Adler-Moser polynomials, Gross-Pitaeskii, and KP-I

Juncheng Wei

University of British Columbia
Physical, Geometrical and Analytical Aspects of Mean Field Systems of Liouville Type

Joint work with Yong Liu
Banff, April 2-6, 2018

The Traveling Wave Gross-Pitaeskii equation

- This talk concerns

$$
-i c \partial_{x} U=\Delta U+U\left(1-|U|^{2}\right) \text { in } \mathbb{R}^{2}
$$

The Traveling Wave Gross-Pitaeskii equation

- This talk concerns

$$
-i c \partial_{x} U=\Delta U+U\left(1-|U|^{2}\right) \text { in } \mathbb{R}^{2}
$$

- Travelling Waves of Gross-Pitaeskii equation:

$$
i \partial_{t} \Phi=\Delta \Phi+\Phi\left(1-|\Phi|^{2}\right) \text { in } \mathbb{R}^{2}
$$

Travelling waves $U(x-c t, y)$

Another motivation

- Superfluids passing an obstacle:

$$
\varepsilon^{2} \Delta u+u-|u|^{2} u=0 \text { in } \mathbb{R}^{2} \backslash \Omega, \frac{\partial u}{\partial v}=0 \text { on } \partial \Omega
$$

- Let $u_{\varepsilon}=\rho_{\epsilon} e^{i \frac{\Phi_{\varepsilon}}{\varepsilon}}$ be a vortex free solution. Then $\rho_{\varepsilon} \rightarrow \rho, \Phi_{\epsilon} \rightarrow \Phi$

$$
\left\{\begin{array}{l}
\nabla\left(\rho^{2} \nabla \Phi\right)=0 \text { in } \mathbb{R}^{2} \backslash \Omega, \\
\rho^{2}=1-|\nabla \Phi|^{2}, \\
\frac{\partial \Phi}{\partial v}=0 \text { on } \partial \Omega, \\
\nabla \Phi(x) \rightarrow(0, \delta) \text { as }|x| \rightarrow+\infty
\end{array}\right.
$$

(Irrotational Flow)

$$
u=u_{\varepsilon} U=\rho_{\varepsilon} e^{i \frac{\phi_{\varepsilon}}{\varepsilon}} U
$$

Then U satisfies

$$
\epsilon^{2} \Delta U+2 \epsilon^{2} \nabla \rho_{\epsilon} \nabla U+2 i \epsilon \nabla \Phi_{\epsilon} \nabla U+U \rho_{\epsilon}^{2}\left(1-|U|^{2}\right)=0 .
$$

$$
\begin{gathered}
x=x_{0}+\varepsilon y \\
2 i \epsilon \nabla \Phi_{\epsilon} \nabla U \rightarrow 2 \nabla \Phi\left(x_{0}\right) \nabla U
\end{gathered}
$$

The limit equation is the travelling wave GP (rescaled).

$$
\Delta U+2 i \nabla \Phi\left(x_{0}\right) \nabla U+\left(\rho\left(x_{0}\right)\right)^{2} U\left(1-|U|^{2}\right)=0 .
$$

Ref: FH Lin-Wei 2018

Two limits

$$
\begin{aligned}
-i c \partial_{x} U & =\Delta U+U\left(1-|U|^{2}\right) \text { in } \mathbb{R}^{2} . \\
0 & <c<\sqrt{2} \text { (sound speed) }
\end{aligned}
$$

Two limits

$$
\begin{aligned}
-i c \partial_{x} U & =\Delta U+U\left(1-|U|^{2}\right) \text { in } \mathbb{R}^{2} . \\
0 & <c<\sqrt{2} \text { (sound speed) }
\end{aligned}
$$

- $c \rightarrow 0$: Ginzburg-Landau equation and Adler-Moser polynomials.

Two limits

$$
\begin{aligned}
-i c \partial_{x} U & =\Delta U+U\left(1-|U|^{2}\right) \text { in } \mathbb{R}^{2} . \\
0 & <c<\sqrt{2} \text { (sound speed) }
\end{aligned}
$$

- $c \rightarrow 0$: Ginzburg-Landau equation and Adler-Moser polynomials.
- $c \rightarrow \sqrt{2}:$ KP-I equation (Kadomtsev - Petviashvili)

$$
\partial_{t} u+\partial_{x}^{3} u+3 \partial_{x}\left(u^{2}\right)-\partial_{x}^{-1} \partial_{y}^{2} u=0
$$

Jone-Roberts Program

- Jones-Roberts program(1970'): Existence of travelling waves $U(x-c t, y)$ with $c \in(0, \sqrt{2})$, from physical point of view.
This is called Jones-Roberts Program.
- Rigorous mathematical proof by Bethuel-Gravejat-Saut-2009, using variational method.
- No finite energy travelling wave with $c \geq \sqrt{2}$ (Gravejat-2003).

Variational Method

Energy functional:

$$
E[u]=\frac{1}{2} \int_{\mathbb{R}^{2}}|\nabla u|^{2}+\frac{1}{4} \int_{\mathbb{R}^{2}}\left(1-|u|^{2}\right)^{2}
$$

Momentum

$$
P[u]=\frac{1}{2} \int_{\mathbb{R}^{2}}<i \nabla u, u-1>
$$

(variational method)

$$
\inf \{E[u] \mid P[u]=C\}
$$

Bethuel-Gravejat-Saut $(2008,2009)$ proved existence of least energy traveling waves when $0<c<\sqrt{2}$.

We are interested in the full solution structure of

$$
-i c \partial_{x} U=\Delta U+U\left(1-|U|^{2}\right) \quad \text { in } \mathbb{R}^{2}
$$

We are interested in the full solution structure of

$$
-i c \partial_{x} U=\Delta U+U\left(1-|U|^{2}\right) \quad \text { in } \mathbb{R}^{2}
$$

Question: are there higher energy solutions?

We are interested in the full solution structure of

$$
-i c \partial_{x} U=\Delta U+U\left(1-|U|^{2}\right) \quad \text { in } \mathbb{R}^{2}
$$

Question: are there higher energy solutions?
Recent numerical simulation by Chiron-Scheid: Multiple branches of travelling waves for the Gross Pitaevskii equation, 2017 provides evidence of abundance of higher energy solutions. Our first aim to construct these higher energy solutions.

Part I: small speed case

$$
c=\varepsilon \ll 1
$$

$$
-i \varepsilon \partial_{x} U=\Delta U+U\left(1-|U|^{2}\right) \quad \text { in } \quad \mathbb{R}^{2}
$$

Small speed case: $0<c=\varepsilon \ll 1$

$\varepsilon=0$, Ginzburg-Landau

$$
\Delta u+u\left(1-|u|^{2}\right)=0 \text { in } \mathbb{R}^{2}
$$

Degree ± 1 Vortex solution

$$
v_{+}=S(r) e^{i \theta}, v_{-}=S(r) e^{-i \theta}
$$

Theorem Lin-Wei 2010: Traveling wave solution with two opposite vortices

$$
u_{\varepsilon}(z) \sim v_{+}\left(z-\varepsilon^{-1} \vec{e}_{2}\right) v_{-}\left(z+\varepsilon^{-1} \vec{e}_{2}\right)
$$

This is also the least energy travelling wave solutions.

