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Theorem (Mantel, 1907)

An n-vertex triangle-free graph can have at most
⌊
n2/4

⌋
edges.

I Bound is best possible

I Several extensions, e.g.:

I Other forbidden graphs
I Stability and enumeration
I Supersaturation
I Triangle-free subgraphs of G (n, p)
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Related research

Kneser's Conjecture

I Can bound χ(KG (n, k)) by considering an induced subgraph

on
(n−k+1

k

)
vertices [Schrijver, 1979]

Erd®s�Ko�Rado

I Sparse random (edge-)subgraphs of KG (n, k) still satisfy

α(KG (n, k)p) =
(n−1
k−1
)

[Bollobás�Narayanan�Raigorodskii,

Balogh�Bollobás�Narayanan, D.�Tran, Devlin�Kahn, 2015�16]

I Sparsest subgraphs with α(G ) =
(n−1
k−1
)
have n−k

2k

(n
k

)
edges

[D.�Tran, 2016]

Hales�Jewett

I Find monochromatic combinatorial lines in r -colourings of [3]n

whose active sets are unions of few intervals [Shelah, 1988;

Conlon�Kam£ev, Leader�Räty, Kam£ev�Spiegel, 2018]
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A formal restatement

De�nition

Let K3(G ) ⊆
([n]
3

)
be the family of triangles in a graph G .

Given T ⊆
([n]
3

)
, say a graph G is T -avoiding if K3(G ) ∩ T = ∅.

Triangle-free ⇔
([n]
3

)
-avoiding

De�nition

For T ⊆
([n]
3

)
, de�ne

av (T ) = max{e(G ) : G is T -avoiding}

and, for 0 ≤ m ≤
(n
3

)
, de�ne

av (n,m) = min{av (T ) : |T | = m}.

Mantel: av
(([n]

3

))
= av

(
n,
(n
3

))
=
⌊
n2/4

⌋
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A modest �rst step

Is m0 =
(n
3

)
?

No, in fact ...

Observation

For any T with |T | >
(n
3

)
− bn/2c, av (T ) =

⌊
n2/4

⌋
.

This follows immediately from

Theorem (Rademacher)

Any graph with
⌊
n2/4

⌋
+ 1 edges has at least bn/2c triangles.
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Trotting along

Theorem (Edwards, 1977)

In any graph with
⌊
n2/4

⌋
+ 1 edges, there is an edge contained in

at least n/6 triangles.

Corollary

m0(n) ≤ (5
6

+ o(1))n.

Proof.

I Take T = G(3)(n, 5
6

+ o(1)), a random set of triangles of

density 5

6
+ o(1)

I W.h.p., every pair misses fewer than n/6 triangles

I In any graph with
⌊
n2/4

⌋
+ 1 edges, T contains one of the

triangles on Edwards' edge
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Hitting our stride

Theorem (Mubayi, 2012)

If G is a graph with
⌊
n2/4

⌋
+ 1 edges, then either

(i) G has an edge in at least (1
4

+ o(1))n edges, or

(ii) G has Ω(n3) triangles.

Corollary

m0(n) ≤ (3
4

+ o(1))n.

Proof.

I Take T = G(3)(n, 3
4

+ o(1))

I Let G be a graph with
⌊
n2/4

⌋
+ 1 edges

I Case (i): handle as before

I Can take a union bound over all 2(n2) = 2O(n2) graphs
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Speed check

Claim

m0(n) ≥ 1

2

(n
3

)
.

Proof.

I Suppose T ⊆
([n]
3

)
, |T | < 1

2

(n
3

)
I Averaging ⇒ there is a pair {u, v} contained in at most

1

2
n − 2 triangles of T

I Equipartition the vertices [n] = X ∪ Y so that

{u, v} ∪ NT (u, v) ⊆ X

I The complete bipartite graph with the edge {u, v} has no
triangles from T
⇒ av (T ) ≥

⌊
n2/4

⌋
+ 1
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Closing the gap

Theorem (D.�Lamaison�Tran, 2019+)

m0(n) =
(
1

2
+ o(1)

) (n
3

)
.

Proof sketch

I Goal: with high probability,
(
1

2
+ o(1)

)
-random set T of

triangles meets K3(G ) for every graph G with
⌊
n2/4

⌋
+ 1

edges

I Idea: use stability for dense graphs with few triangles

I Most dense graphs have many triangles � apply union bound
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Robust stability

Theorem (Füredi, 2015)

An n-vertex triangle-free graph G with
⌊
n2/4

⌋
− t edges can be

made bipartite by removing at most t edges.

Proven by analysing the identity

3t =
∑

{x ,y}∈E(G)

dG (x , y)

Corollary

The number of n-vertex graphs G with m ≥ n2/4 edges and t
triangles is at most

2n
(

n2/4

≤ 72t/n

)(
n2/4

≤ 72t/n

)
= 2

n+O

(
t
n log

n3

t

)
.
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Upper bound � a few more details

Theorem + Corollary

An n-vertex graph G with m ≥ n2/4 edges and t triangles can be

made bipartite by removing at most 72t/n edges, and there are at

most 2
n+O

(
t
n log

n3

t

)
such graphs.

