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Steiner triple sytems

Steiner triple system:

a family of 3-element subsets of X (called blocks),

every pair of distinct elements is contained in precisely one block.

Theorem (Kirkman, 1847)

A STS of order n exists if and only if n ≡ 1 or 3 (mod 6).

Partial Steiner triple system:

a family of 3-element subsets of X ,

every pair of distinct elements is contained in at most one block.
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Embeddings of STSs

A STS F on set X is embedded in a STS F ′ on set X ′ if F ⊂ F ′ and
X ⊂ X ′.

Not every partial STS of order n can be embedded in a complete STS of
the same order. Not even if n ≡ 1 or 3 (mod 6).
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Embeddings of STSs

A (partial or complete) STS F on set X is embedded in a (partial or
complete) STS F ′ on set X ′ if F ⊂ F ′ and X ⊂ X ′.
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Small embeddings

Theorem (Treash, 1968)

Every partial STS has a finite completion.

Conjecture (Lindner, 1975)

Every partial STS of order n has a completion of order n′ for all
n′ ≥ 2n + 1.

Lindner (1975): 6n + 3 is enough.

Andersen, Hilton, Mendelsohn (1978): 4n is enough.

Hilton, Rodger (1987): 2n + 1 is enough for STS of index 4k .

Bryant (2004): 3n − 2 is enough.

Bryant, Horsley (2009): 2n + 1 is enough.
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Adam Wagner (ETH Zürich) Completion and deficiency problems Banff, September 2019



When is n′ < 2n + 1 enough?

Colbourn (’83): it is NP-complete to determine whether a partial STS
has an embedding of order less than 2n + 1.

Colbourn–Colbourn–Rosa (’83), Bryant (’02),
Bryant–Maenhaut–Quinn–Webb (’04), Horsley (’04)

Horsley (’04): if a partial STS has at most n2/50 blocks then it has a
completion of order 8n/5.

Question

Given that a partial STS has r blocks, how many extra vertices do we need
to add to create a completion?
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Small embeddings

Question

Given that a partial STS has r blocks, how many extra vertices do we need
to add to create a completion?

Theorem (Nenadov–Sudakov–W)

If F is a partial Steiner triple system of order n with |F| blocks, then there
exists an embedding of F of order at most n + O(

√
|F|).
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Sharpness of main theorem

Theorem (Nenadov–Sudakov–W)

If F is a partial Steiner triple system of order n with |F| blocks, then there
exists an embedding of F of order at most n + O(

√
|F|).

Sharp if |F| ≥ 2n:
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Completing (n, k)-designs

(n, k)-design:

a family of k-element subsets of [n],

every pair of distinct elements is contained in precisely one block.

Question

Given that a partial (n, k)-design has r blocks, how many extra vertices do
we need to add to create a completion?
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Completing (n, k)-designs

Question

Given that a partial (n, k)-design has r blocks, how many extra vertices do
we need to add to create a completion?

Theorem (Nenadov–Sudakov–W)

For every k ≥ 3 there exist absolute constants ε, n0 > 0 such that the
following holds. If F is a partial (n, k)-design of order n ≥ n0 with
|F| ≤ εn2 blocks, then there exists an embedding of F of order at most
n + 7k2

√
|F|.
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Latin squares

Latin square: every element of [n] appears exactly once in each row,
column.

4 5 1 2 3

5 1 2 3 4

1 2 3 4 5

2 3 4 5 1

3 4 5 1 2

Figure: Leonhard Euler 1707-1783
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Latin squares

Partial Latin square: every element of [n] appears at most once in each
row, column.

Not every partial Latin square can be completed to a full Latin square:

1
2

But by adding some rows, columns sometimes they can!

1 3 2

3 2 1

2 1 3

Can one always complete a partial Latin square by adding rows/columns?
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Adam Wagner (ETH Zürich) Completion and deficiency problems Banff, September 2019



Completing partial Latin squares, history

Marshall, Hall (1945), Ryser(1951): If an r by n rectangle is filled up
completely, it can be extended to an n by n Latin square.

Evans (1960), Lindner (1970), Hilton (1971), Cruse (1973): An n by n
partial Latin square can be embedded in a 2n by 2n Latin square, this is
sharp.

Colbourn (1982): Completing partial Latin squares without adding
rows/columns is NP-complete

Question

Can we improve the 2n in some cases?
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When less than 2n is enough

Daykin, Häggkvist (1983) conjecture: if each row, column, symbol is used
at most n/4 times then it can be completed without adding rows/columns.
Chetwynd and Häggkvist (1985), Gustavsson (1991), Bartlett (2014),
Barber, Kühn, Lo, Osthus, Taylor (2017): true if n/4 replaced by n/25.

Question

Given the number r of entries, how many rows/columns do we need to
add?

Theorem (Nenadov–Sudakov–W)

If L is a partial Latin square of order n ≥ n0 with |L| entries, then L has an
embedding of order n + O(

√
|L|).

