Grossi - Grumiau -Pacella, Ann. IHP 2012]
Let u_{p} be a family of least energy sign-changing solutions to $\left(\mathcal{E}_{p}\right)$. Then:

- $\left\|u_{p}\right\|_{L \infty} \rightarrow \sqrt{e}$
- $p \int_{\Omega}\left|\nabla u_{p}\right|^{2} d x \rightarrow 16 \pi e$

Under an extra assumption:

$$
-x_{1, p}=x_{p}^{+}, x_{2, p}=x_{p}^{-} \text {and } x_{1, \infty} \neq x_{2, \infty}
$$

Least energy sign-changing solutions

Theorem [Grossi - Grumiau -Pacella, Ann. IHP 2012]
Let u_{p} be a family of least energy sign-changing solutions to $\left(\mathcal{E}_{p}\right)$. Then:

- $\left\|u_{p}\right\|_{L \infty} \rightarrow \sqrt{e}$
- $p \int_{\Omega}\left|\nabla u_{p}\right|^{2} d x \rightarrow 16 \pi e$

Under an extra assumption:

$$
-x_{1, p}=x_{p}^{+}, x_{2, p}=x_{p}^{-} \text {and } x_{1, \infty} \neq x_{2, \infty} .
$$

Examples

\triangleright Solutions of this kind have been constructed in [Esposito - Musso - Pistoia, Proc. Lond. Math. Soc. 2007]

Bubble tower phenomenon in the radial case

Theorem [Grossi - Grumiau - Pacella, J. Math. Pures Appl. 2014]

Let $\left(u_{p}\right)_{p}$ be a family of least en. sign-changing radial solutions of $\left(\mathcal{E}_{p}\right)$ in $B_{1}(0) \subset \mathbb{R}^{2}$. Then

$$
\begin{array}{ll}
w_{p}^{+}(x)=p \frac{u_{p}\left(\varepsilon_{p}^{+} x\right)-u_{p}(0)}{u_{p}(0)} \underset{p \rightarrow+\infty}{\longrightarrow} \mathcal{U}(x) & \text { in } C_{l o c}^{1}\left(\mathbb{R}^{2}\right) \\
w_{p}^{-}(x)=p \frac{u_{p}\left(\varepsilon_{p}^{-} x\right)-u_{p}\left(x_{p}^{-}\right)}{u_{p}\left(x_{p}^{-}\right)} \underset{p \rightarrow+\infty}{\longrightarrow} \mathcal{V}_{\ell}(x) & \text { in } C_{l o c}^{1}\left(\mathbb{R}^{2} \backslash\{0\}\right)
\end{array}
$$

where

$$
\begin{cases}-\Delta \mathcal{V}_{\ell}=e^{\mathcal{V}_{\ell}}-4 \pi \eta \delta_{0} & \text { in } \mathbb{R}^{2} \\ \int_{\ell}(x):=\log \left(\frac{2 \alpha^{2} \beta^{\alpha}|x| \alpha^{\alpha-2}}{\left(\beta^{\alpha}+|x| x^{\alpha}\right)^{2}}\right) \\ \mathcal{R}_{\ell} e^{\mathcal{V}_{\ell}}=8 \pi(1+\eta) & x_{\ell}=\lim _{p} x_{p}^{-} / \varepsilon_{p}^{-}, \ell=\left|x_{\ell}\right|, \\ \text { for a certain } \eta=\eta(\ell) & \alpha=\sqrt{2 \ell^{2}+4}, \beta=\ell\left(\frac{\alpha+2}{\alpha-2}\right)^{1 / \alpha} .\end{cases}
$$

Bubble tower phenomenon in the radial case

Theorem [Grossi - Grumiau - Pacella, J. Math. Pures Appl. 2014]

Let $\left(u_{p}\right)_{p}$ be a family of least en. sign-changing radial solutions of $\left(\mathcal{E}_{p}\right)$ in $B_{1}(0) \subset \mathbb{R}^{2}$. Then

$$
\begin{array}{ll}
w_{p}^{+}(x)=p \frac{u_{p}\left(\varepsilon_{p}^{+} x\right)-u_{p}(0)}{u_{p}(0)} \underset{p \rightarrow+\infty}{\longrightarrow} \mathcal{H}(x) & \text { in } C_{l o c}^{1}\left(\mathbb{R}^{2}\right) \\
w_{p}^{-}(x)=p \frac{u_{p}\left(\varepsilon_{p}^{-} x\right)-u_{p}\left(x_{p}^{-}\right)}{u_{p}\left(x_{p}^{-}\right)} \underset{p \rightarrow+\infty}{\longrightarrow} \mathcal{V}_{\ell}(x) & \text { in } C_{l o c}^{1}\left(\mathbb{R}^{2} \backslash\{0\}\right)
\end{array}
$$