Force of attractions between ± 1 vortices $\approx \frac{1}{d}$
Lorentz forces between these "charged" vortices is \simeq speed of motion ε

Balancing $\varepsilon \simeq \frac{1}{d}$ (repelling due to opposite signs of charges).

Force of attractions between ± 1 vortices $\approx \frac{1}{d}$
Lorentz forces between these "charged" vortices is \simeq speed of motion ε

Balancing $\varepsilon \simeq \frac{1}{d}$ (repelling due to opposite signs of charges).

Question: are there travelling multi-vortex solutions? If there are, where are they located?

Multi-vortex travelling waves

Theorem (Liu-Wei 2018)
Let $N \leq 34$. For ε small, there is a solution $U=u+o(1)$, where

$$
u=\prod_{k=1}^{N(N+1) / 2}\left[v_{+}\left(z-\varepsilon^{-1} p_{k}\right) v_{-}\left(z-\varepsilon^{-1} q_{k}\right)\right]
$$

where $p_{1}, \ldots, p_{N(N+1) / 2}$ are roots of an Adler-Moser polynomial A_{N} and

$$
q_{k}=-p_{k}
$$

Travelling 6-Vortex Solutions: $N=2$

Remarks:

- For any N, theorem will be true, if A_{N} has no repeated root.
- For $N \leq 34$, computer software verifies that A_{N} has no repeated root.
- If A_{N-1} and A_{N} have no common root, then A_{N} has no repeated root.
- Conjecture: A_{N} has no repeated root for any N.

Vortex location and Adler-Moser polynomials

- The error:

$$
E(u):=\varepsilon i \partial_{x} u+\Delta u+u\left(1-|u|^{2}\right) .
$$

- $u \sim \Pi_{k} u_{k}, u_{k}=v_{+}\left(z-\varepsilon^{-1} p_{k}\right)$ or $u_{k}=v_{-}\left(z-\varepsilon^{-1} q_{k}\right)$
- Let $\left|u_{k}\right|^{2}-1=\rho_{k}$.

$$
|u|^{2}-1=\prod_{k}\left(1+\rho_{k}\right)-1=\sum_{k} \rho_{k}+\sum_{k \geq 2} Q_{k}
$$

where $Q_{k}=\sum_{i_{1}<i_{2}<\cdots<i_{k}}\left(\rho_{i_{1}} \cdots \rho_{i_{k}}\right)$ (small terms).

- At the main order,

$$
E(u) \sim \varepsilon i \sum_{k}\left(\partial_{x} u_{k} \prod_{j \neq k} u_{j}\right)+\sum_{k, j, k \neq j}\left(\left(\nabla u_{k} \nabla u_{j}\right) \prod_{l \neq i, j} u_{l}\right) .
$$

Projection of error on the kernel: translating modes

Around the vortex point $\varepsilon^{-1} p_{k}$, for some constant α_{0} :

- $\nabla u_{k} \nabla u_{j}$ term:

$$
\begin{aligned}
& \int_{\left|z-\varepsilon^{-1} p_{k}\right| \leq C \varepsilon^{-1}}\left(\nabla u_{k} \nabla u_{j} e^{-i \theta_{j}}\right) \overline{\partial_{x} u_{k}} \sim i \alpha_{0} \varepsilon \operatorname{Re} \frac{1}{p_{k}-p_{j}}, \\
& \int_{\left|z-\varepsilon^{-1} p_{k}\right| \leq C \varepsilon^{-1}}\left(\nabla u_{k} \nabla u_{j} e^{-i \theta_{j}}\right) \overline{\partial_{y} u_{k}} \sim i \alpha_{0} \varepsilon \operatorname{lm} \frac{1}{p_{k}-p_{j}},
\end{aligned}
$$

- $i \varepsilon \partial_{x} u_{k}$ term:

$$
\begin{aligned}
& \int_{\left|z-\varepsilon^{-1} p_{k}\right| \leq C \varepsilon^{-1}} i \varepsilon \partial_{x} u_{k} \overline{\left(\partial_{x} u_{k}\right)} \sim i \varepsilon \alpha_{0}, \\
& \int_{\left|z-\varepsilon^{-1} p_{k}\right| \leq C \varepsilon^{-1}} i \varepsilon \partial_{x} u_{k} \overline{\left(\partial_{y} u_{k}\right)} \sim 0 .
\end{aligned}
$$

Projected equations for translating vortices

- Let $\mu \in \mathbb{R}$ be fixed. Let $p_{1}, \ldots, p_{m}\left(q_{1}, \ldots, q_{n}\right)$ denote the (scaled) position of degree $1(-1)$ vortices.

$$
\left\{\begin{array}{l}
\sum_{j \neq \alpha} \frac{1}{p_{\alpha}-p_{j}}-\sum_{j} \frac{1}{p_{\alpha}-q_{j}}=\mu, \text { for } \alpha=1, \ldots, m \\
\sum_{j \neq \alpha} \frac{1}{q_{\alpha}-q_{j}}-\sum_{j} \frac{1}{q_{\alpha}-p_{j}}=-\mu, \text { for } \alpha=1, \ldots, n
\end{array}\right.
$$

- If $\mu \neq 0$, then necessarily $m=n$.
- The case of $\mu=0$ is corresponding to stationary vortex configuration.
- The question is how to find these points $\left(p_{1}, \ldots, p_{n}, q_{1}, \ldots, q_{n}\right)$.

Kirchhoff-Routh Hamiltonian

$$
\left\{\begin{array}{l}
\sum_{j \neq \alpha} \frac{1}{\alpha_{\alpha}-p_{j}}-\sum_{j} \frac{1}{p_{\alpha}-q_{j}}=\mu, \text { for } \alpha=1, \ldots, m, \\
\sum_{j \neq \alpha} \frac{1}{q_{k}-q_{j}}-\sum_{j} \frac{1}{q_{k}-p_{j}}=-\mu, \text { for } \alpha=1, \ldots, n .
\end{array}\right.
$$

is the translating vortices for the Kirchhoff-Routh Halmitonian

$$
\frac{d z_{i}^{*}}{d t}=\sum_{k \neq i} \frac{\Gamma_{k}}{z_{k}-z_{i}}
$$

where

$$
\Gamma_{k}= \pm 1
$$

Kirchhoff-Routh Halmitonian

$$
\frac{d z_{i}^{*}}{d t}=\sum_{k \neq i} \frac{\Gamma_{k}}{z_{k}-z_{i}}
$$

Dynamics of Vortices in Euler Flows:

$$
\begin{aligned}
\mathbf{u}_{t}+(\mathbf{u} \cdot \nabla) \mathbf{u} & =\nabla p & & \text { in } \mathbb{R}^{2} \times(0, T) \\
\mathbf{u} \cdot v & =0 & & \text { on } \partial \Omega \times(0, T) \\
\nabla \cdot \mathbf{u} & =0 & & \text { in } \Omega \times(0, T) \\
\mathbf{u}(\cdot, 0) & =\mathbf{u}_{0} & & \text { in } \Omega
\end{aligned}
$$