This is sharp up to constant. Similar results for completion of a sequence
of orthogonal Latin squares.
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Chetwynd and Häggkvist (1985), Gustavsson (1991), Bartlett (2014),
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Proof

Theorem

If F is a partial Steiner triple system of order n ≥ n0 with |F| blocks, then
there exists an embedding of F of order at most n + O(

√
|F|).

Equivalently: G is obtained from Kn by removing |F| triangles. Want to
show that by adding

√
|F| full degree vertices to G , the graph G ′ has a

K3-decomposition.

Goal: apply Gustavsson’s theorem. If minimum degree at least
(1− γ)|V (G ′)| then G ′ has K3-decomposition.

Let B be the set of small degree (less than n−
√
|F|) vertices in G . Cover

all edges incident to B with triangles so that rest of the graph has high
minimum degree.
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Covering small degree vertices
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Adam Wagner (ETH Zürich) Completion and deficiency problems Banff, September 2019



Proof

Lemma

let G be a graph on vertex set S∪̇T with |T | ≥ 50
√
r , such that the

degree of every vertex satisfies d(v) ≥ |V (G )| −
√
r . Then no matter how

one removes at most r edges from G [S ], the resulting graph has a perfect
matching.

Would like to use Dirac’s theorem: if δ(G ) ≥ 1
2 |V (G )| then have perfect

matching. But vertices in S may have small degree.

Deal with low degree (≤ |V (G )| − 2
√
r) vertices in S one by one. There

are only 2
√
r such vertices, for each we find a vertex in their

neighbourhood in T .

Remaining graph has minimum degree at least |V (G )| − 3
√
r ≥ 1

2 |V (G )|.
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A general class of completion problems

Our results suggest the following new class of extremal problems:

Given a global, spanning property P (e.g. Hamiltonicity)

Typically we can destroy P by deleting very few edges from Kn, e.g. by
isolating a vertex. So Turán problem not so interesting.

Usual solution: add minimum degree condition to avoid these issues.

We look at this problem differently.
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Adam Wagner (ETH Zürich) Completion and deficiency problems Banff, September 2019



A general class of completion problems

Our results suggest the following new class of extremal problems:

Given a global, spanning property P (e.g. Hamiltonicity)

Typically we can destroy P by deleting very few edges from Kn, e.g. by
isolating a vertex. So Turán problem not so interesting.

Usual solution: add minimum degree condition to avoid these issues.

We look at this problem differently.
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The join K ∗ Kt
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Rephrasing our results

If F is a partial Steiner triple system of order n with |F| blocks, then there
exists an embedding of F of order at most n + O(

√
|F|).

Theorem (Rephrased)

If one removes up to r edge-disjoint copies of K3 from Kn to obtain a
graph G, then there exists some t with t ≤ C

√
r so that G ∗ Kt has a

K3-decomposition.
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Rephrasing our results

If F is a partial (n, k)-design with |F| ≤ εn2 blocks, then there exists an
embedding of F of order at most n + 7k2

√
|F|.

Theorem (Rephrased)

If one removes up to r ≤ εn2 edge-disjoint copies of Kk from Kn to obtain
a graph G, then there exists some t with t ≤ 7k2√r so that G ∗ Kt has a
Kk -decomposition.

Latin squares results: multipartite analogues of these.
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The notion of deficiency

Definition

Given a property P and graph G , the deficiency of G with respect to P is
the smallest t such that G ∗ Kt has property P.

Previous results: P is Kk -decomposition

Concept of deficiency is not completely new: Tutte–Berge formula.

We propose a systematic study of these problems
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Examples: Hamiltonicity

P = Hamiltonicity: def(G ,P) is smallest t such that G ∗ Kt is
Hamiltonian

Question

Given that G ∗ Kt does not have a Hamiltonian cycle, at most how many
edges can G have?

Path cover number µ(G ) is smallest number of vertex-disjoint paths that
cover V (G ). Note: µ(G ) = t ⇐⇒ G ∗ Kt is Hamiltonian but G ∗ Kt−1 is
not.

Question (Rephrased)

Given µ(G ), how large can e(G ) be?
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Examples: Hamiltonicity

Question

Given that G ∗ Kt does not have a Hamiltonian cycle, at most how many
edges can G have?

Theorem

Prior work by Skupień (1974), we expanded on it.
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Examples: K3-factor

P = existence of a K3-factor: def(G ,P) is smallest t such that G ∗ Kt

has K3-factor

Question

Given that G ∗ Kt does not have a K3-factor (and 3|n + t), at most how
many edges can G have?

We solve this problem for t ≤ n/1000.

Theorem (Nenadov–Sudakov–W)
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Examples: perfect matching in hypergraphs

P = existence of a perfect matching: let H be a k-uniform hypergraph,
then def(H,P) is smallest t such that H ∗ Kt has perfect matching

Question

Given that H ∗ Kt does not have a perfect matching, at most how many
edges can H have?

This is equivalent to Erdős matching problem!
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General problem

Pick a global property P.

Question

Given that G ∗ Kt does not have P, how many edges can G have?

E.g.

Kk -decomposition,

containing Hamilton cycle,

containing power of Hamilton cycle,

Kk -factor, etc.
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