where

$$
\begin{cases}-\Delta \mathcal{V}_{\ell}=e^{\mathcal{V}_{\ell}}-4 \pi \eta \delta_{0} & \text { in } \mathbb{R}^{2} \\ \int_{\mathbb{R}^{2}} e^{\mathcal{V}_{\ell}}=8 \pi(1):=\log \left(\frac{2 \alpha^{2} \beta^{\alpha}|x| \alpha^{\alpha-2}}{\left(\beta^{\alpha}+|x| x^{\alpha}\right)^{2}}\right) \\ \mathcal{V}_{\ell}\left(x_{\ell}\right)=0, \mathcal{V}_{\ell} \leq 0 & x_{\ell}=\lim _{p} x_{p}^{-} / \varepsilon_{p}^{-}, \ell=\left|x_{\ell}\right|, \\ \text { for a certain } \eta=\eta(\ell) & \alpha=\sqrt{2 \ell^{2}+4}, \beta=\ell\left(\frac{\alpha+2}{\alpha-2}\right)^{1 / \alpha} .\end{cases}
$$

Moreover if r_{p} is the nodal radius of u_{p}, then

$$
\frac{r_{p}}{\varepsilon_{p}^{+}} \rightarrow+\infty, \quad \frac{r_{p}}{\varepsilon_{p}^{-}} \rightarrow 0 \quad \text { as } p \rightarrow+\infty
$$

Bubble tower phenomenon in the symmetric case

Theorem [D - Ianni - Pacella, J. Eur. Math. Soc. 2015]
A bubble tower with two different bubbles appears also in G-symmetric domains by studying the asymptotic behavior of a special class of sign-changing solutions constructed in [D - Ianni - Pacella, J. Differ. Equ. 2013] and having two nodal regions and an interior nodal line.

Morse index of nodal radial solutions

Theorem [D - Ianni - Pacella, Math. Ann. 2017]
Let u_{p} be the least energy sign-changing radial solution of $(*)$ in $B_{1}(0) \subset \mathbb{R}^{2}$. Then, for p sufficiently large, the Morse index:

$$
m\left(u_{p}\right)=12
$$

Morse index of nodal radial solutions

Theorem [D - Ianni - Pacella, Math. Ann. 2017]
Let u_{p} be the least energy sign-changing radial solution of $(*)$ in $B_{1}(0) \subset \mathbb{R}^{2}$. Then, for p sufficiently large, the Morse index:

$$
m\left(u_{p}\right)=12
$$

Remark

$$
m\left(u_{p}\right)=12=1+11=m(\mathcal{U})+m\left(\mathcal{V}_{\ell}\right)
$$

where $m(\mathcal{U})$ and $m\left(\mathcal{V}_{\ell}\right)$ are respectively the Morse indexes of the regular solution of $(R L)$ and of the singular solution of $(S L)$ [Chen - Lin, Comm. Pure Appl. Math 2010], to which $w_{p}^{ \pm}$converge.

Corollary: new (unexpected!) solutions

For p large there exist symmetric (but NOT radial) sign-changing solutions in the ball with interior nodal line.
\triangleright By a decomposition of the spectrum of the linearized operator

$$
L_{p}=-\Delta-p\left|u_{p}\right|^{p-1}
$$

at the radial solution u_{p}, we prove that, for p large, among its negative eigenvalues there are at least:

- 3 negative eigenvalues with G_{4}-symmetry
- 3 negative eigenvalues with G_{5}-symmetry
where by $G_{i}, i=4,5$, we mean the cyclic group of rotations by an ange of $\frac{2 \pi}{i}$;
\triangleright the least energy nodal solution v_{p}^{i} in the space $H_{0, G_{i}}^{1}(B), i=4,5$, has exactly two negative G_{i}-symmetric eigenvalues (following [Barsch - Weth, TMNA 2003]);
\triangleright then $v_{p}^{i} \neq u_{p}$, so v_{p}^{i} are NOT radial;
\triangleright by a result in [D - Ianni - Pacella, JDE 2013] we know that the nodal line of v_{p}^{i} does not touch the boundary, so they are not the least energy solutions [Aftalion Pacella, C. R. Math. Acad. Sci. Paris 2004].

