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The Traveling Wave Gross-Pitaeskii equation

» This talk concerns

—icdU =AU+ U (1-|UP) in R2

» Travelling Waves of Gross-Pitaeskii equation:
9@ = AD + @ (1 - yq>|2) in IR2,

Travelling waves U (x — ct, y)



Another motivation

» Superfluids passing an obstacle:

du

v

: Pe .
> Let ue = pce'= be a vortex free solution. Then
e — 0, Pe — P

EAu+u—|uPu=0 in R2\Q, =0on dQ

V(0?V®) =0 in R\,

P2 =1-|VOP,

%%’ =0 on dQ),

V&(x) — (0,6) as |x| — +oo.

(Irrotational Flow)



u=ul= pee"%cU
Then U satisfies

€2AU 4262V p VU +2ieVO VU + Up?(1 — |U[?) = 0.

X = Xp + ¢y,
2ieVP. VU — 2VO(x)VU

The limit equation is the travelling wave GP (rescaled).

AU +2iV®(x) VU + (p(x0))?U(1 — |U|?) = 0.

Ref: FH Lin-Wei 2018



Two limits

—icd U =AU+ U (1-|UP) in R2

0 < ¢ < V2 (sound speed)



Two limits

—icoxU = AU+ U (1 - \U|2> in R,

0 < ¢ < V2 (sound speed)

» ¢ — 0: Ginzburg-Landau equation and Adler-Moser
polynomials.



Two limits

—icoxU = AU+ U (1 - \Uyz) in R,

0 < ¢ < V2 (sound speed)

» ¢ — 0: Ginzburg-Landau equation and Adler-Moser
polynomials.

» ¢ — +/2: KP-I equation (Kadomtsev — Petviashvili)

oru 4 33u + 30, (u2) - a;laﬁu =0.



Jone-Roberts Program

» Jones-Roberts program(1970'): Existence of travelling waves
U (X — ct,y) with ¢ € (0, \@) , from physical point of view.

This is called Jones-Roberts Program.

» Rigorous mathematical proof by Bethuel-Gravejat-Saut-2009,
using variational method.

» No finite energy travelling wave with ¢ > /2 (Gravejat-2003).



Variational Method

Energy functional:

1 1
Elu) =5 [ [VuP+5 [ (1—[uP)?

Momentum )
Plu] = f/ <iVu,u—1>
2 Jr2

(variational method)
inf{ E[u] |Pu]=C}

Bethuel-Gravejat-Saut (2008,2009) proved existence of least
energy traveling waves when 0 < ¢ < /2.
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We are interested in the full solution structure of

—icoxU = AU+ U (1 - \U]2> in R,

Question: are there higher energy solutions?

Recent numerical simulation by Chiron-Scheid: Multiple branches
of travelling waves for the Gross Pitaevskii equation, 2017 provides
evidence of abundance of higher energy solutions. Our first aim to
construct these higher energy solutions.



Part I: small speed case

c=e<<1

—ied U =AU+ U (1= [UP) in R%



Small speed case: 0 < c =¢e << 1

¢ = 0, Ginzburg-Landau
Au+u(l—|uf*) =0in R?
Degree 41 Vortex solution

vi =S(r)e®, v_ =5(r)e "

Theorem Lin-Wei 2010: Traveling wave solution with two opposite
vortices

ue(z) ~ vy(z — s_lgg)v,(z + 5_152)

This is also the least energy travelling wave solutions.



Force of attractions between +1 vortices =~ %

Lorentz forces between these "charged” vortices is ~ speed of
motion &

Balancing € ~ % (repelling due to opposite signs of charges).



Force of attractions between +1 vortices =~ %

Lorentz forces between these "charged” vortices is ~ speed of
motion &

Balancing € ~ % (repelling due to opposite signs of charges).

Question: are there travelling multi-vortex solutions? If there are,
where are they located?



Multi-vortex travelling waves

Theorem (Liu-Wei 2018)
Let N < 34. For & small, there is a solution U = u+ o(1), where

N(N+1)/2

=TI [ (e-ep)v (e a0,

k=1

where p1, ..., py(ny1)/2 are roots of an Adler-Moser polynomial
AN and

qk = —Pk-



Travelling 6-Vortex Solutions: N = 2

+ I

© 48,70

®
®



Remarks:

» For any N, theorem will be true, if Ay has no repeated root.

