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For fixed r > 3, v and e, what is f,(n, v, e) — the largest size of an
n-vertex r-uniform hypergraph without a ‘(v, e)-configuration’, i.e.
a set of e edges spanning at most v vertices?

E.g. f3(n,4,4): Turdn problem for Kp), f(n,v,v?/4): KST.

Theorem(BES)

Forr,e>3and v > r+1,

er—v er—v

Q(n*1) = f(n,v,e) = O(nl ).
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Mykhaylo Tyomkyn



Background and motivation

Question(Brown-Erdés-Sés '73)

For fixed r > 3, v and e, what is f,(n, v, e) — the largest size of an
n-vertex r-uniform hypergraph without a ‘(v, e)-configuration’, i.e.
a set of e edges spanning at most v vertices?

E.g. f3(n,4,4): Turdn problem for Kp), f(n,v,v?/4): KST.

Theorem(BES)

Forr,e>3and v > r+1,

er—v er—v

Q(n*1) = f(n,v,e) = O(nl ).

So, f,(n, e(r — k) + k, €) = ©(nk), for any integer 2 < k < r.

Upper bound: double-counting. Lower bound: alteration method.
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Background and motivation

Given f,(n, e(r — k) + k, e) = ©(n¥), it is natural to ask the
following

Conjecture (Brown-Erdés-Sés '73)

For any integers r,e >3 and 2 < k < r,

fo(n,e(r — k) + k +1,e) = o(n¥).

The case k =2, i.e. v=(r —2)e + 3 is of special interest, as the
problem reduces to linear r-graphs.

Conjecture (BES: quadratic regime)

For any € > 0 and integers r, e > 3 there exists ng = ng(r, e, ¢)
such that every linear r-graph with n > ng vertices and at least en?
edges contains an ((r — 2)e + 3, e)-configuration.

Holds easily in Steiner systems
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State of affairs

o f3(n,6,3) = o(n?): Ruzsa—Szemerédi '78
o £,(n,3(r —2) + 3,3) = o(n?): Erdés—Frankl-RédI '86
o £,(n,3(r — k) + k + 1,3) = o(n*): Alon-Shapira '06
o f,(n,4(r — k) + k +1,4) = o(n*) for r > k > 3, and
o f,(n,3(r — k) + k + |logy e], €) = o(n*): Sarkézy—Selkow '05 )

r
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The remaining values are unknown, even f3(n,7,4).
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State of affairs

o f3(n,6,3) = o(n?): Ruzsa—Szemerédi '78
o £,(n,3(r —2) + 3,3) = o(n?): Erdés—Frankl-RédI '86
o £,(n,3(r — k) + k + 1,3) = o(n*): Alon-Shapira '06
o f,(n,4(r — k) + k +1,4) = o(n*) for r > k > 3, and
o £,(n,3(r — k) + k + |logy ], €) = o(n*): Sarkozy-Selkow '05 )

r

The remaining values are unknown, even f3(n,7,4). Possible
approaches:

@ BES in groups (Solymosi, Solymosi-Wong,
Nenadov-Sudakov—T., Long, Wong)

@ Improving on the Sarkézy—Selkow bound (Conlon,
Gishboliner-Levanzov—Shapira)
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Conjecture (BES, quadratic)

For any € > 0 and integers r, e > 3 there exists ng = ng(r, e, ¢)
such that every linear r-graph with n > ng vertices and at least £n?
edges contains an ((r — 2)e + 3, e)-configuration.
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For any € > 0 and integers r, e > 3 there exists ng = ng(r, e, ¢)
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edges contains an ((r — 2)e + 3, e)-configuration.

A new take (Gydérfas, Nenadov, Conlon): study the corresponding
Ramsey problem in complete linear r-graphs, a.k.a. Steiner systems

Conjecture (BES, Ramsey version)

For any integers ¢ > 2 and r, e > 3 there exists ng = no(c, r, €)
such that for all n > ng every c-colouring of a complete linear
r-graph of order n contains a monochromatic
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Conjecture (BES, quadratic)

For any € > 0 and integers r, e > 3 there exists ng = ng(r, e, ¢)
such that every linear r-graph with n > ng vertices and at least £n?
edges contains an ((r — 2)e + 3, e)-configuration.

A new take (Gydérfas, Nenadov, Conlon): study the corresponding
Ramsey problem in complete linear r-graphs, a.k.a. Steiner systems

Conjecture (BES, Ramsey version)

For any integers ¢ > 2 and r, e > 3 there exists ng = no(c, r, €)
such that for all n > ng every c-colouring of a complete linear
r-graph of order n contains a monochromatic

((r —2)e + 3, e)-configuration.

Ramsey's theorem gives this immediately for e = 3 and any c, r
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Our results

Theorem (Shapira—T. '19+)

For every ¢ > 2 there exists ryp = rp(c) such that for every r > r,
e >3 and n> ng(c,r,e) in every edge-colouring of a complete
linear r-graph on n vertices with ¢ colours there is a
monochromatic ((r — 2)e + 3, e)-configuration.
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Our results

Theorem (Shapira—T. '19+)

For every ¢ > 2 there exists ryp = rp(c) such that for every r > r,
e >3 and n> ng(c,r,e) in every edge-colouring of a complete
linear r-graph on n vertices with ¢ colours there is a
monochromatic ((r — 2)e + 3, e)-configuration.