Bifurcation

Theorem [Gladiali - Ianni, 2017]
By analyzing the asymptotic behavior of u_{p}, as $p \rightarrow 1$, and its Morse index it is possible to prove that

$$
m\left(u_{p}\right)=6 \quad \text { for } p \text { close to } 1
$$

The change of Morse index from 6 to 12, as p increases, shows bifurcation.

Outline of the proof

\triangleright The number of negative eigenvalues $\mu_{i}(p)$ of the linearized operator

$$
L_{p}=-\Delta-p\left|u_{p}\right|^{p-1}
$$

Outline of the proof

\triangleright The number of negative eigenvalues $\mu_{i}(p)$ of the linearized operator

$$
L_{p}=-\Delta-p\left|u_{p}\right|^{p-1}
$$

is the same as
the number of negative eigenvalues $\mu_{i}^{n}(p)$ of L_{p} in the annulus $A_{n}=\left\{\frac{1}{n}<|x|<n\right\}$

Outline of the proof

\triangleright The number of negative eigenvalues $\mu_{i}(p)$ of the linearized operator

$$
L_{p}=-\Delta-p\left|u_{p}\right|^{p-1}
$$

is the same as
the number of negative eigenvalues $\mu_{i}^{n}(p)$ of L_{p} in the annulus $A_{n}=\left\{\frac{1}{n}<|x|<n\right\}$
is the same as
the number of negative eigenvalues $\tilde{\mu}_{i}^{n}(p)$ of the weighted operator

$$
\tilde{L}_{p}^{n}(p)=|x|^{2}\left(-\Delta-p\left|u_{p}\right|^{p-1}\right) \quad \text { in } A_{n}
$$

\triangleright We decompose the spectrum of \tilde{L}_{p}^{n} as:

$$
\begin{equation*}
\tilde{\mu}_{i}^{n}(p)=\tilde{\beta}_{j}^{n}(p)+\lambda_{k}, \quad i, j=1,2, \ldots, k=0,1,2, \ldots \tag{1}
\end{equation*}
$$

where $\tilde{\beta}_{j}^{n}(p)$ are the eigenvalues of the 1-dimensional weighted operator

$$
\tilde{L}_{p, \text { rad }}^{n}=r^{2}\left(-v^{\prime \prime}-\frac{v^{\prime}}{r}-p\left|u_{p}(r)\right|^{p-1}\right), \quad r \in\left(\frac{1}{n}, 1\right)
$$

and λ_{k} are the eigenvalues of the Laplace-Beltrami operator $-\Delta_{S^{1}}$ on the unit sphere

$$
\begin{equation*}
\lambda_{k}=k^{2} \tag{2}
\end{equation*}
$$

\triangleright We decompose the spectrum of \tilde{L}_{p}^{n} as:

$$
\begin{equation*}
\tilde{\mu}_{i}^{n}(p)=\tilde{\beta}_{j}^{n}(p)+\lambda_{k}, \quad i, j=1,2, \ldots, k=0,1,2, \ldots \tag{1}
\end{equation*}
$$

where $\tilde{\beta}_{j}^{n}(p)$ are the eigenvalues of the 1-dimensional weighted operator

$$
\tilde{L}_{p, r a d}^{n}=r^{2}\left(-v^{\prime \prime}-\frac{v^{\prime}}{r}-p\left|u_{p}(r)\right|^{p-1}\right), \quad r \in\left(\frac{1}{n}, 1\right)
$$

and λ_{k} are the eigenvalues of the Laplace-Beltrami operator $-\Delta_{S^{1}}$ on the unit sphere

$$
\begin{equation*}
\lambda_{k}=k^{2} \tag{2}
\end{equation*}
$$

$\triangleright \tilde{\beta}_{j}^{n}(p) \geq 0, \quad$ for any $j \geq 3 \quad$ (u_{p} is the least energy sign-ch. radial solution)
\triangleright We decompose the spectrum of \tilde{L}_{p}^{n} as:

$$
\begin{equation*}
\tilde{\mu}_{i}^{n}(p)=\tilde{\beta}_{j}^{n}(p)+\lambda_{k}, \quad i, j=1,2, \ldots, k=0,1,2, \ldots \tag{1}
\end{equation*}
$$

where $\tilde{\beta}_{j}^{n}(p)$ are the eigenvalues of the 1-dimensional weighted operator

$$
\tilde{L}_{p, r a d}^{n}=r^{2}\left(-v^{\prime \prime}-\frac{v^{\prime}}{r}-p\left|u_{p}(r)\right|^{p-1}\right), \quad r \in\left(\frac{1}{n}, 1\right)
$$

and λ_{k} are the eigenvalues of the Laplace-Beltrami operator $-\Delta_{S^{1}}$ on the unit sphere