» For N < 34, computer software verifies that Ay has no
repeated root.

» If Ay_1 and Ay have no common root, then Ay has no
repeated root.

» Conjecture: Ay has no repeated root for any N.



Vortex location and Adler-Moser polynomials

» The error:
E(u):=¢idxu+Au+u (1 - \u\2) .

> u~ g, up = vi(z—e tpg) or up = v (z — e 1qk)
> Let |u]® — 1 = py.

u?—1=TT@+px) —1—Zpk+20k,

k k>2

where Qu = Yi cjy<..ci, (0 -+ i) (small terms).
» At the main order,

~s,z<a H) y <<vukvuj>nu,)_

j#k kij k#j I#ij



Projection of error on the kernel: translating modes

Around the vortex point ¢ 1py, for some constant ag:

» VuVu; term:

/ <VUkVUje_i9j) axuk ~ ilXoE Re )
|z—e~1py|<Ce Pk — Pj

_ie\=—— . 1
/ <VukVuje ’91> Oy Uy ~ ingeIm ,
|z—e lpy|<Ce ! Pk — Pj

> jed Uy term:

isaxuk(axuk) ~ f80€0,
|z—e1py|<Ce1

iedxuy (0, ug) ~ 0.
/zslpk<Cel X k( Y k)



Projected equations for translating vortices

v

Let u € R be fixed. Let p1,.... pm (g1, ..., gn)denote the
(scaled) position of degree 1(—1) vortices.

Yy L -y 1 =u,fora=1,..m,
J

= Ptxl_Pj Pnl_%'
Y — =) —— = —pfora=1..n.
j#u qu—gqj F qu—P;j

v

If u # 0, then necessarily m = n.

v

The case of y = 0 is corresponding to stationary vortex
configuration.

» The question is how to find these points (p1, ..., Pn, G1, - Gn)-



Kirchhoff-Routh Hamiltonian

j;x paipj - - paiqj =y, fora=1,..m,
j;ﬂ qalqj - ? qmipj = —p,fora =1,...,n.
is the translating vortices for the Kirchhoff-Routh Halmitonian
dz; Z Ty
dt iz zi

where



Kirchhoff-Routh Halmitonian

Dynamics of Vortices in Euler Flows:

ur+ (u-V)u=Vp inR*x(0,T)
u-v=0 ondQ2 x (0, T)
V-u=0 in(x(0,T)
u(-,0) =up in Q
u(x,t): Qx[0,T) = R? p(x,t): QO — R
Q) smooth, bounded domain in IR? or entire space.

I'y—circulation of vortices.

Rigorous verification: Davila-del Pino-Wei, arXiv:1803.00066,
Gluing methods for vortex dynamics in Euler flows



The generalized Tkachenko equation

1 1 _
j;{x s ?prqj =pfora=1,..,m,

Yy L _ 1 = —u,fora=1,..,n

jFa Adn—qj F Au—Pj

> Let P(2) =T1(z~ pj). Q(2) = [1(z — q) be the

J J
generating polynomials. Then (Tkachenko 1964)
Tkachenko equation:

P'Q—2P'Q + PQ" =2u (P’Q— PQ’) i
» The Adler-Moser polynomials provide a sequence of
polynomial solutions to the Tkachenko equation (Bartman
1983).
» There many other polynomials which are solutions to the
Tkchenko equation (Demina-Kudryashov 2011) but they don't
satisfy the nondegeneracy conditions below.



Adler-Moser Polynomials

» Let K = (ko, ..., ) be parameters. Define 0, (z; K) by

+o00 kj/\Zifl +00
exp zA—J; 51 =1+ ZG,,(Z;K)/\

n=1

> 01 (zK) =2 603(zK) = -k 2,



The Adler-Moser and modified Adler-Moser polynomials

» The Adler-Moser polynomial:
On(z;K) :==cyW (61, ..., 02n-1) .

