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The Turán problem

Definition
For n ∈ N the Turán number ex(n,H) of a simple graph H counts
the maximum possible number of edges in an n-vertex H-free
simple graph.

I Mantel: ex(n,K3) = bn24 c

I Turán: ex(n,Kr ) =
(

1− 1

r − 1

)(n
2

)
+ o(n2)

I Erdős-Stone-Simonovits:

ex(n,H) =
(

1− 1

χ(H)− 1

)(n
2

)
+ o(n2)

Solves the question asymptotically unless H is bipartite.
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Bipartite graphs

I Even cycles: order of magnitude known for C4, C6, C10.

I Complete bipartite graphs - Kővári-Sós-Turán:

ex(n,Kt,s) ≤ 1

2
t
√
s − 1 · n2−

1
t +

t − 1

2
n

Conjecture

ex(n,Kt,s) = Θ
(
n2−

1
t

)
for t ≤ s

Matching lower bounds:

I Klein: K2,2

I Brown: K3,3

I Kollár-Rónyai-Sz. (norm graph): s ≥ t! + 1

I Alon-Rónyai-Sz. (projective norm graph): s ≥ (t − 1)! + 1

I Bukh (random algebraic construction):
s ≥ f (t)� (t − 1)! + 1
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ex(n,Kt,s) ≤ 1

2
t
√
s − 1 · n2−

1
t +

t − 1

2
n

Conjecture

ex(n,Kt,s) = Θ
(
n2−

1
t

)
for t ≤ s

Matching lower bounds:

I Klein: K2,2

I Brown: K3,3

I Kollár-Rónyai-Sz. (norm graph): s ≥ t! + 1

I Alon-Rónyai-Sz. (projective norm graph): s ≥ (t − 1)! + 1

I Bukh (random algebraic construction):
s ≥ f (t)� (t − 1)! + 1



Bipartite graphs

I Even cycles: order of magnitude known for C4, C6, C10.

I Complete bipartite graphs - Kővári-Sós-Turán:
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The projective norm graph

Let q = pk , t ≥ 2 and consider the field extension Fqt−1/Fq.

Definition
Frobenius automorphism: for A ∈ Fqt−1 we set φ(A) = Aq.

φ is an automorphism of Fqt−1 that pointwise fixes Fq.

Definition
Norm function of the extension Fqt−1/Fq: for A ∈ Fqt−1 we set

N(A) = A · φ(A) · φ(2)(A) · · ·φ(t−2)(A) = A · Aq · Aq2 · · ·Aqt−2
.

N is a multiplicative Fq-linear Fqt−1 → Fq function and for a ∈ F∗q

∣∣N−1(a)
∣∣ =

qt−1 − 1

q − 1
.
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The projective norm graph

Definition
Let q = pk be a prime power and t ≥ 2 an integer. The projective
norm graph NG(q, t) has vertex set Fqt−1 × F∗q and vertices (A, a)
and (B, b) are adjacent iff N(A + B) = ab.

I n = v(NG(q, t)) = qt−1
(
q − 1

)
=
(
1 + o(1)

)
qt

I deg(A, a) =

{
qt−1 − 2 if char(Fq) 6= 2 and N(2A) = a2

qt−1 − 1 otherwise

I e(NG(q, t)) =
(
1
2 + o(1)

)
q2t−1 = 1

2n
2− 1

t

I Alon-Rónyai-Sz.: NG(q, t) is Kt,(t−1)!+1-free
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Key ingredient of the proof of Kt,(t−1)!+1-freeness

Kt,s -free

⇐⇒ Any t vertices have < s common neighbours. ⇐⇒
Given any t vertices (Ai , ai ), i = 1, . . . , t there are < s vertices
(X , x) so that

N(Ai + X ) = aix for i = 1, . . . , t.

Dividing the first t − 1 equations by the last one and for
i = 1, . . . , t − 1 also by N(Ai − At):

N

(
1

At + X
+

1

Ai − At

)
=

ai
at N (Ai − At)

.



Key ingredient of the proof of Kt,(t−1)!+1-freeness

Kt,s -free ⇐⇒ Any t vertices have < s common neighbours.

⇐⇒
Given any t vertices (Ai , ai ), i = 1, . . . , t there are < s vertices
(X , x) so that

N(Ai + X ) = aix for i = 1, . . . , t.

Dividing the first t − 1 equations by the last one and for
i = 1, . . . , t − 1 also by N(Ai − At):

N

(
1

At + X
+

1

Ai − At

)
=

ai
at N (Ai − At)

.