$$
\begin{equation*}
\lambda_{k}=k^{2} \tag{2}
\end{equation*}
$$

$\triangleright \tilde{\beta}_{j}^{n}(p) \geq 0, \quad$ for any $j \geq 3 \quad$ (u_{p} is the least energy sign-ch. radial solution)
$\triangleright \tilde{\beta}_{2}^{n}(p) \in(-1,0), \quad$ (by Sturm separation theorem for o.d.e.)
\triangleright We decompose the spectrum of \tilde{L}_{p}^{n} as:

$$
\begin{equation*}
\tilde{\mu}_{i}^{n}(p)=\tilde{\beta}_{j}^{n}(p)+\lambda_{k}, \quad i, j=1,2, \ldots, k=0,1,2, \ldots \tag{1}
\end{equation*}
$$

where $\tilde{\beta}_{j}^{n}(p)$ are the eigenvalues of the 1-dimensional weighted operator

$$
\tilde{L}_{p, r a d}^{n}=r^{2}\left(-v^{\prime \prime}-\frac{v^{\prime}}{r}-p\left|u_{p}(r)\right|^{p-1}\right), \quad r \in\left(\frac{1}{n}, 1\right)
$$

and λ_{k} are the eigenvalues of the Laplace-Beltrami operator $-\Delta_{S^{1}}$ on the unit sphere

$$
\begin{equation*}
\lambda_{k}=k^{2} \tag{2}
\end{equation*}
$$

$\triangleright \tilde{\beta}_{j}^{n}(p) \geq 0, \quad$ for any $j \geq 3 \quad$ (u_{p} is the least energy sign-ch. radial solution)
$\triangleright \tilde{\beta}_{2}^{n}(p) \in(-1,0), \quad$ (by Sturm separation theorem for o.d.e.)
\triangleright Take $n=n_{p} \rightarrow+\infty$ as $p \rightarrow+\infty$ and $\operatorname{set} \tilde{\beta}_{1}(p):=\tilde{\beta}_{1}^{n_{p}}(p)$, then

$$
\tilde{\beta}_{1}(p) \underset{p \rightarrow+\infty}{\longrightarrow}-\frac{\ell+2}{2} \simeq-26.9 \in(-36,-25)
$$

\triangleright We decompose the spectrum of \tilde{L}_{p}^{n} as:

$$
\begin{equation*}
\tilde{\mu}_{i}^{n}(p)=\tilde{\beta}_{j}^{n}(p)+\lambda_{k}, \quad i, j=1,2, \ldots, k=0,1,2, \ldots \tag{1}
\end{equation*}
$$

where $\tilde{\beta}_{j}^{n}(p)$ are the eigenvalues of the 1-dimensional weighted operator

$$
\tilde{L}_{p, r a d}^{n}=r^{2}\left(-v^{\prime \prime}-\frac{v^{\prime}}{r}-p\left|u_{p}(r)\right|^{p-1}\right), \quad r \in\left(\frac{1}{n}, 1\right)
$$

and λ_{k} are the eigenvalues of the Laplace-Beltrami operator $-\Delta_{S^{1}}$ on the unit sphere

$$
\begin{equation*}
\lambda_{k}=k^{2} \tag{2}
\end{equation*}
$$

$\triangleright \tilde{\beta}_{j}^{n}(p) \geq 0, \quad$ for any $j \geq 3 \quad$ (u_{p} is the least energy sign-ch. radial solution)
$\triangleright \tilde{\beta}_{2}^{n}(p) \in(-1,0), \quad$ (by Sturm separation theorem for o.d.e.)
\triangleright Take $n=n_{p} \rightarrow+\infty$ as $p \rightarrow+\infty$ and $\operatorname{set} \tilde{\beta}_{1}(p):=\tilde{\beta}_{1}^{n_{p}}(p)$, then

$$
\tilde{\beta}_{1}(p) \underset{p \rightarrow+\infty}{\longrightarrow}-\frac{\ell+2}{2} \simeq-26.9 \in(-36,-25)
$$

\triangleright The thesis follows from (1) and (2) (counting the eigenvalues with their multiplicity)

Crucial step: $\quad \tilde{\beta}_{1}(p) \underset{p \rightarrow+\infty}{\longrightarrow}-\frac{\ell+2}{2}$

$\triangleright \tilde{\beta}_{1}(p) \underset{p \rightarrow+\infty}{\rightarrow}-\infty$, then, up to a subsequence, $\tilde{\beta}_{1}(p) \rightarrow \tilde{\beta}_{1}$