Constant ¢, is chosen such that leading coefficient is 1.
O, is of degree n(n+1) /2.
O1(z;K) =2 02 (z;K) = 723+ ko, and

v

v

O3 (z; K) = 2° + 5koz® — 9ksz — 5k3.

v

The modified Adler-Moser polynomial:

O, (z;K) := che "W (64, ..., 0251, €') .

v

Q = 0,(z,K), P = 0O,(z,u, K) satisfies the Tkachenko
equation (Bartman 1983).



Symmetric vortex configuration

Take p =1land Ko:=—3 (L, 1,...,).
Define

A, =0, <z+;;K0> ,Bn:®n <z+;;K0>.

> A,, B, have real coefficients and B, (z) = A, (—z).
> The roots of these two polynomials give us a “symmetric
translating-vortex configuration.

1 1 _
) Pp; sza_qj =upfora=1,..,m,

jFu . .
y 1o —y- L =—yfora=1..n
BT TR




Roots of Ag




Roots of Ag and Bg
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Roots of Aj»




Roots of Ay, and By,
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Roots of Ass
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Roots of Ays and Bos

Approximately(but not exactly) on (25)circles and lines

sane®Z




The force map

force map F :

(p.a) — (FL <o Fo(nt1y /2, 61, - Gn(n+1)/2) .

where




Nondegeneracy of the symmetric vortex-configuration

> let a = (al, a,,(,,H)/z) , b= (bl, b,,(,,+1)/2> represent
the roots of A, and B,.

» To carry out the construction, we need Nondegeneracy: The
linearization of the map F at (a, b) has no nontrivial
“symmetric”’ kernel.

> DF|(a’b) always has non-symmetric kernels, arising from the
variation of the parameters k;.

» How to prove nondegeneracy?



Nondegeneracy of the symmetric vortex-configuration

> let a = (al, a,,(,,H)/z) , b= (bl, b,,(,,H)/z) represent
the roots of A, and B,.

» To carry out the construction, we need Nondegeneracy: The
linearization of the map F at (a, b) has no nontrivial
“symmetric”’ kernel.

> DF|(a’b) always has non-symmetric kernels, arising from the
variation of the parameters k;.

» How to prove nondegeneracy?

» Claim: If A, has no repeated roots, then nondegeneracy holds.



Proof of Nondegeneracy

» Recursive relation of A,:
AZ—&-lAn - 2A;1+1A:1 + An+1AZ = 0.

> Let ¢, = Aj‘*l and ¥, (z) = %e”z. Darboux transformation

between ¥, and ¢,41

Pny1 = W {n. ¢n) O’;: (Pn).

» Tkachenko equation

AlB, — 2AL Bl + A,BY = 2u (AL B, — A,B.) .



Linearize the recursive relation

CnAni1 — 26, A0 1 + CnAnyr + Anln1 — 24080 1 + AnGiig = 0.

A, Y\ A !
oI ) R 2 (In ) A =0
An+1 An

> Given f,11, solve for f, :

A2
fo = —fpe1 + 27051 / Az" £, ds.
n+1



Linearize the Darboux transformation

Linearizing the Darboux transform

sy — W 00)

$n
at (¢¥n, ¢n), we get
0',/7 — Op (In ¢n), = lljn (fn+1 - fn) — On+1-

Hence from 0,41, we get

Tn = ¢n /OZ o (P (Far1 — fa) = Oni1) ds.



Transform the kernel to n =0

v

Linearize the Tkachenko equation
P"Q—2P'Q 4+ PQ" =2u (P'Q— PQ)
at (Ao, Bo) yields
(0pet?) +2e?2fy = 0.

» Analyzing the singularities of f, and ¢, (corresponding to roots
of A;j), we obtain g = fy = 0. (Simplicity of roots needed.)

> All kernels of DF|(a'b) are corresponding to the variation of
the parameters k;.

» As a result, symmetric kernel is trivial.



Part Il: Transonic limit: ¢ — /2

—ied U =AU+ U (1 - |U|2) in R2,

Bethuel-Gravejat-Saut-2008 proved: Let

e=12—c?
776:1_|UC‘2-

Then (under certain energy bound of the travelling wave u.) as
c— ﬂ(transonic limit):

1 <X V2y

— , —==— | — traveling wave solution of KP-I.
€217 g g2 ) &

—cOxu + d3u+ 30, (uz) — 8;18}2,u =0.