Key ingredient of the proof of Kt,(t−1)!+1-freeness

Kt,s -free ⇐⇒ Any t vertices have < s common neighbours. ⇐⇒
Given any t vertices (Ai , ai ), i = 1, . . . , t there are < s vertices
(X , x) so that

N(Ai + X ) = aix for i = 1, . . . , t.

Dividing the first t − 1 equations by the last one and for
i = 1, . . . , t − 1 also by N(Ai − At):

N

(
1

At + X
+

1

Ai − At

)
=

ai
at N (Ai − At)

.



Key ingredient of the proof of Kt,(t−1)!+1-freeness

Kt,s -free ⇐⇒ Any t vertices have < s common neighbours. ⇐⇒
Given any t vertices (Ai , ai ), i = 1, . . . , t there are < s vertices
(X , x) so that

N(Ai + X ) = aix for i = 1, . . . , t.

Dividing the first t − 1 equations by the last one and for
i = 1, . . . , t − 1 also by N(Ai − At):

N

(
1

At + X
+

1

Ai − At

)
=

ai
at N (Ai − At)

.



Key ingredient of the proof of Kt,(t−1)!+1-freeness

Kt,s -free ⇐⇒ Any t vertices have < s common neighbours. ⇐⇒
Given any t vertices (Ai , ai ), i = 1, . . . , t there are < s vertices
(X , x) so that

N(Ai + X ) = aix for i = 1, . . . , t.

Dividing the first t − 1 equations by the last one and for
i = 1, . . . , t − 1 also by N(Ai − At):

N

(
1

At + X
+

1

Ai − At

)
=

ai
at N (Ai − At)

.

Putting Y = 1
At+X and Bi = 1

Ai−At
, bi = ai

at N(Ai−At)
:

N(Y + Bi ) = bi .
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Key ingredient of the proof of Kt,(t−1)!+1-freeness

(Y + Bi )(Y q + Bq
i ) · · · (Y qt−2

+ Bqt−2

i ) = bi i = 1, . . . , t − 1

Lemma (Kollár-Rónyai-Sz.)

Let F be a field, ` ∈ N, aij , bi ∈ F for 1 ≤ i , j ≤ ` such that
ai1j 6= ai2j for all j and i1 6= i2. Then the system

(x1 − a11) · (x2 − a12) · · · (x` − a1`) = b1
(x1 − a21) · (x2 − a22) · · · (x` − a2`) = b2

...
(x1 − a`1) · (x2 − a`2) · · · (x` − a``) = b`

has at most `! solutions (x1, . . . , x`) ∈ F`.

I It is applied for ` = t − 1 in a very, very, very special setting:

F = Fqt−1 , aij = −Bqj−1

i , bi ∈ Fq ⊆ Fqt−1 , xj = Y qj−1
.
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(Non-)existence of further complete bipartite subgraphs

Question
For t ≥ 2 what is the largest st such that NG(q, t) contains Kt,st

for every large enough prime power q? Does st < (t − 1)! hold?

I Bayer (2016): physicist’s proof of s4 = 6 (i.e. K4,6 in
NG(q, 4) for 5 ≤ q ≤ 151)

I Grosu (2016): There is a sequence of primes of density 1
9 such

that NG(p, 4) does contain a K4,6.

I Ball, Pepe: NG(q, t) is Kt+1,(t−1)!−1-free.

Theorem (BMRSz (2017+), MRSz (2019+))

NG(q, 4) contains K4,6 as a subgraph for every q ≥ 5 prime power.

I We actually find (1 + o(1))q7 copies of K4,6.

I This shows s4 = 6.
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9 such

that NG(p, 4) does contain a K4,6.

I Ball, Pepe: NG(q, t) is Kt+1,(t−1)!−1-free.

Theorem (BMRSz (2017+), MRSz (2019+))

NG(q, 4) contains K4,6 as a subgraph for every q ≥ 5 prime power.

I We actually find (1 + o(1))q7 copies of K4,6.

I This shows s4 = 6.
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Studying the common neighborhoods

Recall: A vertex (X , x) is a common neighbor of a set
T = {(Ai , ai ) : i = 1, . . . , t} of vertices iff

N(Ai + X ) = aix for i = 1, . . . , t. (1)

I T is called generic if all the first coordinates are distinct.
If T is not generic =⇒ no common neighbours.

I T is called aligned if all the second coordinates are the same.