$\mathbf{u}(x, t): \bar{\Omega} \times[0, T) \rightarrow \mathbb{R}^{2}, p(x, t): \bar{\Omega} \rightarrow \mathbb{R}$.
Ω smooth, bounded domain in \mathbb{R}^{2} or entire space.
Γ_{k}-circulation of vortices.
Rigorous verification: Davila-del Pino-Wei, arXiv:1803.00066, Gluing methods for vortex dynamics in Euler flows

The generalized Tkachenko equation

$$
\left\{\begin{array}{l}
\sum_{j \neq \alpha} \frac{1}{\alpha_{\alpha}-p_{j}}-\sum_{j} \frac{1}{p_{\alpha}-q_{j}}=\mu, \text { for } \alpha=1, \ldots, m, \\
\sum_{j \neq \alpha} \frac{1}{\alpha_{\alpha}-q_{j}}-\sum_{j} \frac{1}{q_{\alpha}-p_{j}}=-\mu, \text { for } \alpha=1, \ldots, n .
\end{array}\right.
$$

- Let $P(z)=\prod_{j}\left(z-p_{j}\right), Q(z)=\prod_{j}\left(z-q_{j}\right)$ be the generating polynomials. Then (Tkachenko 1964) Tkachenko equation:

$$
P^{\prime \prime} Q-2 P^{\prime} Q^{\prime}+P Q^{\prime \prime}=2 \mu\left(P^{\prime} Q-P Q^{\prime}\right) .
$$

- The Adler-Moser polynomials provide a sequence of polynomial solutions to the Tkachenko equation (Bartman 1983).
- There many other polynomials which are solutions to the Tkchenko equation (Demina-Kudryashov 2011) but they don't satisfy the nondegeneracy conditions below.

Adler-Moser Polynomials

- Let $K=\left(k_{2}, \ldots,\right)$ be parameters. Define $\theta_{n}(z ; K)$ by

$$
\exp \left(z \lambda-\sum_{j=2}^{+\infty} \frac{k_{j} \lambda^{2 i-1}}{2 j-1}\right)=1+\sum_{n=1}^{+\infty} \theta_{n}(z ; K) \lambda^{n}
$$

- $\theta_{1}(z ; K)=z, \theta_{3}(z ; K)=-\frac{k_{2}}{3}+\frac{z^{3}}{6}$,

$$
\theta_{5}(z ; K)=-\frac{k_{3}}{5}-\frac{k_{2}}{6} z^{2}+\frac{1}{120} z^{5}
$$

- $\theta_{n+1}^{\prime}=\theta_{n}$.

The Adler-Moser and modified Adler-Moser polynomials

- The Adler-Moser polynomial:

$$
\Theta_{n}(z ; K):=c_{n} W\left(\theta_{1}, \ldots, \theta_{2 n-1}\right) .
$$

Constant c_{n} is chosen such that leading coefficient is 1 .

- Θ_{n} is of degree $n(n+1) / 2$.
- $\Theta_{1}(z ; K)=z, \Theta_{2}(z ; K)=z^{3}+k_{2}$, and

$$
\Theta_{3}(z ; K)=z^{6}+5 k_{2} z^{3}-9 k_{3} z-5 k_{2}^{2} .
$$

- The modified Adler-Moser polynomial:

$$
\tilde{\Theta}_{n}(z ; K):=c_{n} e^{-\mu z} W\left(\theta_{1}, \ldots, \theta_{2 n-1}, e^{\mu z}\right) .
$$

- $Q=\Theta_{n}(z, K), P=\tilde{\Theta}_{n}(z, \mu, K)$ satisfies the Tkachenko equation (Bartman 1983).

Symmetric vortex configuration

Take $\mu=1$ and $K_{0}:=-\frac{1}{2}(1,1, \ldots$,$) .$
Define

$$
A_{n}:=\Theta_{n}\left(z+\frac{1}{2} ; K_{0}\right), B_{n}=\tilde{\Theta}_{n}\left(z+\frac{1}{2} ; K_{0}\right) .
$$

- A_{n}, B_{n} have real coefficients and $B_{n}(z)=A_{n}(-z)$.
- The roots of these two polynomials give us a "symmetric" translating-vortex configuration.

$$
\left\{\begin{array}{l}
\sum_{j \neq \alpha} \frac{1}{p_{\alpha}-p_{j}}-\sum_{j} \frac{1}{p_{\alpha}-q_{j}}=\mu, \text { for } \alpha=1, \ldots, m, \\
\sum_{j \neq \alpha} \frac{1}{q_{\alpha}-q_{j}}-\sum_{j} \frac{1}{q_{\alpha}-p_{j}}=-\mu, \text { for } \alpha=1, \ldots, n
\end{array}\right.
$$

Roots of A_{8}

Roots of A_{8} and B_{8}

Roots of A_{12}

Roots of A_{12} and B_{12}

Roots of A_{25}

Roots of A_{25} and B_{25}

Approximately(but not exactly) on (25)circles and lines.

The force map

Let $\mathbf{p}=\left(p_{1}, \ldots, p_{n(n+1) / 2}\right), \mathbf{q}=\left(q_{1}, \ldots, q_{n(n+1) / 2}\right)$. Define the force map F :

$$
(\mathbf{p}, \mathbf{q}) \rightarrow\left(F_{1}, \ldots, F_{n(n+1) / 2}, G_{1}, \ldots, G_{n(n+1) / 2}\right)
$$

where

$$
\begin{aligned}
F_{k} & =\sum_{j \neq k} \frac{1}{p_{k}-p_{j}}-\sum_{j} \frac{1}{p_{k}-q_{j}}, \\
G_{k} & =\sum_{j \neq k} \frac{1}{q_{k}-q_{j}}-\sum_{j} \frac{1}{q_{k}-p_{j}} .
\end{aligned}
$$

Nondegeneracy of the symmetric vortex-configuration

- Let $a=\left(a_{1}, \ldots, a_{n(n+1) / 2}\right), b=\left(b_{1}, \ldots, b_{n(n+1) / 2}\right)$ represent the roots of A_{n} and B_{n}.
- To carry out the construction, we need Nondegeneracy: The linearization of the map F at (a, b) has no nontrivial "symmetric" kernel.
- $\left.D F\right|_{(a, b)}$ always has non-symmetric kernels, arising from the variation of the parameters k_{j}.
- How to prove nondegeneracy?

Nondegeneracy of the symmetric vortex-configuration

- Let $a=\left(a_{1}, \ldots, a_{n(n+1) / 2}\right), b=\left(b_{1}, \ldots, b_{n(n+1) / 2}\right)$ represent the roots of A_{n} and B_{n}.
- To carry out the construction, we need Nondegeneracy: The linearization of the map F at (a, b) has no nontrivial "symmetric" kernel.
- $\left.D F\right|_{(a, b)}$ always has non-symmetric kernels, arising from the variation of the parameters k_{j}.
- How to prove nondegeneracy?
- Claim: If A_{n} has no repeated roots, then nondegeneracy holds.