KP-I: an integrable system

The KP-I equation(Kadomtsev-Petviashvili 1970):

deu+ 32U + 30 (u?) — a;laf,u = 0.

» KP equation is integrable
——Lax pair, Inverse scattering, Backlund transformation,
Hirota's direct method, Darboux Transformation...
—Explicit soliton solutions, exponentially localized in certain
directions.

> Analysis of the inverse scattering transform of KP-I (Manakov
et al., Ablowitz-Fokas, X. Zhou, Ablowitz-Villarroel...).



Lump solution

Consider travelling wave solution u (x — ct, y) :
02 (aiu —cu+ 3u2) — 8)2,u =0.

It has the following family of lump solutions (Manakov et
al.-1977; Ablowitz-Satsuma-1979)

4 <— (x —ct)’ +cy? + %)

<(x —ct)’ + oy + %)2

u=Q(x—cty)=

Nonradial, decays in all directions at the order O (rfz).



Lump




x-slice when y = 0:




y-slice when x = 0:




Open questions about lump solution

0ru + 93 u + 30, (u2) — 8;1af,u =0.

4 <— (x —ct)® +cy? + %)

= — Ct, =
u Q(X c .y) <(X_Ct)2+cy2+%>2



Open questions about lump solution

0ru + 93 u + 30, (u2) — a;laiu =0.

4 <— (x —ct)® + oy + %)

((x —ct)’ + oy + %)2

u=Q(x—cty)=

Question 1: Is @ nondegenerate? (If so, we can use this solution
to construct traveling wave solutions to Gross-Pitaeskii)



Open questions about lump solution

0ru + 93 u + 30, (u2) — a;laiu =0.

4 <— (x —ct)® + oy + %)
((x —ct)’ ey + %)2

Question 1: Is @ nondegenerate? (If so, we can use this solution
to construct traveling wave solutions to Gross-Pitaeskii)

u=Qx - cty) =

Question 2: Morse index of @, spectral property of Q7
(Chiron-Scheid-2017: numerically Morse index 1.)



Open questions about lump solution

0ru + 93 u + 30, (u2) — 8;1af,u =0.

4 <— (x —ct)® +cy? + %)

((x —ct)’ ey + %)2

u=Q(x—cty)=
Question 1: Is @ nondegenerate? (If so, we can use this solution

to construct traveling wave solutions to Gross-Pitaeskii)

Question 2: Morse index of @, spectral property of Q7
(Chiron-Scheid-2017: numerically Morse index 1.)

Question 3: Is @ orbtitally stable?



Ground state lump solution of generalized KP-I equation

» For 1 < p < 5, generalized KP-I equation:
02 (aiu—u—kup) —af,u:0

has a lump type solution (ground state), by variational
arguments. No explicit formula is available. p =5 is the
critical exponent. (de Bouard-Saut 1997)



Ground state lump solution of generalized KP-I equation

» For 1 < p < 5, generalized KP-I equation:
02 (aiu—u—kup) —af,u:0

has a lump type solution (ground state), by variational
arguments. No explicit formula is available. p =5 is the
critical exponent. (de Bouard-Saut 1997)

» They are orbital stable when p € (1, %) , unstable for
p € (%.5). (Yue Liu-Xiaoping Wang-1997; de
Bouard-Saut-1997). Numerical study by Klein-Saut-2012.



» For p = 2, it is not known whether the standard lump could
be obtained this way. (Uniqueness of the ground state is still
open).



» For p = 2, it is not known whether the standard lump could
be obtained this way. (Uniqueness of the ground state is still
open).

» For p = 2, higher energy solitary wave solutions also
exist(Pelinovsky-Stepanyants-1994). Related to the
Calogero-Moser system. Stability issue more complicated.



Multilump




Multilump

= = = £ DA



Nondegeneracy of the standard lump

Let Q be the standard lump solution(p = 2, speed ¢ = 1) of the
standard KP-I equation.

Theorem (Liu-Wei-2017)
Let ¢ be a solution of the linearized KP-I equation:

9% (9% — ¢ +6Q¢) — 929 = 0.
Suppose ¢ is smooth and decaying at infinity:
¢ (x,y) =0, as x> +y> — +oo.

