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A question of Chvátal and Komlós

Question (Chvátal and Komlós, 1971)

How long an increasing path can one always find in any edge-ordering of
the complete graph Kn?
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Replace “increasing path” with “increasing trail”

(Chvatal, Komlós)
Solved by Graham and Kleitman

What happens for the random ordering

(Lavrov, Loh)
Solved by Martinsson for paths

and Angel, Ferber, Sudakov, Tassion for trails
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Increasing paths

Definition

Let f (Kn) denote the largest k such that every edge-ordering of Kn has an
increasing path of length k.

Upper bound:

Calderbank, Chung and Sturtevant: f (Kn) ≤ (1/2 + o(1))n.
Improving on previous results by: Graham and Kleitman; Rödl; Alspach,
Heinrich and Graham; Roditty.

Lower bound:

Milans (2017): f (Kn) ≥ n2/3−o(1)

First improvement of the
√
n bound by Graham and Kleitman (1973);

Theorem 1 (B., Kwan, Pokrovskiy, Sudakov, Tran, Wagner)

f (Kn) ≥ n1−o(1).
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Heinrich and Graham; Roditty.

Lower bound:
Milans (2017): f (Kn) ≥ n2/3−o(1)

First improvement of the
√
n bound by Graham and Kleitman (1973);

Theorem 1 (B., Kwan, Pokrovskiy, Sudakov, Tran, Wagner)

f (Kn) ≥ n1−o(1).
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Altitude of a graph

Definition

The altitude f (G ) of a graph G is defined as the largest k such that every
edge-ordering of G has an increasing path of length k.

Rödl: f (G ) = Ω(
√
d(G )).

Milans: f (G ) = Ω(d(G )/(n1/3+o(1)))

Theorem 2 (B., Kwan, Pokrovskiy, Sudakov, Tran, Wagner)

Let G be a graph with n vertices and average degree d ≥ 2. Then

f (G ) ≥ d

2O(
√

log d log log n)
.
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Height tables

Definition

A height table of an edge ordered graph G with vertex set [n] is a
partially filled array indexed by N× V (G ), constructed as follows:

v1 v2

v3

v4

v5

...

3

v1v2

2

v1v3 v2v3 v3v5 v5v2

1

v1v4 v2v4 v3v4 v4v5 v5v1

i v v1 v2 v3 v4 v5
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Matija Bucić (ETH Zürich) Nearly-linear increasing paths in edge-ordered graphs Banff, September 2019 5/14



Height tables

Definition

A height table of an edge ordered graph G with vertex set [n] is a
partially filled array indexed by N× V (G ), constructed as follows:

v1 v2

v3v3

v4

v5

1

2

4

...

3

v1v2

2 v1v3 v2v3 v3v5

v5v2

1 v1v4 v2v4 v3v4 v4v5 v5v1

i v v1 v2 v3 v4 v5
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Basic properties of height tables

1
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3 v1v2

2 v1v3 v2v3 v3v5 v5v2

1 v1v4 v2v4 v3v4 v4v5 v5v1

i v v1 v2 v3 v4 v5

There are |E (G )| non-empty positions.

The height of e, denoted by hG (e), is the row index of its position

Any edge vivj is entered into column vi or column vj

- column vertex

.

If edge e = vivj is entered at position (h, vi ) all positions (a, vi ), (a, vj)
for a < h are non-empty

and contain edges larger than e.
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for a < h are non-empty and contain edges larger than e.
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There are |E (G )| non-empty positions.

The height of e, denoted by hG (e), is the row index of its position

Any edge vivj is entered into column vi or column vj - column vertex .

If edge e = vivj is entered at position (h, vi ) all positions (a, vi ), (a, vj)
for a < h are non-empty and contain edges larger than e.

Definition

A vertex w is called an extender of an edge vu, entered at position (h, v),
if uw is an edge entered at position (a, u) for some a < h.
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Theorem (Rödl)

In any edge ordered graph there is an increasing path of length
√

d(G ).

Proof.

There is an edge u1u2 of height at least |E (G )|/n = d(G )/2.

Let u3 be its highest extender.

Repeat, let ui+1 be the highest extender of ui−1ui

Repeat as long as d/2− 1− . . .− i = d/2−
( i

2

)
> 0⇔

√
d > i .
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Matija Bucić (ETH Zürich) Nearly-linear increasing paths in edge-ordered graphs Banff, September 2019 7/14



Application of height tables

1 2

34

5

6

7

8

9

10

11

12

1314

15

16

17

18

19

2021
1 2

v3

v4v6

v7

v5

v2v1

5 v1v5

4 v1v4 v2v4 v5v2

3 v1v2 v2v7 v4v7 v5v7

2 v1v3 v2v3 v3v4 v4v5 v5v3 v7v1

1 v1v6 v2v6 v3v6 v4v6 v5v6 v6v7 v7v3

i v v1 v2 v3 v4 v5 v6 v7

Theorem (Rödl)
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In any edge ordered graph there is an increasing path of length
√

d(G ).