Proof of Nondegeneracy

- Recursive relation of A_{n} :

$$
A_{n+1}^{\prime \prime} A_{n}-2 A_{n+1}^{\prime} A_{n}^{\prime}+A_{n+1} A_{n}^{\prime \prime}=0
$$

- Let $\phi_{n}=\frac{A_{n+1}}{A_{n}}$ and $\psi_{n}(z)=\frac{B_{n}}{A_{n}} e^{\mu z}$. Darboux transformation between ψ_{n} and ψ_{n+1}

$$
\psi_{n+1}=\frac{W\left(\psi_{n}, \phi_{n}\right)}{\phi_{n}} .
$$

- Tkachenko equation

$$
A_{n}^{\prime \prime} B_{n}-2 A_{n}^{\prime} B_{n}^{\prime}+A_{n} B_{n}^{\prime \prime}=2 \mu\left(A_{n}^{\prime} B_{n}-A_{n} B_{n}^{\prime}\right) .
$$

Linearize the recursive relation

$$
\xi_{n}^{\prime \prime} A_{n+1}-2 \xi_{n}^{\prime} A_{n+1}^{\prime}+\xi_{n} A_{n+1}^{\prime \prime}+A_{n}^{\prime \prime} \xi_{n+1}-2 A_{n}^{\prime} \xi_{n+1}^{\prime}+A_{n} \xi_{n+1}^{\prime \prime}=0
$$

- Let $f_{n}:=\left(\frac{\xi_{n}}{A_{n}}\right)^{\prime}$:

$$
f_{n}^{\prime}+2\left(\ln \frac{A_{n}}{A_{n+1}}\right)^{\prime} f_{n}+f_{n+1}^{\prime}+2\left(\ln \frac{A_{n+1}}{A_{n}}\right)^{\prime} f_{n+1}=0
$$

- Given f_{n+1}, solve for f_{n} :

$$
f_{n}=-f_{n+1}+2 \frac{A_{n+1}^{2}}{A_{n}^{2}} \int_{0}^{z} \frac{A_{n}^{2}}{A_{n+1}^{2}} f_{n+1}^{\prime} d s
$$

Linearize the Darboux transformation

Linearizing the Darboux transform

$$
\psi_{n+1}=\frac{W\left(\psi_{n}, \phi_{n}\right)}{\phi_{n}} .
$$

at $\left(\psi_{n}, \phi_{n}\right)$, we get

$$
\sigma_{n}^{\prime}-\sigma_{n}\left(\ln \phi_{n}\right)^{\prime}=\psi_{n}\left(f_{n+1}-f_{n}\right)-\sigma_{n+1}
$$

Hence from σ_{n+1}, we get

$$
\sigma_{n}=\phi_{n} \int_{0}^{z} \phi_{n}^{-1}\left(\psi_{n}\left(f_{n+1}-f_{n}\right)-\sigma_{n+1}\right) d s
$$

Transform the kernel to $n=0$

- Linearize the Tkachenko equation

$$
P^{\prime \prime} Q-2 P^{\prime} Q^{\prime}+P Q^{\prime \prime}=2 \mu\left(P^{\prime} Q-P Q^{\prime}\right)
$$

at $\left(A_{0}, B_{0}\right)$ yields

$$
\left(\sigma_{0} e^{\mu z}\right)^{\prime}+2 e^{2 \mu z} f_{0}=0
$$

- Analyzing the singularities of f_{n} and σ_{n} (corresponding to roots of A_{j}), we obtain $\sigma_{0}=f_{0}=0$. (Simplicity of roots needed.)
- All kernels of $\left.D F\right|_{(a, b)}$ are corresponding to the variation of the parameters k_{j}.
- As a result, symmetric kernel is trivial.

Part II: Transonic limit: $c \rightarrow \sqrt{2}$

$$
-i \varepsilon \partial_{x} U=\Delta U+U\left(1-|U|^{2}\right) \quad \text { in } \mathbb{R}^{2}
$$

Bethuel-Gravejat-Saut-2008 proved: Let

$$
\begin{aligned}
\varepsilon & =\sqrt{2-c^{2}} \\
\eta_{c} & =1-\left|u_{c}\right|^{2}
\end{aligned}
$$

Then (under certain energy bound of the travelling wave u_{c}) as $c \rightarrow \sqrt{2}$ (transonic limit):

$$
\begin{gathered}
\frac{1}{\varepsilon^{2}} \eta_{c}\left(\frac{x}{\varepsilon}, \frac{\sqrt{2} y}{\varepsilon^{2}}\right) \rightarrow \text { traveling wave solution of KP-I. } \\
-c \partial_{x} u+\partial_{x}^{3} u+3 \partial_{x}\left(u^{2}\right)-\partial_{x}^{-1} \partial_{y}^{2} u=0
\end{gathered}
$$

KP-I: an integrable system

The KP-I equation(Kadomtsev-Petviashvili 1970):

$$
\partial_{t} u+\partial_{x}^{3} u+3 \partial_{x}\left(u^{2}\right)-\partial_{x}^{-1} \partial_{y}^{2} u=0
$$

- KP equation is integrable ——Lax pair, Inverse scattering, Backlund transformation, Hirota's direct method, Darboux Transformation...
-Explicit soliton solutions, exponentially localized in certain directions.
- Analysis of the inverse scattering transform of KP-I (Manakov et al., Ablowitz-Fokas, X. Zhou, Ablowitz-Villarroel...).

Lump solution

Consider travelling wave solution $u(x-c t, y)$:

$$
\partial_{x}^{2}\left(\partial_{x}^{2} u-c u+3 u^{2}\right)-\partial_{y}^{2} u=0
$$

It has the following family of lump solutions (Manakov et al.-1977; Ablowitz-Satsuma-1979)

$$
u=Q(x-c t, y)=\frac{4\left(-(x-c t)^{2}+c y^{2}+\frac{3}{c}\right)}{\left((x-c t)^{2}+c y^{2}+\frac{3}{c}\right)^{2}}
$$

Nonradial, decays in all directions at the order $O\left(r^{-2}\right)$.

$$
\perp
$$

x-slice when $y=0$:

y-slice when $x=0$:

Open questions about lump solution

$$
\begin{gathered}
\partial_{t} u+\partial_{x}^{3} u+3 \partial_{x}\left(u^{2}\right)-\partial_{x}^{-1} \partial_{y}^{2} u=0 . \\
u=Q(x-c t, y)=\frac{4\left(-(x-c t)^{2}+c y^{2}+\frac{3}{c}\right)}{\left((x-c t)^{2}+c y^{2}+\frac{3}{c}\right)^{2}} .
\end{gathered}
$$

Open questions about lump solution

$$
\begin{gathered}
\partial_{t} u+\partial_{x}^{3} u+3 \partial_{x}\left(u^{2}\right)-\partial_{x}^{-1} \partial_{y}^{2} u=0 \\
u=Q(x-c t, y)=\frac{4\left(-(x-c t)^{2}+c y^{2}+\frac{3}{c}\right)}{\left((x-c t)^{2}+c y^{2}+\frac{3}{c}\right)^{2}}
\end{gathered}
$$

Question 1: Is Q nondegenerate? (If so, we can use this solution to construct traveling wave solutions to Gross-Pitaeskii)

Open questions about lump solution

$$
\begin{gathered}
\partial_{t} u+\partial_{x}^{3} u+3 \partial_{x}\left(u^{2}\right)-\partial_{x}^{-1} \partial_{y}^{2} u=0 \\
u=Q(x-c t, y)=\frac{4\left(-(x-c t)^{2}+c y^{2}+\frac{3}{c}\right)}{\left((x-c t)^{2}+c y^{2}+\frac{3}{c}\right)^{2}}
\end{gathered}
$$

Question 1: Is Q nondegenerate? (If so, we can use this solution to construct traveling wave solutions to Gross-Pitaeskii)

Question 2: Morse index of Q, spectral property of Q ?
(Chiron-Scheid-2017: numerically Morse index 1.)