Then ¢ = c10xQ + 0, Q, for some constants cy, co.



A family of y-periodic solutions bifurcating from 1D
solution

02 (aiu —u—+ 3u2) — af,u =0.

One dimensional soliton solution

w(x) = %cosh_2 (%)

Two-dimensional lump solution

4 (—x2 + 3)

A = ety



A family of y-periodic solutions bifurcating from 1D
solution

Let k, b € R, with k%2 + b%2 = 1. Define

1— 4k2

- cosh (kbiy) .

[y = cosh (k (x)) +

Qu(x,y) =202InT
Then Qk(x,y) are solutions to KP-1. They are periodic in y, with

271

period ty := PR
» As k — 0, tx — +o0o, the solutions 28)% InT'x converge to the
lump Q.
> As k — % I'y, — cosh %, the solutions 28)% InT'y converge to

the one dimensional solution %cosh*2 (g)




A family of y-periodic solutions bifurcating from 1D
solution

Let k, b € R, with k%2 + b%2 = 1. Define

1— 4k2

- cosh (kbiy) .

[y = cosh (k (x)) +

Qu(x,y) =202InT
Then Qk(x,y) are solutions to KP-1. They are periodic in y, with

271

period ty := PR
» As k — 0, tx — +o0o, the solutions 28)% InT'x converge to the
lump Q.
> As k — % I'y, — cosh %, the solutions 28)% InT'y converge to

the one dimensional solution %cosh*2 (g)

Remark: Similar as the equation —Au = uP — u.



Nondegeneracy of periodic solutions

Let Qk be the periodic solution corresponding to I'y.
Theorem (Liu-Wei-2017)

Let ¢ be a solution of the linearized KP-I equation:
9% (93¢ — ¢ +6Qup) — 3¢ = 0.
Suppose ¢ is smooth, ¢(x,y + tx) = ¢(x,y) , and
p(x,y) =0, as |x| — +oo.

Then ¢ = c10xQx + 20, Qx, for some constants cy, c.



Morse index and orbital stability of the lump solution

As an application of the previous theorems, we get

Theorem (Liu-Wei-2017)

The operator
Ly = —8>2(17 +17—-6Qy+ a;2a§;7

has exactly one negative eigenvalue. As a consequence, the lump
Q is orbitally stable: For any € > 0, there exists § > 0, such that,
if u(x,y,t) is solution of KP-I with ||u(-,-,0) — Q|| <, then for
all t € (0,+0),

inf Jlu(-,- t)—Q(-+71.,-+72)| <e
T1.72€R



Morse index and orbital stability of the lump solution

As an application of the previous theorems, we get

Theorem (Liu-Wei-2017)
The operator
Ly = —8>2(17 +17—-6Qy+ a;2a§;7

has exactly one negative eigenvalue. As a consequence, the lump
Q is orbitally stable: For any € > 0, there exists § > 0, such that,
if u(x,y,t) is solution of KP-I with ||u(-,-,0) — Q|| <, then for
all t € (0,400),

inf Jlu(-,- t)—Q(-+71.,-+72)| <e
T1.72€R

Remark: The issue of asymptotical stability will be more delicate.



Orbital stability

» To prove the Morse index result, we use a continuation
argument.

» By nondegeneracy, the Morse index is invariant along the
family of periodic solution. Hence the Morse index of lump is
equal to one, since that of the 1D solution is one.

> Let uc be the family of lumps with speed c. Let

// ( (0x uc —ud +% (8y8;1u6)2 + ;cu§> dxdy.

Then d’ (c) = \/c [ [ u? (x,y) dxdy. Hence d” (c) > 0.

> Orbital stability then essentially follows from the classical
result of Grillakis-Shatah-Strauss-1987: The energy E; is
locally minimized in the hypersurface {¢ : [ [ ¢ = costant} .



Proof of Nondegeneracy of Lump Solution Q—Bilinear form
of the KP-I equation

Introduce the T function:
u=1232(InT).
KP-1 can be written in the bilinear form:
(DxD:+ D — D) T-T=0
D is the bilinear derivative operator:
DsD:f - g = [(0s —0s) (3c — 0p)] (f (5, t) & (', 1)) |sr=s,0=r-
For instance, Dxf - g = dxfg — fdxg.