Proof.

There is an edge u1u2 of height at least |E (G )|/n = d(G )/2.

Let u3 be its highest extender.

Repeat, let ui+1 be the highest extender of ui−1ui distinct to all uj

Repeat as long as d/2− 1− . . .− i = d/2−
( i

2

)
> 0⇔

√
d > i .
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Our new ingredients
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Lemma (Dropping lemma)

Let G be an ordered graph, U ⊆ V (G ), xy ∈ E (G ):

hG (xy) > m =
√

∆(G )|U|.
Then ∃z ,w ∈ V (G ) \ U: xyzw is an increasing path and

hG−U(zw) ≥ hG (xy)−m.
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Regularisation lemma

Question

Given a graph G with average degree d can we find an almost regular
subgraph whose degree is only slightly smaller than d?

Lemma

Every graph G has a (possibly non-induced) subgraph whose all degrees lie
in the range [d ′, 2d ′], where d ′ ≈ d(G )/ log n.

Remark: Let ε > 0, then there exists an n vertex graph G with average
degree d(G ) = nε for which this result is tight up to a constant factor.
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Proof strategy

Theorem

Let G be an ordered graph, e ∈ E (G ) an edge with hG (e) > a. Then
there is an increasing path P starting with e, having length at least

a1−1/t/(log n)2t ,

such that hG (f ) ≥ hG (e)− a for every f ∈ E (P).

We assume the theorem is true with paths of length a2/3.

We find a dense almost regular subgraph H of G among extenders of e.

We find a long increasing path within H.
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Finding a dense almost regular subgraph of extenders

Sk

Sk−1

|Sk | ≤ 2|Sk−1|

S2

S1

...

· · ·
· · ·

e

Let S1 be the set of a/ log n highest extenders of e.

Let Si be the collection of
a/ log n highest extenders of any edge in Si−1

Let k be the smallest index such that |Si | ≤ 2|Si−1|.

Notice that k ≤ log n.

Consider the subgraph G ′ of G induced by Sk−1 ∪ Sk .

By construction every
vertex in Sk−1 has degree at least a/ log n in G ′. Therefore,

d(G ′) ≥ a/(6 log n).

Apply regularisation lemma to get an almost regular subgraph H of G ′:

a/(6 log n)2 ≤ d(H) ≤ ∆(H) ≤ 2d(H)
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Finding long increasing paths in almost regular dense graphs

Apply induction within H
using only top a3/4 rows.

We get an increasing path of
length (a3/4)2/3 = a1/2.

Remove all but its last two
vertices.

Dropping lemma
shows the last edge falls
at most a3/4, it applies as

(a3/4)2 > |P|∆(H)

= a1/2 · a = a3/2

Repeat a/a3/4 = a1/4 times

to obtain a path of length
a1/4 · a1/2 = a3/4.

h > a

a3/4 rows

a3/4 rows

a3/4 rows

a3/4 rows

...

a3/4 rows

a3/4 rows
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Matija Bucić (ETH Zürich) Nearly-linear increasing paths in edge-ordered graphs Banff, September 2019 12/14



Finding long increasing paths in almost regular dense graphs

Apply induction within H
using only top a3/4 rows.
We get an increasing path of
length (a3/4)2/3 = a1/2.

Remove all but its last two
vertices.

Dropping lemma
shows the last edge falls
at most a3/4, it applies as

(a3/4)2 > |P|∆(H)

= a1/2 · a = a3/2

Repeat a/a3/4 = a1/4 times

to obtain a path of length
a1/4 · a1/2 = a3/4.

h > a

a3/4 rows

a3/4 rows

a3/4 rows

a3/4 rows

...

a3/4 rows

a3/4 rows
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Concluding remarks

Does any edge ordering of Kn permits a linear increasing path, or even
paths of length (1/2− o(1))n?

Can one improve the bound of Ω(
√
d) for increasing paths in n vertex

graphs with average degree d when d is very small compared to n?

Proposition

Let G be an edge-ordered graph with average degree d, such that every
set of at most εd vertices induces at most (1/2− ε)d edges. Then G has
an increasing path of length εd.
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