ξ(T ) =

{
1 if T is aligned
0 if T is not aligned

N(Y + Bi ) = bi , for i = 1, . . . , t − 1. (2)

Proposition. |Solutions((1))| = |Solutions((2))| − ξ(T )
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Pair degrees

Solution set of N(Y + B1) = b1 is the translate N−1(b1)− B1.
Hence

Proposition (2-neighbourhoods)

Let T be a generic pair of vertices in NG(q, t). Then

deg(T ) =
qt−1 − 1

q − 1
− ξ(T ) = (1 + o(1))qt−2.



Triple degrees

N(Y + B1) = b1 and N(Y + B2) = b2,

Change of the variable gives the equivalent form

N(Z ) = c1 and N(Z + 1) = c2. (3)

Theorem
For t ≥ 3 let St(c1, c2) be the solution set of (3). Then

|St(c1, c2)| =


1− ηFq

(
(1 + c1 − c2)2 − 4c1

)
if t = 3,

2q + 1− ηFq (−3) if
t = 4 and
(c1, c2) = (1,−1),

qt−3 + O(qt−3.5) otherwise,

where ηFq is the quadratic character of Fq.

In particular, for t ≥ 4 we have deg(T ) = (1 + o(1))qt−3, unless
t = 4 and (c1, c2) = (1,−1).
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Proof ideas

Define the auxiliary polynomial

ft,c1,c2(Z ) = Nt−2(Z + 1)Nt−2(Z ) + c1Nt−2(Z + 1) + c2Nt−2(Z )

of degree 2(qt−3 + · · ·+ q + 1) and show that for its set Rt(c1, c2)
of roots and set R∗t (c1, c2) of multiple roots in Fq:

I St(c1, c2) ⊆ Rt(c1, c2)

I St(c1, c2) ∩ Fq ⊆ R∗t (c1, c2)

I |St(c1, c2)|+ |Rt(c1, c2) ∩ Fqt−2 | = 2(qt−3 + · · ·+ 1)

Consequently: every root of ft,c1,c2 is contained in Fqt−1 ∪ Fqt−2 ,
multiple roots are contained in Fq and all have multiplicity two.

Then some double counting, averaging, counting
|Rt(c1, c2) ∩ Fqt−2 | classified via the Nt−2-norm, more double
counting, Weil character sum estimate, finish with induction ...
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Bonus from the proof

I The special case f4,1,−1 = h1 · h2 factors over Fq: where
h1(Z ) = Zq+1 + Z + 1 and h2(Z ) = Zq+1 + Zq + 1.

I The sets Hi = {Z ∈ Fq3 : hi (Z ) = 0} are inverses of each

other: H2 = H−11 .

I H1 and H2 are difference sets1 in the multiplicative group
N−13 (1). In particular h1 and h2 factor over Fq3 .

Corollary

{Z ∈ Fq3 : N3(Z ) = 1, N3(Z + 1) = −1} = H1 ∪H2

1Set D ⊆ G is a difference set of a multiplicative group of G is every
g ∈ G \ {1} has a unique representation as a product d1 · d2 = g , where d1 ∈ D
and d2 ∈ D−1.



Quadruple degrees

Theorem (4-neighbourhoods)

Let q = pk be a prime power, t ≥ 2 an integer, and T a generic
set of 4 vertices in NG(q, t). Then

deg(T ) ≤ 6(qt−4 + qt−5 + · · ·+ q + 1).

I This also gives a new, commuative algebra-free/more
elementary proof of the K4,7-freeness of NG(q, 4).

I For t ≥ 5 this was not known to follow from the commutative
algebaric proof.

I Full characterization of the 4-neighbourhoods as we did for 2-
and 3-neighbourhoods seems difficult.
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Finding a K4,6 in NG(q, 4): an idea

We hope to find B1,B2,B3 ∈ Fq3 and b1, b2, b3 ∈ F∗q such that

N3(Y + B1) = b1, N3(Y + B2) = b2, N3(Y + B3) = b3,

has 6 solutions.

Idea: We characterized those (rare) triples which had twice as
many common neighbors as the average. Their corresponding
system is: N3(Y ) = 1, N3(Y + 1) = −1.

We try to combine two such triples into a quadruple and hope for
the best. The corresponding system becomes

N3(Y ) = 1, N3(Y + 1) = −1, N3(Y + A) = −1,

where A ∈ Fq3 and N3(A) = 1.
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Finding a K4,6 in NG(q, 4): difference sets

N3(Y ) = 1, N3(Y + 1) = −1 (4)

N3(Y ) = 1, N3(Y + 1) = −1, N3(Y + A) = −1 (5)

Proposition

Y ∈ Fq3 solves (5) iff both Y and A
Y solve (4).

Then by our characterization of (4), solutions of (5) come in pairs
Y1,Y2 such that A = Y1Y2 and Y1,Y2 ∈ H1 ∪H2.