For ¢ = 2 we show that one can take rp(2) =4

Theorem (Shapira—T. '19+)

Forany r >4, e >3 and n > ng(r, €) in every edge-colouring of a
complete linear r-graph on n vertices with 2 colours there is a
monochromatic ((r — 2)e + 3, e)-configuration.
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containing a set of e edges spanning at most 2e + 3 vertices.
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finding (2e + 3, e)-configurations.
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We focus here on the case (c,r) = (2,4):

For any e > 3 and n > ng(e) in every edge-colouring of a complete
linear 4-graph on n vertices with 2 colours there is a colour class
containing a set of e edges spanning at most 2e + 3 vertices.

Idea: for a 4-graph G define an auxiliary graph B(G), suited for
finding (2e + 3, e)-configurations.

In a 2-colouring of an SQS one colour G, will have a rich B(G)
‘Explore’ G along B(G) to exhibit a (2e + 3, e)-configuration in it.

Mykhaylo Tyomkyn
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Tools: Auxiliary graph

Definition (Bowtie graph)
For a linear 4-graph G, define B(G) := (V, E), where
» V={{5T}:S5TeEG),SNT|=1},
> E={{b1,bo} : b1 =51 T, bp =5T,|S1USUT|=09}
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Tools: Auxiliary graph
Definition (Bowtie graph)

For a linear 4-graph G, define B(G) := (V, E), where
> V={{S5,T}:5 TecEG),|SNT|=1},
> E={{b1,b2} : by =51T,bo = 5T,|S1USUT| =09}

Edges of B correspond to ‘non-trivial triangles’ in the underlying
graph of G. In particular, A(B) < 18.
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Tools: Auxiliary graph
Definition (Bowtie graph)

For a linear 4-graph G, define B(G) := (V, E), where
> V={{S5,T}:5 TecEG),|SNT|=1},
> E={{b1,b2} : by =51T,bo = 5T,|S1USUT| =09}

v

Edges of B correspond to ‘non-trivial triangles’ in the underlying
graph of G. In particular, A(B) < 18.

Large components in B are good for us:

If B has a connected component of order at least 2100¢* then G
contains a (2e + 3, e)-configuration.

Mykhaylo Tyomkyn



Tools: Ramsey multiplicity

Proposition(Goodman inspired)

For large n, in every 2-edge-colouring of K, there is a colour class
G satisfying
1 dg(u)
T(G) > (6 —o(1)) Z ( )= o(n?)
LIEKn
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V.

That is, about half of the ‘cherries’ in G are contained in a triangle.
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Tools: Ramsey multiplicity

Proposition(Goodman inspired)

For large n, in every 2-edge-colouring of K, there is a colour class
G satisfying
1 dg(u)
T(G) > (6 —o(1)) Z ( )= o(n?)
LIEKn

V.

That is, about half of the ‘cherries’ in G are contained in a triangle.

For large n, in every 2-colouring of a complete linear 4-graph of
order n there is a colour class G satisfying davg(B(G)) > 9 — o(1).

For ¢ > 3, use Ramsey multiplicity instead.
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Definition
Call a component C C B dense if dayg(C) > 9.
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Dense components
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Since davg(B) > 9 — o(1), A(B) < 18, and assuming all
components are smaller than 210°¢* averaging gives

B has ©(n®) dense components.
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Dense components

Definition

Call a component C C B dense if dayg(C) > 9.

Since davg(B) > 9 — o(1), A(B) < 18, and assuming all
components are smaller than 210°¢* averaging gives

B has ©(n®) dense components.

More averaging:

There exist a vertex, a hyperedge up € To € G, and ©(n) further
hyperedges TP, T ..., € E(G) such that, for each i we have that

up € T2 and all bowties { To, T?} belong to distinct dense
components.

Mykhaylo Tyomkyn



Inductive configurations

Call a (2/ + 3, i)-configuration F inductive if either i =2, or i > 2
and there exists a hyperedge T € F such that:

» T is contained in a (9, 3)-configuration,
» T has 2 vertices of degree 1, and
» F\{T} is inductive.
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Inductive configurations

Call a (2/ + 3, i)-configuration F inductive if either i =2, or i > 2
and there exists a hyperedge T € F such that:

» T is contained in a (9, 3)-configuration,
» T has 2 vertices of degree 1, and
» F\{T} is inductive.

Dense components in B give rise to inductive configurations.

V.
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Inductive configurations

Call a (2/ + 3, i)-configuration F inductive if either i =2, or i > 2
and there exists a hyperedge T € F such that:

» T is contained in a (9, 3)-configuration,
» T has 2 vertices of degree 1, and
» F\{T} is inductive.

Dense components in B give rise to inductive configurations.