DD, f - g = 3,0, fg — 0xFd,g — 3, Foxg + 3,0, 8.



Special solutions

Let

T =1,
T1=x+iy+\@,
T = x>+ y?+3.

Then T;(x — t, y) are solutions to the KP-1 equation in bilinear
form.

The solution corresponding to 1 is the trivial one. The solution
corresponding to Ty is complex valued. The solution 1
corresponds to the lump solution Q.



Proof of nondegeneracy for lump solution-Backlund
Transformation

Our key idea of the proof is to use that the fact that some special
solutions of KP-1 can be connected through Backlund
transformation.

A bilinear identity:

[y

5[(Dth+D§—D§)f-f]g —% [(D«D; + D — D?) g - g] fF
= Dy [(Dt - \/§iny + D3 — \/§iDXDy> f.g} - (fg)

1
+ 3D, [(Dﬁ + uDy + \/giDy> £ g] - (Dxg - f)

+/3iD, KDf + uDy + \;giDy> f- g] - (fg).



Backlund transformation of lump

Recall o = 1,17 :x+yi—}—\/§,"f2 :x2+y2+3.
The Backlund transformation between 19 and 3 :

D2+ LD, + \%iDy) T T =0,
—Dy =Dy + D2 = V3iD,D, ) To 71 = 0,

The Backlund transformation between 73 and 7 :

V3

D2~ LD+ 5D 1 m =0,
—~Dy+ iDy + D} = V/3iDiD, ) 71+ 2 = 0.



Backlund transformation of y-periodic solutions

Let Ag =1,

1 1
A1 = exp <2k (x — biy — t)) + rexp <—2k (x — biy — t)) :
where r is an explicit constant determined by k.

1— 4k2

AQZFkZCOSh(k(X—t))+ ﬁ

cos (kby) .

The Backlund transformation between A7 and A5 is

(D2 + LD+ LD, ) Ax- Ay = KA1 A,
(D: + 2D, — biD, + D — V3iD,D, — 2L ) Ay - Ap = 0.

Similarly for Ag, A1.



Linearized Backlund transformation

To prove the nondegeneracy of the lump, we linearize the
transformation between 19 and Ty

D2+ 1D+ 5D, -1 =0,
Dy = iDy + D} = V/3iDiD, ) To - 7 = 0.



We get

{ Li¢ = Gu,
M1¢ = N117

Here

1 1
Lip = D§+DX+iD> ST,
9 ( VRV A
Mygp = (—DX —iD, + D3 — ﬁliDy) ¢ T,

1 1
G = — <D>% + %Dx‘F \/giDy) To -1,

Nujg = — (—DX —iD, + D2 — \@iDXDy) T 1.



Transform the kernel to a simpler operator

Lemma
Let 7 be a solution of the linearized bilinear KP-I equation at Ty :

—D317-T1+D§17-T1—D317‘T1:0.

Suppose 1 satisfies

5
2

)4+ (L4 1) [9xy| + (L+r) [0y < C(L+7)

Then the linearized Backlund transformation between Tg and Ty
has a solution ¢ with

5
2

@] + [0x¢p| +|9yp| < C(1+r)



Sketch of the proof of the Lemma

Step 1. Insert the equation L1¢ = G117 into M1 = N7, we get
the inhomogeneous third order ODE:

4834)’(1 + (2\[1'1 — 12) < 4\f—|— > aX(P = F.
Here
6
Fi = 39x (Giyp) + V3G + Nyyp — *G117

= 203y + 2V/3i0, o1 — EGW



For each fixed y, the homogeneous equation has solutions ¢ = 1,

1, V33

C1:= 5T g

o= (?n + 1) e X

Solve the inhomogeneous equation, we get a solution wy, for each
fixed y.

and



Solve the first equation L1¢p = Gy#(Involving derivatives of

y)

Step 2. Define
q>0 (x,y) = L1(P — Gli’],

®; = 0, Dy, Py = 92Dy.