Open questions about lump solution

$$
\begin{gathered}
\partial_{t} u+\partial_{x}^{3} u+3 \partial_{x}\left(u^{2}\right)-\partial_{x}^{-1} \partial_{y}^{2} u=0 \\
u=Q(x-c t, y)=\frac{4\left(-(x-c t)^{2}+c y^{2}+\frac{3}{c}\right)}{\left((x-c t)^{2}+c y^{2}+\frac{3}{c}\right)^{2}}
\end{gathered}
$$

Question 1: Is Q nondegenerate? (If so, we can use this solution to construct traveling wave solutions to Gross-Pitaeskii)

Question 2: Morse index of Q, spectral property of Q ? (Chiron-Scheid-2017: numerically Morse index 1.)

Question 3: Is Q orbtitally stable?

Ground state lump solution of generalized KP-I equation

- For $1<p<5$, generalized KP-I equation:

$$
\partial_{x}^{2}\left(\partial_{x}^{2} u-u+u^{p}\right)-\partial_{y}^{2} u=0
$$

has a lump type solution (ground state), by variational arguments. No explicit formula is available. $p=5$ is the critical exponent. (de Bouard-Saut 1997)

Ground state lump solution of generalized KP-I equation

- For $1<p<5$, generalized KP-I equation:

$$
\partial_{x}^{2}\left(\partial_{x}^{2} u-u+u^{p}\right)-\partial_{y}^{2} u=0
$$

has a lump type solution (ground state), by variational arguments. No explicit formula is available. $p=5$ is the critical exponent. (de Bouard-Saut 1997)

- They are orbital stable when $p \in\left(1, \frac{7}{3}\right)$, unstable for $p \in\left(\frac{7}{3}, 5\right)$. (Yue Liu-Xiaoping Wang-1997; de Bouard-Saut-1997). Numerical study by Klein-Saut-2012.
- For $p=2$, it is not known whether the standard lump could be obtained this way. (Uniqueness of the ground state is still open).
- For $p=2$, it is not known whether the standard lump could be obtained this way. (Uniqueness of the ground state is still open).
- For $p=2$, higher energy solitary wave solutions also exist(Pelinovsky-Stepanyants-1994). Related to the Calogero-Moser system. Stability issue more complicated.

Multilump

4ロ $\downarrow 4$ 岛 $>4 \equiv>4 \equiv \Rightarrow$ 三

Multilump

Nondegeneracy of the standard lump

Let Q be the standard lump solution $(p=2$, speed $c=1)$ of the standard KP-I equation.
Theorem (Liu-Wei-2017)
Let ϕ be a solution of the linearized KP-I equation:

$$
\partial_{x}^{2}\left(\partial_{x}^{2} \phi-\phi+6 Q \phi\right)-\partial_{y}^{2} \phi=0
$$

Suppose ϕ is smooth and decaying at infinity:

$$
\phi(x, y) \rightarrow 0, \text { as } x^{2}+y^{2} \rightarrow+\infty
$$

Then $\phi=c_{1} \partial_{x} Q+c_{2} \partial_{y} Q$, for some constants c_{1}, c_{2}.

A family of y-periodic solutions bifurcating from 1D solution

$$
\partial_{x}^{2}\left(\partial_{x}^{2} u-u+3 u^{2}\right)-\partial_{y}^{2} u=0
$$

One dimensional soliton solution

$$
w(x)=\frac{1}{2} \cosh ^{-2}\left(\frac{x}{2}\right)
$$

Two-dimensional lump solution

$$
Q(x, y)=\frac{4\left(-x^{2}+3\right)}{\left(x^{2}+y^{2}+3\right)^{2}}
$$

A family of y-periodic solutions bifurcating from 1D solution

Let $k, b \in R$, with $k^{2}+b^{2}=1$. Define

$$
\begin{gathered}
\Gamma_{k}=\cosh (k(x))+\sqrt{\frac{1-4 k^{2}}{1-k^{2}}} \cosh (k b i y) . \\
Q_{k}(x, y)=2 \partial_{x}^{2} \ln \Gamma_{k}
\end{gathered}
$$

Then $Q_{k}(x, y)$ are solutions to KP-I. They are periodic in y, with period $t_{k}:=\frac{2 \pi}{k \sqrt{1-k^{2}}}$.

- As $k \rightarrow 0, t_{k} \rightarrow+\infty$, the solutions $2 \partial_{x}^{2} \ln \Gamma_{k}$ converge to the lump Q.
- As $k \rightarrow \frac{1}{2}, \Gamma_{k} \rightarrow \cosh \frac{x}{2}$, the solutions $2 \partial_{x}^{2} \ln \Gamma_{k}$ converge to the one dimensional solution $\frac{1}{2} \cosh ^{-2}\left(\frac{x}{2}\right)$.

A family of y-periodic solutions bifurcating from 1D solution

Let $k, b \in R$, with $k^{2}+b^{2}=1$. Define

$$
\begin{gathered}
\Gamma_{k}=\cosh (k(x))+\sqrt{\frac{1-4 k^{2}}{1-k^{2}}} \cosh (k b i y) . \\
Q_{k}(x, y)=2 \partial_{x}^{2} \ln \Gamma_{k}
\end{gathered}
$$

Then $Q_{k}(x, y)$ are solutions to KP-I. They are periodic in y, with period $t_{k}:=\frac{2 \pi}{k \sqrt{1-k^{2}}}$.

- As $k \rightarrow 0, t_{k} \rightarrow+\infty$, the solutions $2 \partial_{x}^{2} \ln \Gamma_{k}$ converge to the lump Q.
- As $k \rightarrow \frac{1}{2}, \Gamma_{k} \rightarrow \cosh \frac{x}{2}$, the solutions $2 \partial_{x}^{2} \ln \Gamma_{k}$ converge to the one dimensional solution $\frac{1}{2} \cosh ^{-2}\left(\frac{x}{2}\right)$.

Remark: Similar as the equation $-\Delta u=u^{p}-u$.