H1,H2 are difference sets, so

I there exists a unique mixed product representation A = Y1Y2

such that Yi ∈ Hi

I there exists at most one Hi -product representation for each i
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Finding a K4,6 in NG(q, 4): the finish

For 6 solutions we need an A with Hi -product representation for
both i = 1 and 2 that are all distinct.

Let Pi := {hh′ : h, h′ ∈ Hi , h 6= h′}, If P1 ∩ P2 6= ∅, we found an
appropriate A.

Finish for q ≡ 2 (mod 3). Then H1 ∩H2 = ∅.

Was P1 ∩ P2 = ∅, then P1 and P2 partition N−13 (1) \ {1}. And
then

−1 =
∑

N−1(1)\{1}

=
∑
P1

+
∑
P2

= 0 + 0

A contradiction.
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Quasirandomness

A (sequence of) roughly d = d(n)-regular graph(s) G on n vertices
is quasirandom if it satisfies certain properties of the Erdős-Rényi
random graph G (n, dn ) with probability tending to 1 as n→∞.

P1 For any two large enough subsets V1 and V2 of vertices the
number of edges going between them is ≈ d

n |V1||V2|.

P2 For any fixed graph H, the number of labeled copies of H is

XH(G ) ≈ nv(H)

(
d

n

)e(H)

(H-quasirandomness).

P3 The second largest among the absolute values of eigenvalues of
G is of smaller order than the degree d .
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Quasirandomness

I For dense graphs (when d
n is constant) these properties are

known to be equivalent.

I In general P3 always implies P1: Expander Mixing Lemma
(EML).

How quasirandom is the projective norm graph?

I Alon-Rödl and Sz.: The projective norm graph satisfies P3.

I For P2: n ≈ qt , d
n ≈

1
q ⇒ XH(NG(q, t)) should be

≈ qtv(H)−e(H).

I Alon-Rónyai-Sz.: NG(q, t) is not Kt,(t−1)!+1-quasirandom.

I Alon-Pudlák: If ∆(H) < t+1
2 then the EML shows that

NG(q, t) is H-quasirandom. E.g. for H = K4 this works when
t ≥ 6.

Theorem
For t ≥ 4 the projective norm graph NG(q, t) is H-quasirandom
whenever H is a 3-degenerate simple graph.
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Generalized Turán numbers

Definition
For n ∈ N and simple graphs T and H the generalized Turán
number ex(n,T ,H) counts the maximum possible number of
unlabeled copies of T in an H-free graph on n vertices.

Here we deal with the case H = Kt,s , 2 ≤ t ≤ s.

I General upper bound - Alon-Shikhelman:
ex(n,T ,Kt,s) =

O
(
nv(T )− e(T )

t

)
if

T = Km,m ≤ t + 1
T = Ka,b, a ≤ b < s, a ≤ t

I EML: If s > (t − 1)! then matching lower bound using
NG(q, t)
- for T = Km when m < t+3

2 ,
- for T = Ka,b when a ≤ b ≤ t+1
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Generalized Turán numbers

I Kostochka-Mubayi-Verstraëte, Alon-Shikhelman: s > (t − 1)!,
T = K3 ⇒ matching lower bound for t ≥ 2.

I Ma-Yuan-Zhang: Bukh’s random algebraic construction gives
a matching lower bound when T = Km, m ≤ t + 1 and
s ≥ f (t); or T = Ka,b, a ≤ b, a < t,b ≤ t and s ≥ f (t).

Combining our theorem with the upper bound of Alon and
Shikhelman:

Corollary

Let t ≥ 4 and s > (t − 1)!. Then ex(n,T ,Kt,s) = Θ
(
nv(T )− e(T )

t

)
,

whenever T = K4 or T = Ka,b with a ≤ 3, a ≤ b < s.

New cases that we solve:
- T = K4 and t = 4, 5, (t − 1)! < s < f (t),
- T = Ka,b with a ≤ 3, t+1

2 < b < s and t ≥ 4,
(t − 1)! < s < f (t),
- T = Ka,b with a ≤ 3, t < b < s and t ≥ 4, s ≥ f (t).
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Open questions

Conjecture

The number of copies of K4,6 in NG(q, 4) is Θ(q16).

Question
For t ≥ 5:

Is there a Kt,(t−1)! in NG(q, t) for every large enough q?
Is there a Kt,t?

Conjecture

There is a copy of K4,6 in NG(F,K) for every infinite field F and
degree three Galois extension K.

Conjecture

ex(n,K4,6) = o(n7/4)
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