‘Explore’ a dense component in a bootstrap percolation manner,
until one of the following happens.

V.
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Inductive configurations

Call a (2/ + 3, i)-configuration F inductive if either i =2, or i > 2
and there exists a hyperedge T € F such that:

» T is contained in a (9, 3)-configuration,
» T has 2 vertices of degree 1, and
» F\{T} is inductive.

Dense components in B give rise to inductive configurations.

‘Explore’ a dense component in a bootstrap percolation manner,
until one of the following happens.

o We create a (2/ + 2, i)-configuration — continue in a new
component.

V.
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Inductive configurations

Call a (2/ + 3, i)-configuration F inductive if either i =2, or i > 2
and there exists a hyperedge T € F such that:

» T is contained in a (9, 3)-configuration,
» T has 2 vertices of degree 1, and
» F\{T} is inductive.

Dense components in B give rise to inductive configurations.

‘Explore’ a dense component in a bootstrap percolation manner,
until one of the following happens.

o We create a (2/ + 2, i)-configuration — continue in a new
component.

o We reach i = e, i.e. a (2e + 3, e)-configuration.

V.
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Main lemma

Recall: we have up € To € G, and a set C of ©(n) dense
B-components, such that each C € C contains a bowtie { T, T},
for some T > wg.
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Main lemma

Recall: we have up € To € G, and a set C of ©(n) dense
B-components, such that each C € C contains a bowtie { T, T},
for some T > wg.

Lemma
For each 2 < j < e there exists a (2/ + 3, i)-configuration F; C G
of one of the following two types:
(a) Fiis an (2i + 2, i)-configuration with Ty € E(F;).
(b) There exist a subhypergraph & C F; and a component C; € C
such that:
@ ¢&; is an inductive (2j + 3, j)-configuration for some j > 2 with
To € E(g,'),
Q V(&) N V(Fi\&)C To,
© Theset Ai={be V(G):b={T,S}; T,S € &} satisfies
davg(BJAI]) < 9.
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Main lemma

Recall: we have up € To € G, and a set C of ©(n) dense
B-components, such that each C € C contains a bowtie { T, T},
for some T > wg.

Lemma

For each 2 < j < e there exists a (2/ + 3, i)-configuration F; C G
of one of the following two types:
(a) Fiis an (2i + 2, i)-configuration with Ty € E(F;).
(b) There exist a subhypergraph & C F; and a component C; € C
such that:
@ ¢&; is an inductive (2j + 3, j)-configuration for some j > 2 with
To € E(&),
Q V(E&E)NV(Fi\&) C T,
© Theset Ai={be V(G):b={T,S}; T,S € &} satisfies
davg(BJAI]) < 9.

In particular, A; € C;, and we can continue the process
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Component exploration

How to make sure that d,,z(B[Ai]) < 9 at each step?
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Component exploration

How to make sure that d,,z(B[Ai]) < 9 at each step?

Reversing the roles, it suffices to show the following
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Component exploration

How to make sure that d,,z(B[Ai]) < 9 at each step?

Reversing the roles, it suffices to show the following

Suppose that i > 2, F is an inductive (2i + 3, i)-configuration, and
B = B(F). Then for any A C V(B) we have d,,z(B[A]) < 9. In
particular, B has no dense components.
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Component exploration

How to make sure that d,,z(B[Ai]) < 9 at each step?

Reversing the roles, it suffices to show the following

Suppose that i > 2, F is an inductive (2i + 3, i)-configuration, and
B = B(F). Then for any A C V(B) we have d,,z(B[A]) < 9. In
particular, B has no dense components.

Proof: True for i =2, as |B| = 1.
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Component exploration

How to make sure that d,,z(B[Ai]) < 9 at each step?

Reversing the roles, it suffices to show the following

Suppose that i > 2, F is an inductive (2i + 3, i)-configuration, and
B = B(F). Then for any A C V(B) we have d,,z(B[A]) < 9. In
particular, B has no dense components.

Proof: True for i =2, as |B| = 1.
i — i+ 1: the added vertices of B[A] are indexed by two
3-uniform matchings: R and
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Component exploration

How to make sure that d,,z(B[Ai]) < 9 at each step?

Reversing the roles, it suffices to show the following

Suppose that i > 2, F is an inductive (2i + 3, i)-configuration, and
B = B(F). Then for any A C V(B) we have d,,z(B[A]) < 9. In
particular, B has no dense components.

Proof: True for i =2, as |B| = 1.
i — i+ 1: the added vertices of B[A] are indexed by two
3-uniform matchings: R and G, resulting in |R| + |G| new vertices
and at most 9

3IVIR)N V(G)] < S(IR[ +1GI)

new edges.
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Open questions

Conjecture (BES-R)

For any integers ¢ > 2 and r, e > 3 there exists ny = ng(c, r, €)
such that for all n > ng every c-colouring of a complete linear
r-graph of order n contains a monochromatic

((r —2)e + 3, e)-configuration.
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More generally:

Meta-question

Study Ramsey and Turan type problems in Steiner systems
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