Nondegeneracy of periodic solutions

Let Q_{k} be the periodic solution corresponding to Γ_{k}.
Theorem (Liu-Wei-2017)
Let ϕ be a solution of the linearized KP-I equation:

$$
\partial_{x}^{2}\left(\partial_{x}^{2} \phi-\phi+6 Q_{k} \phi\right)-\partial_{y}^{2} \phi=0
$$

Suppose ϕ is smooth, $\phi\left(x, y+t_{k}\right)=\phi(x, y)$, and

$$
\phi(x, y) \rightarrow 0, \text { as }|x| \rightarrow+\infty .
$$

Then $\phi=c_{1} \partial_{x} Q_{k}+c_{2} \partial_{y} Q_{k}$, for some constants c_{1}, c_{2}.

Morse index and orbital stability of the lump solution

As an application of the previous theorems, we get
Theorem (Liu-Wei-2017)
The operator

$$
L \eta:=-\partial_{x}^{2} \eta+\eta-6 Q \eta+\partial_{x}^{-2} \partial_{y}^{2} \eta
$$

has exactly one negative eigenvalue. As a consequence, the lump Q is orbitally stable: For any $\varepsilon>0$, there exists $\delta>0$, such that, if $u(x, y, t)$ is solution of KP-I with $\|u(\cdot, \cdot, 0)-Q\|<\delta$, then for all $t \in(0,+\infty)$,

$$
\inf _{\gamma_{1}, \gamma_{2} \in R}\left\|u(\cdot, \cdot, t)-Q\left(\cdot+\gamma_{1}, \cdot+\gamma_{2}\right)\right\|<\varepsilon
$$

Morse index and orbital stability of the lump solution

As an application of the previous theorems, we get
Theorem (Liu-Wei-2017)
The operator

$$
L \eta:=-\partial_{x}^{2} \eta+\eta-6 Q \eta+\partial_{x}^{-2} \partial_{y}^{2} \eta
$$

has exactly one negative eigenvalue. As a consequence, the lump Q is orbitally stable: For any $\varepsilon>0$, there exists $\delta>0$, such that, if $u(x, y, t)$ is solution of $K P-I$ with $\|u(\cdot, \cdot, 0)-Q\|<\delta$, then for all $t \in(0,+\infty)$,

$$
\inf _{\gamma_{1}, \gamma_{2} \in R}\left\|u(\cdot, \cdot, t)-Q\left(\cdot+\gamma_{1}, \cdot+\gamma_{2}\right)\right\|<\varepsilon .
$$

Remark: The issue of asymptotical stability will be more delicate.

Orbital stability

- To prove the Morse index result, we use a continuation argument.
- By nondegeneracy, the Morse index is invariant along the family of periodic solution. Hence the Morse index of lump is equal to one, since that of the 1D solution is one.
- Let u_{c} be the family of lumps with speed c. Let
$d(c):=\iint\left(\frac{1}{2}\left(\partial_{x} u_{c}\right)^{2}-u_{c}^{3}+\frac{1}{2}\left(\partial_{y} \partial_{x}^{-1} u_{c}\right)^{2}+\frac{1}{2} c u_{c}^{2}\right) d x d y$.
Then $d^{\prime}(c)=\frac{1}{2} \sqrt{c} \iint u_{1}^{2}(x, y) d x d y$. Hence $d^{\prime \prime}(c)>0$.
- Orbital stability then essentially follows from the classical result of Grillakis-Shatah-Strauss-1987: The energy E_{1} is locally minimized in the hypersurface $\left\{\phi: \iint \phi^{2}=\right.$ costant $\}$.

Proof of Nondegeneracy of Lump Solution Q-Bilinear form

 of the KP-I equationIntroduce the τ function:

$$
u=2 \partial_{x}^{2}(\ln \tau)
$$

KP-I can be written in the bilinear form:

$$
\left(D_{x} D_{t}+D_{x}^{4}-D_{y}^{2}\right) \tau \cdot \tau=0
$$

D is the bilinear derivative operator:

$$
D_{s} D_{t} f \cdot g=\left.\left[\left(\partial_{s}-\partial_{s^{\prime}}\right)\left(\partial_{t}-\partial_{t^{\prime}}\right)\right]\left(f(s, t) g\left(s^{\prime}, t^{\prime}\right)\right)\right|_{s^{\prime}=s, t^{\prime}=t}
$$

For instance, $D_{x} f \cdot g=\partial_{x} f g-f \partial_{x} g$.

$$
D_{x} D_{y} f \cdot g=\partial_{x} \partial_{y} f g-\partial_{x} f \partial_{y} g-\partial_{y} f \partial_{x} g+f \partial_{x} \partial_{y} g
$$

Special solutions

Let

$$
\begin{aligned}
& \tau_{0}=1, \\
& \tau_{1}=x+i y+\sqrt{3}, \\
& \tau_{2}=x^{2}+y^{2}+3 .
\end{aligned}
$$

Then $\tau_{i}(x-t, y)$ are solutions to the KP-I equation in bilinear form.
The solution corresponding to τ_{0} is the trivial one. The solution corresponding to τ_{1} is complex valued. The solution τ_{2} corresponds to the lump solution Q.

Proof of nondegeneracy for lump solution-Backlund Transformation

Our key idea of the proof is to use that the fact that some special solutions of KP-I can be connected through Backlund transformation.
A bilinear identity:

$$
\begin{aligned}
& \frac{1}{2}\left[\left(D_{x} D_{t}+D_{x}^{4}-D_{y}^{2}\right) f \cdot f\right] g g-\frac{1}{2}\left[\left(D_{x} D_{t}+D_{x}^{4}-D_{y}^{2}\right) g \cdot g\right] f f \\
& =D_{x}\left[\left(D_{t}-\sqrt{3} i \mu D_{y}+D_{x}^{3}-\sqrt{3} i D_{x} D_{y}\right) f \cdot g\right] \cdot(f g) \\
& +3 D_{x}\left[\left(D_{x}^{2}+\mu D_{x}+\frac{1}{\sqrt{3}} i D_{y}\right) f \cdot g\right] \cdot\left(D_{x} g \cdot f\right) \\
& +\sqrt{3} i D_{y}\left[\left(D_{x}^{2}+\mu D_{x}+\frac{1}{\sqrt{3}} i D_{y}\right) f \cdot g\right] \cdot(f g)
\end{aligned}
$$

Backlund transformation of lump

Recall $\tau_{0}=1, \tau_{1}=x+y i+\sqrt{3}, \tau_{2}=x^{2}+y^{2}+3$.
The Backlund transformation between τ_{0} and τ_{1} :

$$
\left\{\begin{array}{l}
\left(D_{x}^{2}+\frac{1}{\sqrt{3}} D_{x}+\frac{1}{\sqrt{3}} i D_{y}\right) \tau_{0} \cdot \tau_{1}=0 \\
\left(-D_{x}-i D_{y}+D_{x}^{3}-\sqrt{3} i D_{x} D_{y}\right) \tau_{0} \cdot \tau_{1}=0
\end{array}\right.
$$

The Backlund transformation between τ_{1} and τ_{2} :

$$
\left\{\begin{array}{l}
\left(D_{x}^{2}-\frac{1}{\sqrt{3}} D_{x}+\frac{1}{\sqrt{3}} i D_{y}\right) \tau_{1} \cdot \tau_{2}=0, \\
\left(-D_{x}+i D_{y}+D_{x}^{3}-\sqrt{3} i D_{x} D_{y}\right) \tau_{1} \cdot \tau_{2}=0
\end{array}\right.
$$