Note that ®; depends on the function ¢.
Consider the system of equations

{ Do (x,y) =0,
d;(x,y) =0, forx=1.
®, (x,y) =0,

We seek a solution ¢ in the form wg + wy, where

wi (x,y) = po (y)Go (x,¥) +p1(y)G1(x,y) +p2(y) G2 (x,¥)-

This is a system of ODE for p and can be solved.



Step 3. Prove @y = 0 in R?. That is, the equation Li¢ = Gi7 is
satisfied for all x.
This follows from the identity:

aicpo:(—*@Jr >a2q> +<2\f >a N

+1<—2\f)<1>o

5

This is a third order ODE for ®g, initial value at x = 1 is zero.



Linearized Backlund transformation between 7; and T

The linearization is

Here
Lyp = (Df - iDX + 1iDy> ¢ -1,
3 V3
Mo = (—Dx+ Dy + D} = V3iD:D, ) ¢ T2,
and

1 1
Goyp = — D§—DX+/'D>T- ,
1 ( V3o
N = — (—DX +iD, + D3 — \/§iDXDy> .



Similar as the 19, 71 case, we have

Lemma

Let 17 be a function solving the linearized bilinear KP-I equation at
T

—D2y -+ Dyt = Df;y " To.
Suppose

]+ (14 r) x| + (14 r) |9y < C(1+1)3 .

Then the linearized system has a solution ¢ with

§] + |9x| + [9yp| < C(1+1)3.



Proof of the nondegeneracy of lump

Suppose 7 satisfies
—D)%ﬂ - T + Dﬁﬂ c Ty = D}%T] - To.

Case 1. G2172 = N2772 = 0.
Then 112 = a1(x + yi) + o T.

Case 2. Gt # 0 or Nono # 0.
Then using the linearized Backlund transformation, there exists a
solution 71 of the equation

(D= Di+D}) -1 =0,

satisfying suitable growth estimate.



Proof continued

Subcase 1. Gy = Ninp = 0.
In this case, we can show

N1 = a1+ axn

(In the kernel of the linearized operator around 7).
Accordingly,

2 = c19xT2 + 020, T2 + G3T2.



Subcase 2. Giy1 # 0 or Nynp # 0.
In this case, using the linearized Backlund transformation, we get a
solution 79 of

(D)%—D§+D§)UO'T020,

satisfying
5
3

[170] + [0x770] + [0y 0] < C (1 +7)

Then 79 is harmonic:
a)2<770 + 8}2,170 =0.

and can be written as

o = c1 + cx + cay + ca (x* — ¥) + coxy.



We can prove(after tedious computation and using the linearized
Backlund transformation again) that ¢, = c3 = c4 = c5 = 0. Then

2 = a10xT2 + a0, To + a3To.

This finishes the proof.
Remark: The proof of nondegeneracy of periodic solutions is
similar (more complicated computations).



Open Questions

~icd U =AU+ U (1-[UP) in R

v

¢ ~ 0: multi-vortex solutions (roots of Adler-Moser
polynomials)

v

¢ ~ /2. multi-bump solutions of KP-I

v

Questionl: nondegeneracy of multi-bump solutions of KP-17?

v

Question 2: multi-bump solutions to trvaelling wave GP?

v

Question 3: are theses two branches connected?



2+1 Toda lattice

Agp, = 4e9-179 _ 4e9=9n+1 in R? n € Z.

Lump solution(Ablowitz-Villarroel-1998):

2
Lo (n—142v2x) 4 4y2

2
I+ (n—i—Qﬂx) +4y2



Nondegeneracy of the lump

Theorem (Liu-Wei-2017)
Let {¢n} be a solution of the linearized Toda lattice:

App = 17 (¢ 1 — ) — @t (¢, —ppi1) . nEZ.

Suppose ¢pi1(x) = ¢ (x + 2%@) and ¢, is smooth and
decaying at infinity:

Gn (x,y) = 0, as x* + y? — +o0.

Then ¢, = c10xQp + 20, Q.



Remark:

» More complicated than the KP-I case. Analyze the Fourier
transform of the linearized Backlund transformation systems.

» Applying the nondegeneracy result of Toda lattice yields the
existence of solutions to Allen-Cahn equation in R? with

infinitely many ends

Au+u—uP=0inR3