I Expected number of graphs with t triangles avoiding T :

2
n+O

(
t
n log

n3

t

)
(1− p)t = 2

n+O

(
t
n log

n3

t

)
−Ω(t)

I Union bound: can cover all graphs except those with t = O(n)

I Stability ⇒ O(1) edges away from bipartite, classes X ∪ Y

I Since m >
⌊
n2/4

⌋
, there is an internal edge e ⊆ X

I dT (e) &
(
1

2
+ o(1)

)
n ⇒ miss many edges between e and Y
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Fewer forbidden triangles

Question

What is av (n,m) for m < 1

2

(n
3

)
?

Theorem (D.�Lamaison�Tran, 2019+)

For 0 ≤ k = o
(
(n/ log n)1/3

)
,

av

(
n, p

(
n

3

))
=
⌊
n2/4

⌋
+ k

when 2−1/k . 1− p . 2−1/(k+1).

Gives precise result for m = Ω̃(n8/3)
Also obtain meaningful bounds for smaller values of m
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The very sparse setting

Question

What happens when we can only forbid very few triangles?

Observation

av (n,m) ≥
(n
2

)
−m.

Proof.

I Suppose we have T ⊆
([n]
3

)
, |T | = m

I For each triangle in T , delete one of its edges from Kn

I Gives a T -avoiding graph with at least
(n
2

)
−m edges

Bound is tight if triangles in T are edge-disjoint

→ partial Steiner Triple System → m ≤ 1

3

(n
2

)
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Beyond the Steiner range

Claim

For t ≥ 0,

av

(
n,

1

3

(
n

2

)
+ t

)
≥ 2

3

(
n

2

)
−

2

5

t.

Proof.

I In this range, must have edges in multiple trianges of T
I Greedily remove such edges one at a time

I Destroy at least two triangles of T in each step

I Left with a partial Steiner Triple System

I Cannot be too large � gained in previous stage
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Upper bounds

Question

Can we �nd matching constructions?

Greedy argument worst-case: every edge in at most two triangles

But placing a partial STS over an STS doesn't work:

I Hall ⇒ can cover both systems with just 1

3

(n
2

)
edges

Theorem (D.�Lamaison�Tran, 2019+)

Let 0 ≤ t ≤ 7

15

(n
2

)
. Then

2

3

(
n

2

)
− 2

5
t ≤ av

(
n,

1

3

(
n

2

)
+ t

)
≤ 2

3

(
n

2

)
− 1

7
t + O(n).
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Blending designs

Theorem (D.�Lamaison�Tran, 2019+)

Let 0 ≤ t ≤ 7

15

(n
2

)
. Then

av

(
n,

1

3

(
n

2

)
+ t

)
≤ 2

3

(
n

2

)
− 1

7
t + O(n).

Proof idea

I We would like most edges to be covered by a partial STS

I Try to cluster the remaining triangles in an e�cient dense way

I Use av (5, 8) = 6

I Decompose Kn into edge-disjoint copies of K21

I Take a STS on most of these 21-cliques

I Decompose the remaining 21-cliques into copies of K5

I Take eight triangles from each 5-clique
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Redundancy in Turán's Theorem

Theorem (D.�Lamaison�Tran, 2019+)

For �xed r ≥ 3, there are constants c ,C > 0 such that, when

m = αn2:

(i) If α . 1

r(r−1) , then avr (n,m) =
(n
2

)
−m.

(ii) If α ≥ 1

2r(r−1) , then avr (n,m) & tr−1(n) + max
{
cn
α , n

2e−Cα
}
.

(iii) avr (n,m) ≤ tr−1(n) + max
{
Cn
α , n

2e−cα
}
.

Corollary

We only need to forbid O(n3) copies of Kr to achieve Turán's

bound.
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Some open problems

Mantel in the sparse range

What is the correct constant c such that

av
(
n, 1

3

(n
2

)
+ t
)

= 2

3

(n
2

)
− ct?

Turán in the dense range

For r ≥ 4, what is the correct constant D = D(r) such that, for all

m ≥ Dn3, we have avr (n,m) = tr−1(n)?

Further generalisations

What happens for other extremal problems? For instance, what if

we can only forbid a limited number of four-cycles?
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Turán in the dense range

For r ≥ 4, what is the correct constant D = D(r) such that, for all

m ≥ Dn3, we have avr (n,m) = tr−1(n)?
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What happens for other extremal problems? For instance, what if
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Mantel in the sparse range

What is the correct constant c such that

av
(
n, 1

3

(n
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)
+ t
)

= 2

3

(n
2

)
− ct?

Turán in the dense range

For r ≥ 4, what is the correct constant D = D(r) such that, for all

m ≥ Dn3, we have avr (n,m) = tr−1(n)?

Further generalisations

What happens for other extremal problems? For instance, what if

we can only forbid a limited number of four-cycles?

Thank you!
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