Backlund transformation of y-periodic solutions

Let $\Lambda_{0}=1$,

$$
\Lambda_{1}=\exp \left(\frac{1}{2} k(x-b i y-t)\right)+r \exp \left(-\frac{1}{2} k(x-b i y-t)\right)
$$

where r is an explicit constant determined by k.

$$
\Lambda_{2}=\Gamma_{k}=\cosh (k(x-t))+\sqrt{\frac{1-4 k^{2}}{1-k^{2}}} \cos (k b y) .
$$

The Backlund transformation between Λ_{1} and Λ_{2} is

$$
\left\{\begin{array}{c}
\left(D_{x}^{2}+\frac{b}{\sqrt{3}} D_{x}+\frac{1}{\sqrt{3}} i D_{y}\right) \Lambda_{1} \cdot \Lambda_{2}=\frac{k^{2}}{4} \Lambda_{1} \Lambda_{2} \\
\left(D_{t}+\frac{3 k^{2}}{4} D_{x}-b i D_{y}+D_{x}^{3}-\sqrt{3} i D_{x} D_{y}-\frac{\sqrt{3} k^{2} b}{4}\right) \Lambda_{1} \cdot \Lambda_{2}=0
\end{array}\right.
$$

Similarly for Λ_{0}, Λ_{1}.

Linearized Backlund transformation

To prove the nondegeneracy of the lump, we linearize the transformation between τ_{0} and τ_{1}

$$
\left\{\begin{array}{l}
\left(D_{x}^{2}+\frac{1}{\sqrt{3}} D_{x}+\frac{1}{\sqrt{3}} i D_{y}\right) \tau_{0} \cdot \tau_{1}=0, \\
\left(-D_{x}-i D_{y}+D_{x}^{3}-\sqrt{3} i D_{x} D_{y}\right) \tau_{0} \cdot \tau_{1}=0
\end{array}\right.
$$

We get

$$
\left\{\begin{array}{c}
L_{1} \phi=G_{1} \eta \\
M_{1} \phi=N_{1} \eta
\end{array}\right.
$$

Here

$$
\begin{aligned}
L_{1} \phi & =\left(D_{x}^{2}+\frac{1}{\sqrt{3}} D_{x}+\frac{1}{\sqrt{3}} i D_{y}\right) \phi \cdot \tau_{1}, \\
M_{1} \phi & =\left(-D_{x}-i D_{y}+D_{x}^{3}-\sqrt{3} i D_{x} D_{y}\right) \phi \cdot \tau_{1}, \\
G_{1} \eta & =-\left(D_{x}^{2}+\frac{1}{\sqrt{3}} D_{x}+\frac{1}{\sqrt{3}} i D_{y}\right) \tau_{0} \cdot \eta \\
N_{1} \eta & =-\left(-D_{x}-i D_{y}+D_{x}^{3}-\sqrt{3} i D_{x} D_{y}\right) \tau_{0} \cdot \eta
\end{aligned}
$$

Transform the kernel to a simpler operator

Lemma

Let η be a solution of the linearized bilinear $K P-I$ equation at τ_{1} :

$$
-D_{x}^{2} \eta \cdot \tau_{1}+D_{x}^{4} \eta \cdot \tau_{1}-D_{y}^{2} \eta \cdot \tau_{1}=0
$$

Suppose η satisfies

$$
|\eta|+(1+r)\left|\partial_{x} \eta\right|+(1+r)\left|\partial_{y} \eta\right| \leq C(1+r)^{\frac{5}{2}}
$$

Then the linearized Backlund transformation between τ_{0} and τ_{1} has a solution ϕ with

$$
|\phi|+\left|\partial_{x} \phi\right|+\left|\partial_{y} \phi\right| \leq C(1+r)^{\frac{5}{2}}
$$

Sketch of the proof of the Lemma

Step 1. Insert the equation $L_{1} \phi=G_{1} \eta$ into $M_{1} \phi=N_{1} \eta$, we get the inhomogeneous third order ODE:

$$
4 \partial_{x}^{3} \phi \tau_{1}+\left(2 \sqrt{3} \tau_{1}-12\right) \partial_{x}^{2} \phi+\left(-4 \sqrt{3}+\frac{12}{\tau_{1}}\right) \partial_{x} \phi=F_{1}
$$

Here

$$
\begin{aligned}
F_{1} & =3 \partial_{x}\left(G_{1} \eta\right)+\sqrt{3} G_{1} \eta+N_{1} \eta-\frac{6}{\tau_{1}} G_{1} \eta \\
& =-2 \partial_{x}^{3} \eta+2 \sqrt{3} i \partial_{x} \partial_{y} \eta-\frac{6}{\tau_{1}} G_{1} \eta
\end{aligned}
$$

For each fixed y, the homogeneous equation has solutions $\xi_{0}=1$,

$$
\xi_{1}:=\frac{1}{2} \tau_{1}^{2}-\frac{\sqrt{3}}{6} \tau_{1}^{3},
$$

and

$$
\xi_{2}:=\left(\frac{\sqrt{3}}{2} \tau_{1}+1\right) e^{-\frac{\sqrt{3}}{2} x+\frac{\sqrt{3}}{4} y i} .
$$

Solve the inhomogeneous equation, we get a solution w_{0}, for each fixed y.

Solve the first equation $L_{1} \phi=G_{1} \eta$ (Involving derivatives of y)

Step 2. Define

$$
\begin{aligned}
& \Phi_{0}(x, y):=L_{1} \phi-G_{1} \eta \\
& \Phi_{1}=\partial_{x} \Phi_{0}, \Phi_{2}=\partial_{x}^{2} \Phi_{0}
\end{aligned}
$$

Note that Φ_{i} depends on the function ϕ.
Consider the system of equations

$$
\left\{\begin{array}{l}
\Phi_{0}(x, y)=0 \\
\Phi_{1}(x, y)=0 \\
\Phi_{2}(x, y)=0
\end{array}\right.
$$

We seek a solution ϕ in the form $w_{0}+w_{1}$, where

$$
w_{1}(x, y)=\rho_{0}(y) \xi_{0}(x, y)+\rho_{1}(y) \xi_{1}(x, y)+\rho_{2}(y) \xi_{2}(x, y)
$$

This is a system of ODE for ρ and can be solved.

Step 3. Prove $\Phi_{0}=0$ in \mathbb{R}^{2}. That is, the equation $L_{1} \phi=G_{1} \eta$ is satisfied for all x.
This follows from the identity:

$$
\begin{aligned}
\partial_{x}^{3} \Phi_{0} & =\left(-\frac{\sqrt{3}}{2}+\frac{6}{\tau_{1}}\right) \partial_{x}^{2} \Phi_{0}+\frac{1}{\tau_{1}}\left(2 \sqrt{3}-\frac{15}{\tau_{1}}\right) \partial_{x} \Phi_{0} \\
& +\frac{1}{\tau_{1}^{2}}\left(\frac{15}{\tau_{1}}-2 \sqrt{3}\right) \Phi_{0}
\end{aligned}
$$

This is a third order ODE for Φ_{0}, initial value at $x=1$ is zero.