Crucial step: $\quad \tilde{\beta}_{1}(p) \underset{p \rightarrow+\infty}{\longrightarrow}-\frac{\ell+2}{2}$

$\triangleright \tilde{\beta}_{1}(p) \underset{p \rightarrow+\infty}{\rightarrow}-\infty$, then, up to a subsequence, $\tilde{\beta}_{1}(p) \rightarrow \tilde{\beta}_{1}$
\triangleright Rescale the eigenfunctions φ_{p} corresponding to $\tilde{\beta}_{j}(p)$ as $\hat{\varphi}_{p}(x)=\varphi_{p}\left(\varepsilon_{p}^{-} x\right)$, which solve

$$
\left\{\begin{array}{l}
-\Delta \hat{\varphi}_{p}-\left|\frac{u_{p}\left(\varepsilon_{p}^{-} x\right)}{u_{p}\left(x_{p}^{-}\right)}\right|^{p-1} \hat{\varphi}_{p}=\tilde{\beta}_{1}(p) \frac{\hat{\varphi}_{p}}{|y|^{2}} \text { in } \frac{A_{n_{p}}}{\varepsilon_{p}^{-}} \\
\hat{\varphi}_{p}=0 \quad \text { on } \partial\left(\frac{A_{n_{p}}}{\varepsilon_{p}^{-}}\right) ; \quad\left\|\frac{\varphi_{p}}{|y|}\right\|_{L^{2}\left(A_{n_{p}}\right)}=1
\end{array}\right.
$$

We want to pass to the limit

$$
\text { 之 } \quad \hat{\varphi}_{p} \longrightarrow \hat{\varphi} \geq 0 ; \not \equiv 0 \quad ?
$$

solution to

$$
\begin{equation*}
-\hat{\varphi}^{\prime \prime}(s)-\frac{\hat{\varphi}^{\prime}(s)}{s}-e^{\mathcal{V}_{\ell}(s)} \hat{\varphi}(s)=\tilde{\beta}_{1} \frac{\hat{\varphi}(s)}{s^{2}}, \quad s \in(0,+\infty) \tag{3}
\end{equation*}
$$

(MAIN DIFFICULTY: exclude that $\hat{\varphi}_{p}$ vanish in the limit)

Crucial step: $\quad \tilde{\beta}_{1}(p) \underset{p \rightarrow+\infty}{\longrightarrow}-\frac{\ell+2}{2}$

$\triangleright \tilde{\beta}_{1}(p) \underset{p \rightarrow+\infty}{\rightarrow}-\infty$, then, up to a subsequence, $\tilde{\beta}_{1}(p) \rightarrow \tilde{\beta}_{1}$
\triangleright Rescale the eigenfunctions φ_{p} corresponding to $\tilde{\beta}_{j}(p)$ as $\hat{\varphi}_{p}(x)=\varphi_{p}\left(\varepsilon_{p}^{-} x\right)$, which solve

$$
\left\{\begin{array}{l}
-\Delta \hat{\varphi}_{p}-\left|\frac{u_{p}\left(\varepsilon_{p}^{-} x\right)}{u_{p}\left(x_{p}^{-}\right)}\right|^{p-1} \hat{\varphi}_{p}=\tilde{\beta}_{1}(p) \frac{\hat{\varphi}_{p}}{|y|^{2}} \text { in } \frac{A_{n_{p}}}{\varepsilon_{p}^{-}} \\
\hat{\varphi}_{p}=0 \quad \text { on } \partial\left(\frac{A_{n_{p}}}{\varepsilon_{p}^{-}}\right) ; \quad\left\|\frac{\varphi_{p}}{|y|}\right\|_{L^{2}\left(A_{n_{p}}\right)}=1
\end{array}\right.
$$

We want to pass to the limit

$$
\text { ¿ } \quad \hat{\varphi}_{p} \longrightarrow \hat{\varphi} \geq 0 ; \not \equiv 0 \quad ?
$$

solution to

$$
\begin{equation*}
-\hat{\varphi}^{\prime \prime}(s)-\frac{\hat{\varphi}^{\prime}(s)}{s}-e^{V_{\ell}(s)} \hat{\varphi}(s)=\tilde{\beta}_{1} \frac{\hat{\varphi}(s)}{s^{2}}, \quad s \in(0,+\infty) \tag{3}
\end{equation*}
$$

(MAIN DIFFICULTY: exclude that $\hat{\varphi}_{p}$ vanish in the limit)
\triangleright From (3) we can compute $\tilde{\beta}_{1}$

Thank you for your attention!