Linearized Backlund transformation between τ_{1} and τ_{2}

The linearization is

$$
\left\{\begin{array}{l}
L_{2} \phi=G_{2} \eta \tag{1}\\
M_{2} \phi=N_{2} \eta
\end{array}\right.
$$

Here

$$
\begin{aligned}
L_{2} \phi & =\left(D_{x}^{2}-\frac{1}{\sqrt{3}} D_{x}+\frac{1}{\sqrt{3}} i D_{y}\right) \phi \cdot \tau_{2} \\
M_{2} \phi & =\left(-D_{x}+i D_{y}+D_{x}^{3}-\sqrt{3} i D_{x} D_{y}\right) \phi \cdot \tau_{2}
\end{aligned}
$$

and

$$
\begin{aligned}
& G_{2} \eta=-\left(D_{x}^{2}-\frac{1}{\sqrt{3}} D_{x}+\frac{1}{\sqrt{3}} i D_{y}\right) \tau_{1} \cdot \eta \\
& N_{2} \eta=-\left(-D_{x}+i D_{y}+D_{x}^{3}-\sqrt{3} i D_{x} D_{y}\right) \tau_{1} \cdot \eta
\end{aligned}
$$

Similar as the τ_{0}, τ_{1} case, we have

Lemma

Let η be a function solving the linearized bilinear KP-I equation at $\tau_{2}:$

$$
-D_{x}^{2} \eta \cdot \tau_{2}+D_{x}^{4} \eta \cdot \tau_{2}=D_{y}^{2} \eta \cdot \tau_{2}
$$

Suppose

$$
|\eta|+(1+r)\left|\partial_{x} \eta\right|+(1+r)\left|\partial_{y} \eta\right| \leq C(1+r)^{\frac{5}{2}}
$$

Then the linearized system has a solution ϕ with

$$
|\phi|+\left|\partial_{x} \phi\right|+\left|\partial_{y} \phi\right| \leq C(1+r)^{\frac{5}{2}}
$$

Proof of the nondegeneracy of lump

Suppose η satisfies

$$
-D_{x}^{2} \eta \cdot \tau_{2}+D_{x}^{4} \eta \cdot \tau_{2}=D_{y}^{2} \eta \cdot \tau_{2}
$$

Case 1. $G_{2} \eta_{2}=N_{2} \eta_{2}=0$.
Then $\eta_{2}=c_{1}(x+y i)+c_{2} \tau_{2}$.
Case 2. $G_{2} \eta_{2} \neq 0$ or $N_{2} \eta_{2} \neq 0$.
Then using the linearized Backlund transformation, there exists a solution η_{1} of the equation

$$
\left(D_{x}^{2}-D_{x}^{4}+D_{y}^{2}\right) \eta_{1} \cdot \tau_{1}=0
$$

satisfying suitable growth estimate.

Proof continued

Subcase 1. $G_{1} \eta_{1}=N_{1} \eta_{1}=0$.
In this case, we can show

$$
\eta_{1}=a_{1}+a_{2} \tau_{1}
$$

(\ln the kernel of the linearized operator around τ_{1}). Accordingly,

$$
\eta_{2}=c_{1} \partial_{x} \tau_{2}+c_{2} \partial_{y} \tau_{2}+c_{3} \tau_{2}
$$

Subcase 2. $G_{1} \eta_{1} \neq 0$ or $N_{1} \eta_{1} \neq 0$.
In this case, using the linearized Backlund transformation, we get a solution η_{0} of

$$
\left(D_{x}^{2}-D_{x}^{4}+D_{y}^{2}\right) \eta_{0} \cdot \tau_{0}=0
$$

satisfying

$$
\left|\eta_{0}\right|+\left|\partial_{x} \eta_{0}\right|+\left|\partial_{y} \eta_{0}\right| \leq C(1+r)^{\frac{5}{2}}
$$

Then η_{0} is harmonic:

$$
\partial_{x}^{2} \eta_{0}+\partial_{y}^{2} \eta_{0}=0
$$

and can be written as

$$
\eta_{0}=c_{1}+c_{2} x+c_{3} y+c_{4}\left(x^{2}-y^{2}\right)+c_{5} x y .
$$

We can prove(after tedious computation and using the linearized Backlund transformation again) that $c_{2}=c_{3}=c_{4}=c_{5}=0$. Then

$$
\eta_{2}=a_{1} \partial_{x} \tau_{2}+a_{2} \partial_{y} \tau_{2}+a_{3} \tau_{2}
$$

This finishes the proof.
Remark: The proof of nondegeneracy of periodic solutions is similar (more complicated computations).

Open Questions

$$
-i c \partial_{x} U=\Delta U+U\left(1-|U|^{2}\right) \text { in } \mathbb{R}^{2} .
$$

- $c \sim 0$: multi-vortex solutions (roots of Adler-Moser polynomials)
- $c \sim \sqrt{2}$: multi-bump solutions of KP-I
- Question1: nondegeneracy of multi-bump solutions of KP-I?
- Question 2: multi-bump solutions to trvaelling wave GP?
- Question 3: are theses two branches connected?

$2+1$ Toda lattice

$$
\Delta q_{n}=4 e^{q_{n-1}-q_{n}}-4 e^{q_{n}-q_{n+1}}, \text { in } \mathbb{R}^{2}, n \in \mathbb{Z}
$$

Lump solution(Ablowitz-Villarroel-1998):

$$
Q_{n}(x, y):=\ln \frac{\frac{1}{4}+(n-1+2 \sqrt{2} x)^{2}+4 y^{2}}{\frac{1}{4}+(n+2 \sqrt{2} x)^{2}+4 y^{2}}
$$

Nondegeneracy of the lump

Theorem (Liu-Wei-2017)
Let $\left\{\phi_{n}\right\}$ be a solution of the linearized Toda lattice:

$$
\Delta \phi_{n}=e^{Q_{n-1}-Q_{n}}\left(\phi_{n-1}-\phi_{n}\right)-e^{Q_{n}-Q_{n+1}}\left(\phi_{n}-\phi_{n+1}\right), n \in \mathbb{Z}
$$

Suppose $\phi_{n+1}(x)=\phi_{n}\left(x+\frac{1}{2 \sqrt{2}}\right)$ and ϕ_{n} is smooth and decaying at infinity:

$$
\phi_{n}(x, y) \rightarrow 0, \text { as } x^{2}+y^{2} \rightarrow+\infty .
$$

Then $\phi_{n}=c_{1} \partial_{x} Q_{n}+c_{2} \partial_{y} Q_{n}$.

Remark:

- More complicated than the KP-I case. Analyze the Fourier transform of the linearized Backlund transformation systems.
- Applying the nondegeneracy result of Toda lattice yields the existence of solutions to Allen-Cahn equation in \mathbb{R}^{3} with infinitely many ends

$$
\Delta u+u-u^{3}=0 \text { in } \mathbb{R}^{3}
$$

